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In addition we conclude from (16) that 

\\Ak(W)Vk,k-i\\
2Hs->0 for R e W - > - « > . (18) 

The product AB of a HS operator A with a bounded 
operator B is again a HS operator whose HS norm 
satisfies ||^4J3||Hs^ | M | | H S | | £ | | , ||-S|| being the operator 
norm of B. Therefore 

I M . - I W I I H S ^ I M . W F ^ ^ I I H S I I ^ - I W H . (19) 

But Gk~i(W) is the resolvent of the self-adjoint2 

operator Hk-i on 3Ck-i which is bounded from below.1 

Therefore Gk-i (W) is bounded whenever W is not on the 
spectrum of Hk~i, and ||Gfc_i(ffiO||^ const |ReTF|_ 1 for 
ReW —> — oo. Since the spectrum of Hk-i contains the 
set arg(JF— Wo) = 0 (in its continuous part), we con-

2 T . Kato, Trans. Am. Math. Soc. 70, 195 (1951). 

I. INTRODUCTION 

IT has long been part of the folklore of physics that 
the resonance observed in the T= §, / = § + scattering 

state of the pion-nucleon system is induced by the ex­
change of a single nucleon in the "crossed" pion-
nucleon scattering channel. This belief very likely 
originated in the static-model calculations of Chew,1 

where it was found that a two-parameter (coupling 
constant and high-energy cutoff) fit could reproduce 
the position and width of the observed resonance. The 
belief was strengthened by the fact that the cou­
pling constant determined by the two-parameter fit 
agreed with the one obtained subsequently from the 
forward-scattering dispersion relations.2 In this way 
the single-nucleon-exchange diagram was understood 
to provide the primary driving force in the 3, 3 scatter­
ing amplitude. 

One would like to adopt the viewpoint that the static 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Present address: Institute of Theoretical Physics, Depart­
ment of Physics, Stanford University, Stanford, California. 

1 G . F. Chew, Phys. Rev. 94, 1748 (1954); 95, 1669 (1954); 
G. F. Chew and F. E. Low, ibid. 101, 1570 (1956). 

2 U. Haber-Schaim, Phys. Rev. 104, 1113 (1956). 

elude from (17), (18), and (19) Hint A ^(W) has indeed 
the properties (8a), (8b), so that our induction proof is 
completed. 

For & = 2, theorem (8) and (17) yield the final result: 
I(W) is a Hilbert-Schmidt operator on the space 3Ci 

for all W not on the continuous spectrum of the full 
Hamiltonian, if (and only if) the potentials, which 
describe the pair interactions, are square integrable. 

This is identical with Weinberg's conjecture, since 
the HS norm for 3Ci is the same as Weinberg's "center-
of-mass HS norm." 
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model is an approximation to a more complete, rela-
tivistic theory which would permit calculations free of 
arbitrarily imposed cutoff parameters. The discovery 
of the Mandelstam representation,3 from which partial-
wave dispersion relations were deduced, appeared to 
provide a means of doing this. Frautschi and Walecka4 

investigated this approach and were able to show that 
the single-nucleon-exchange force is more than suf­
ficiently attractive to account for the 3, 3 resonance. 

Following the qualitative success of the Frautschi-
Walecka calculation, it was possible to feel that one 
had a reasonable understanding of pion-nucleon scat­
tering over a substantial range of energies. For example, 
if the expression for the single-nucleon-exchange force 
is reduced to nonrelativistic form, a Yukawa potential 
is obtained with the sign (— l)l+J+T (a positive sign 
corresponding to an attractive interaction). This is 
roughly in agreement with what one is led to deduce 
from the observed scattering. 

The next step was to seek a sharper understanding 
by carrying through a more precise version of the 

3 S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741 and 
1752 (1959). 

4 S . C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 
(1960), referred to hereafter as F-W. 
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Frautschi-Walecka calculation. This was important 
because there were two somewhat contradictory indica­
tions of the strength of the single-nucleon-exchange 
force in the 3, 3 amplitude. The estimate of F-W put 
the resonance at too low an energy, suggesting that the 
force was too strong to be consistent with experiment. 
On the other hand, a different technique of estimation 
by Baker,5 confirmed by Martin and Wali,6 put the 
resonance at too high an energy and suggested that the 
one-nucleon force was, in fact, too weak. In this 
situation an optimist might have been led to hope that 
a more careful calculation would give a result lying 
between the two extremes. 

A recent calculation by Abers and Zemach7 (see also 
Ball and Wong8) suggested, however, that the F-W 
result was closer to the truth. In fact, F-W under­
estimated the strength of the one-nucleon-exchange 
force, which was found by Abers and Zemach to be 
strong enough to give a 3, 3 bound state. There are 
some features of the A-Z calculation that require further 
investigation, to be provided here, but the qualitative 
conclusion is confirmed by our own work. One purpose 
of this work was to do a careful version of the A-Z 
calculation in order to investigate the strength of the 
one-nucleon-exchange force. 

I t is not difficult to state the problem we set out to 
solve: to find partial-wave pion-nucleon scattering 
amplitudes that satisfy elastic unitarity on the physical 
cuts, that have the correct threshold behavior, and 
that have the dynamic singularities of the single-
nucleon-exchange force. One might hope that this 
problem is well defined. Certainly, if one hopes to 
carry through a "bootstrap" program9 for meson-
baryon systems, this type of problem must be con­
fronted and solved. 

In setting up the calculation, however, we found 
ourselves afflicted by a plague of ambiguities. This 
paper is devoted mainly to the analysis of these ambi­
guities and an attempt to resolve them. The fact that 
some of these difficulties exist has been recognized by a 
number of authors,10 but the specific question we pro­
pose to answer has not, to our knowledge, been satis­
factorily dealt with in the literature. I t is somewhat as 
an afterthought that we are able to report upon the 
original subject of investigation, the strength of the 
one-nucleon-exchange force. 

The next section of the paper is devoted to the tech-

6 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). 
6 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963). 
7 E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963), re­

ferred to hereafter as A-Z. 
8 J. S. Ball and D. Y. Wong, Phys. Rev. 133, B179 (1964). 
9 See, for example, F. Zachariasen and C. Zemach, Phys. Rev. 

128, 849 (1962). 
10 We gather that the authors of Ref. 4, 7, and 8, and also 

G. F. Chew and C. E. Jones [University of California Lawrence 
Radiation Laboratory (Berkeley) Report UCRL-10992, August 
1963 (unpublished)] and undoubtedly many others who have 
worked in this field, are aware of the ambiguities to which we 
refer. 

nical details of the analysis. In it we consider the 
implications of requiring partial-wave scattering ampli­
tudes to have "correct" threshold behavior. The re­
quirement turns out to bear upon the asymptotic 
growth of the amplitudes and some rather severe 
restrictions can be read out of a standard mathematical 
theorem that is reproduced in Appendix I I . Section I I I 
qualitatively describes the results of our numerical 
calculations. The detailed numerical results are not 
considered to be of sufficient physical interest to 
warrant their inclusion. Section IV is devoted to our 
conclusions and contains suggestions for further work. 
Our notation and some of the relevant formulas are 
consigned to Appendix I. We remark that a previous 
paper11 by one of us contains erroneous equations that 
are correctly given in the Appendix. 

II. ANALYSIS 

We now focus our attention upon the partial-wave 
amplitudes as analytic functions of the total center-
of-mass energy W. As a convenient point of reference 
we choose the familiar partial-wave amplitudes4,12 

fi±(W) (see Appendix I for a summary of the notation) 
in terms of which other amplitudes will be defined. The 
amplitudes fi±(W) satisfy the "elastic" unitarity condi­
tion f(W) = q~1Xsm5ei5 (5 real) in the physical region 
and are related through the MacDowell symmetry13 

fi+(—W)= — fi+i,-(W). I t is sufficient, therefore, to 
work with the amplitudes fi+(W) alone; we denote 
them by fi(W). 

Let us now formulate the mathematical problem. 
The amplitude fi(W) is a real analytic function in the 
cut W plane13-14; it satisfies the elastic unitarity condi­
tion on both the left- and right-hand physical branch 
cuts and has a specified discontinuity across certain 
dynamic branch cuts (as well as possible specified poles). 
Further, we suppose that the only dynamic singularities 
are those that arise from the single-nucleon-exchange 
forces. Finally, we demand that the amplitude fi(W) 
exhibit the "correct"15 threshold zeros at the two 
physical thresholds, namely, fi{W)^qn for W—M+JJL 
and fi(W) oc y«+2 for W~ - (M+fi). 

11 J. L. Uretsky, Phys. Rev. 123, 1459 (1961). Dr. Kotani has 
kindly pointed out to one of us that several of the formulas of 
that paper are in error. The correct forms are contained in Ap­
pendix I of the present paper. As remarked in the text, the results 
of the two analyses are qualitatively the same. 

12 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 
Phvs. Rev. 106, 1337 (1957). 

« S. W. MacDowell, Phys. Rev. 116, 774 (1959). 
14 W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960). 
15 From a purely logical standpoint, this requirement is not at 

all straightforward. The threshold behavior that we specify is well 
known to be a rigorous consequence of the assumption that the 
scattering amplitude satisfies a Mandelstam representation. The 
demonstration requires, however, that the "dynamic branch cuts" 
be considerably more complicated than those arising from one-
nucleon exchange. Thus, it becomes a matter of taste as to which 
consequences of the Mandelstam representation should be kept 
in the formulation of an approximate problem. One of us (J. L. U.) 
thanks Professor Charles Zemach for some interesting discussions 
of this point. 
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We are almost ready to incorporate all of these state­
ments into a Cauchy integral representation and thereby 
gain for ourselves a nonlinear "dispersive" integral 
equation for the amplitude fi(W). Before doing this it is 
necessary to discuss the asymptotic behavior of the 
amplitude. Let us first suppose that the amplitude fi(W) 
vanishes at infinity and so may be expressed by an 
unsubtracted dispersion integral. Let the contour of 
integration be such that it borders all branch cuts on 
both sides and is closed on the arcs at infinity. I t is 
trivial to show11 that the integration along the contours 
bordering the dynamic branch cuts reproduces the 
Born approximation one-nucleon-exchange amplitude 
fiB(ffl)> The possibility of this integration giving an 
additional entire function is eliminated by the assumed 
asymptotic behavior of fi (W) and the known asymptotic 
behavior of fiB(W). Then, using the elastic unitarity 
condition on the two physical cuts, we may write 

MW)=ft»(W)+- / dw- -

1 
dW-

W'-W 

q{W)\ft{-Wf)\ 

7T J M+n W'+W 
(1) 

While this amplitude clearly satisfies unitarity and 
possesses the desired dynamic singularities, it will not 
ordinarily possess the desired threshold behavior. The 
reason for this failure is that, for single-particle ex­
changes, the Born approximation itself exhibits the 
"correct" threshold behavior and, as a result, cannot 
cancel the finite threshold contributions of the integrals 
over the physical cuts. While it is possible that the two 
positive-definite integrals (for W at one of the thresh­
olds) might cancel each other, this cannot happen 
simultaneously at both thresholds and, therefore, is not 
the answer to the difficulty. Instead, the answer is 
found in the approximation of taking only single-
particle-exchange contributions to the "driving force" 
represented by fiB(W). Higher order contributions, 
those that provide the double spectral functions to the 
Mandelstam representation, do not, in general, vanish 
at the thresholds and are required to achieve the 
"correct" threshold behavior16 of the fi's. 

16 Although we have shown that the approximate fiB>s coming 
from single-particle exchanges cannot give the correct threshold 
behavior to the fis in Eq. (1), it is certainly not apparent that 
this trouble would be completely alleviated if the exact dynamical 
cuts (fiB) were specified. The point is that although the Mandel­
stam double-dispersion relation implies a certain threshold be­
havior for the partial-wave amplitudes, the Mandelstam repre­
sentation does not contain a unitarity requirement. On the other 
hand, the right-hand side of Eq. (1) contains the unitarity 
requirement and, in consequence, need no longer contain the 
threshold behavior of the Mandelstam representation. The 
difficulty probably stems from the fact that solutions of "disper­
sive" integral equations are generally nonunique. Thus, it is 
likely that if special properties, such as threshold behavior, are 
to be required of the solution, then they must be imposed at the 
outset. 

We must therefore attempt to supply the correct 
threshold zeros as an added requirement upon the 
partial-wave amplitudes. The conventional scheme for 
accomplishing this is to "disperse" in amplitudes with 
the zeros divided out. Thus (with intentional sloppiness 
in our treatment of the "left-hand" threshold in order to 
keep the argument simple), we consider the new 
amplitudes 

hl(W)=(Wk/fl)fi(W)^Pl(W)fi(W) (2) 

and remark that the factor pi(W) has the behavior 

pi{W) oc W-w~k) for large W, (3a) 

pi(W) oc Wn+k for vanishing W. (3b) 

The integral exponent k is not specified except that it is 
obviously required to be less than or equal to 21. I t is 
supposed that hi(W) satisfies the unsubtracted dis­
persion relation 

hi(W) = hB(W)+ 

X 

X J M+ii 

rlW)l* 
L w-w 

dW'q(W')pcKW) 

ht(.-wy* 
• ( - i ) 4 

W'+W ]• (4) 

where hl
B(W) = pi(W)fiB(W). 

Let us now consider some of the implications of 
Eq. (4). First, we recognize that along the real axis a 
solution of the equation will satisfy the elastic unitarity 
condition. In particular, hi(W) must fall off at least 
as fast as W~m+1~h) for large, real W. Since hiB(W) 
can be shown to have this behavior (along every ray in 
the W plane), it follows that17 

lim l.u.b. | W[fi(W)-fiB(W)~] | < oo, W ~> =1= oo. (5) 

Along the imaginary axis, on the other hand, Eq. (4) 
becomes 

hi(iy= hiliy) — hiB (iy) 

Q(W')pi-l(W') 1 r " q 
-- j dW- NW'+iy)\hi(W')\ 

W/2+y2 

- ( - l )*( j r - fy) |M-^ ' ) l 2 ] . (°) 
From this it follows that for k even (odd), the imaginary 
(real) part of hi(iy) cannot fall off any faster than 
y~x{y~2). The conclusion is then immediate that fi—fiB 

will grow at least as fast as 

\w\:fl(w)-fl
B(wn\ 

\W\2l-k keven] 
>.l \W- -zLioo. (7 ) 

17 It is necessary to call upon the least upper bound (l.u.b.) 
because \im\ Wfi(W) \ need not exist; the function WJi(W) may 
oscillate indefinitely. We would disagree vigorously with analyses 
that assume, without justification, that the limit exists, e.g., those 
of M. Sugawara and A. Kanazawa, Phys. Rev. 126, 2251 (1962) 
and A. P. Balachandran, J. Math. Phys. 5, 614 (1964). 
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At this point it would be handy to have a theorem to 
invoke, and it turns out that one of the Phragmen-
Lindelof theorems (Appendix II) is exactly what is 
needed. I t allows us to conclude that if k is not large 
enough, then an fi(W) that satisfies both conditions 
(5) and (7) must be of exponential growth and, there­
fore, cannot satisfy the dispersion relation (4). The 
precise condition on k is k^2l for k even or k^2l— 1 
for k odd. Of these two, the natural choice is k=2l. 
[Note that the estimate for k odd, Eq. (7), is generous 
in that it depends on the cancellation of two positive 
definite integrals—a circumstance not likely to arise in 
actual calculations.] Thus, we conclude that (still 
ignoring the correct treatment of the left-hand physical 
threshold) we should disperse with the amplitudes 

hl{w)^{wyqyfl{w). (8) 

This conclusion leads us to another observation that 
we think is of considerable interest. Suppose that 
hi(W) [Eq. (4)] is nonvanishing at the origin. I t 
follows from Eq. (8) that fi(W) will have a pole there 
of order 4/. But why select W=0? All of the preceding 
argument would have gone through unchanged if we 
had replaced Wh by a &th-order polynomial in W, thus 
providing fi(W) with a k~iold collection of poles (and 
k arbitrary constants) in the finite W plane to accom­
pany the pole of order 2/ that occurs at the origin as a 
result of the factor q21. One has a strong suspicion that 
these necessary additional poles should collect at the 
origin, but we have not been clever enough to prove 
this. 

There is yet another difficulty to be settled before we 
can proceed to the solving of equations. The quantity 
q2 vanishes not only at the MacDowell-symmetric 
thresholds W=ZL(M+IJL), but also at the thresholds 
W = do (M—n) of the "crossed" pion-nucleon channels. 
The fi(W) defined by Eq. (8) therefore has /-fold 
zeros also at the "crossed" thresholds. Do we in fact 
want these? 

We are of the opinion that the answer to this question 
follows from an analysis made by Frye and Warnock.18 

They show that, as a consequence of crossing symmetry, 
the exact partial-wave amplitudes fi(W) cannot have 
zeros at dz(M—ju). Instead, these points are branch­
point singularities of the amplitude. I t is now possible 
to argue that our formalism should be one that would 
give the correct answer if the exact dynamical branch 
cuts and discont inues were specified. Therefore, in this 
spirit, we must avoid forcing these extra zeros upon 
the amplitudes fi(W). 

The ultimate result of the preceding considerations 
now becomes evident. The amplitude fi(W) has an 
/-fold zero at (M+ju), and an (/+l)-fold zero at 
— (Md-fi). These must be divided out by a polynomial 
of degree 2 / + 1 . On the other hand, the analysis based 
upon the Phragmen-Lindelof theorem indicates that 

18 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963). 

we must choose a kinematic factor pi(W) [Eq. (2)] 
which approaches a nonvanishing constant as W tends 
to infinity. Thus we must introduce 2l-\-1 simple poles 
into the amplitude fi(W) and we believe it appropriate 
to put them all at the origin of the W plane. In this 
way we are led to consideration of an amplitude 

hi(w)=w2i+i{ (w+M+fi)[w2- (M+pyy^Mw) 
=Pi(W)MW), (9) 

which we assume has no poles [apart from those in the 
driving force hiB(W)~] in the complex W plane and falls 
off as | W | - 1 for large W. 

I t is now clear that we may write a dispersion relation 
like Eq. (4) for the ht(W) of Eq. (9) and treat it by the 
conventional N/D method19 to obtain an integral 
equation for N. Also, the kernel of the integral equation 
is readily shown to be of the Fredholm type so that the 
suitability of elementary numerical techniques is 
assured. 

III. RESULTS 

The integral equations for the different partial waves 
(see Appendix I) were approximated by linear algebraic 
equations, in the usual way, by use of trapezoidal-rule 
numerical integrations. These algebraic equations were 
inverted with the aid of Argonne's CDC-3600 computer, 
and the matrix size was varied from 40X40 to 80X80 
to verify that truncation errors were not serious. The 
high-energy end points were at =i-400 pion masses. 
Varying this had little effect upon the low-energy 
results. 

The integral equations were solved for orbital angular 
momenta 0 ^ / ^ 4 ( J ^ / ^ f ) for both isospin states in 
pion-nucleon scattering. The computer program was so 
constructed that the amplitude hiiW) obtained from 
the N/D equations was reinserted into the original 
nonlinear dispersion relation in order to verify that a 
solution had, in fact, been obtained. Having made the 
choice of amplitude [Eq. (9)], we have no arbitrary 
parameters in the calculation, the N/D representation 
(with a once-subtracted dispersion relation for D) 
being independent of the choice of subtraction point. 
In discussing the results we turn first to the 3, 3 
amplitude. 

The solution of the N/D equations for the T = f , 
/ = § amplitude was negative (repulsive-like) for 
positive W (^-wave) and, when inserted back into the 
dispersion relation, was found not to be a solution of 
that equation. I t was presumed that this indicated that 
the one-nucleon-exchange force was sufficiently attrac­
tive to produce a bound 3, 3 state. We tested this 
notion by examining the behavior of the amplitude as 
a function of the coupling constant g2, (g2/47r=14.5 
was assumed to be the "physical" value). We found 
that a p -wave resonance first occurred when g2/^ir was 

19 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
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about 4.5, and that the resonance moved in and be­
came a bound state at about g2/4ir=6.2. These results 
provide qualitative confirmation of the calculation of 
Abers and Zemach who also concluded that the one-
nucleon-exchange force was strong enough to give a 
bound p-w&ve 3, 3 state. 

Another aspect of the 3, 3 amplitude is thought 
worthy of comment. This is the behavior as a function 
of the coupling constant of the 3,3 d wave, which, it 
will be recalled, is the MacDowell partner of the 3, 3 
p wave. When g2 was small, the d-wave phase shift was 
found to be attractive. This would naturally be inferred 
from the sign of the one-nucleon-exchange term, which 
is positive in both the py2 and J3/2 states20 (for isospin 
r = f ) . However, as the coupling constant was increased 
and the ^-wave phase shift approached a resonant be­
havior (g2/47r>4), the d-wave phase shift became 
repulsive. In other words, the unitarity integral over 
the physical p-w&ve branch cut represents a repulsive 
driving force in the J-wave amplitude which dominates 
the one-nucleon-exchange term even though, with 
regard to location, the physical p-w&ve cut is much 
farther away. This was found to be a general character­
istic of our solutions; an attractive driving force in an 
fi+(W) amplitude resulted in a dominant repulsion in 
the related fi+i,-(W) amplitude, contrary to expecta­
tions based on the sign of the one-nucleon-exchange 
term. 

The characteristics of our solutions as a whole may be 
summarized as follows. When the one-nucleon-exchange 
driving force (with g2/47r set at 14.5) was repulsive in a 
given amplitude, the solution of the N/D equations 
failed to satisfy the original dispersion relation. We 
interpret this as evidence for "ghost" poles in the 
N/D "solution." In particular, the s-wave amplitudes, 
which are qualitatively the same as those reported in 
Ref. 11, apparently contain ghosts so close to the 
physical region that no reliance can be placed upon the 
results. This feature of the solutions was further ex­
amined by reducing the magnitude of the coupling con­
stant. I t was found that for small enough g2 (g2/47r^4) 
the dispersion relations were reasonably well satisfied. 
This indicated that the ghost poles had receded in the 
complex W plane. 

For those amplitudes in which the driving force was 
attractive, on the other hand, the N/D solutions 
satisfied the dispersion relation check quite well, even 
with the coupling constant set at its "physical" value. 
(This does not hold, of course, for the 3, 3 bound-state 
solution since the bound-state pole was not included in 
the dispersion relation.) The distinctive aspect of the 
"attractive" fi+(W) amplitudes" was that they nearly 
always resonated. The only exception found was the 
r = | , g9/2 amplitude, for which the phase shift reached 
a maximum value of 52°. 

20 The "exchange" property of having opposite signs for odd 
and even I is only true in the limit of very large nucleon mass. 
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Finally, we considered it of interest to study the 
practical consequences of our assertion that the extra 
zeros of q2 should not be imposed upon the amplitudes 
fi(W). To this end the calculation was repeated with the 
kinematic factor 

Pl(W) = W^+miW+My-^q21}-1. (10) 

For the most part the results of the two calculations 
were strikingly similar, significant differences occurring 
in only a few amplitudes. The T=%, pi/2 amplitude 
(the amplitude in which the direct nucleon pole term 
makes the dominant contribution) was found to have a 
much stronger repulsion with the kinematic factor of 
Eq. (10). Another distinction concerns the fi+it^(W) 
amplitudes in which the driving force is attractive. With 
our initial choice of pi(W), it will be recalled, the solu­
tions evidenced a dominant repulsion. With the pi(W) 
of Eq. (10), however, the phase shifts for these ampli­
tudes are attractive at low energy and then swing over 
to become repulsive at higher energy. 

A simple way to view the differences between the two 
choices of kinematic factor is the following observation. 
The extra zeros and poles imposed upon the amplitudes 
by the Pl(W) of Eq. (10) tend to isolate the MacDowell 
symmetric amplitudes from each other. That is, the 
role of one "unitarity branch cut" as a driving force in 
the other amplitude is reduced. One consequence is the 
behavior of the fi+1>_(W) noted above. Another is the 
fact that the fi+(W) amplitudes in which the driving 
force is attractive resonate at lower energies. The last 
point to be made is that both choices of kinematic factor 
led to the same "ghost" difficulties. 

IV. CONCLUSIONS 

We should now like to make some remarks concerning 
the sufficiency of the single-nucleon-exchange force for 
predicting features of pion-nucleon elastic scattering. 
We must, however, admit to a certain feeling of un­
easiness in trying to discuss these matters in the context 
of the "dispersive" or "N/D" calculations that have 
been used. The high-order pole that we have arbitrarily 
chosen to put at the origin of the W plane seems to have 
very little to do with physics and almost certainly arises 
from an inadequate definition of the scattering "poten­
tial." We remind the reader that the same difficulty 
is present whenever the "potential" (or left-hand 
cut) is derived from single-particle exchanges and 
occurs in other treatments of the pion-nucleon scatter­
ing problem.7,8 

Nevertheless, if we suppress our doubts and proceed 
to draw conclusions, then there is one that seems in­
escapable. The one-nucleon-exchange force, as we have 
applied it, is much too strong to be held accountable 
for the 3, 3 resonance. Of course, given an excessively 
strong force it is always possible to weaken it by the 
imposition of a cutoff as was done by Abers and Zemach7 

and by Ball and Wong,8 and it is not surprising that 



B808 A. W. M A R T I N A N D J . L . U R E T S K Y 

they were able to find a 3, 3 resonance by such a pro­
cedure. Whether this demonstrated that we now have a 
deep understanding of low-energy pion-nucleon scatter­
ing is another question. Let us recall that the one-
nucleon-exchange force is attractive in roughly half of 
the partial-wave states. The probability that it can be 
used to predict any given low-energy resonance is not 
hard to calculate. At any rate, it would appear that we 
have not progressed markedly beyond Chew's static 
model. The 3,3 resonance is still obtained from a two-
parameter calculation just as it was in earlier days. 

The excessive strength of the one-nucleon-exchange 
force is not, as we have already noted, confined to the 
3,3 state. All of the fi+(W) amplitudes (up to / = f ) 
in which the driving force is attractive are found to 
have low-energy resonances that seem to have little 
to do with physics. Clearly, this case does not share the 
good fortune of, say, nucleon-nucleon scattering for 
which the one-particle-exchange terms adequately re­
produce the low-energy behavior of the higher partial 
waves. 

What, then, is the interpretation of the experimental 
data if the one-nucleon-exchange force is so strong? 
The most obvious answer is that "short range" forces 
that we have not taken into account are effective in 
damping the one-nucleon contribution. Hence, one 
finds the need for a cutoff. Ball and Wong8 obtained 
reasonable fits to the data for a number of partial waves 
using the same cutoff for each partial wave. The 
trouble here is that the required cutoff is at such a low 
energy (about 2.5 nucleon masses). I t seems very un­
likely that the ignored forces could conspire to give the 
same effective low-energy cutoff in all angular mo­
mentum and isospin states. 

A more compelling guess is that we have, in fact, 
oversimplified the one-nucleon contribution by treating 
the nucleon as an elementary particle. From this view­
point, the imposition of a cutoff compensates for the 
fact that the nucleon "really" is a point on a Regge 
trajectory. The cutoff then provides a simple, ap­
proximate way to Regge-ize the nucleon-exchange 
contribution. 

We would feel more comfortable with the second 
explanation if we had more confidence in the ability of 
a "dispersive" formalism to make unique predictions. 
For example, we have solved dispersion relations for 
amplitudes so defined that the one-nucleon-exchange 
force is not strong enough to make the 3,3 state resonate 
for any finite cutoff. Such solutions, which are meaning­
ful in a cutoff theory, would violate the Phragmen-
Lindelof theorem of Sec. I I in the absence of a cutoff 
pet , for example, the exponent k in Eq. (2) be zero]. 

Despite the objections of the last paragraph, we do 
admit to a prejudice in favor of the "Regge-ized 
nucleon" explanation. I t is not hard to visualize how 
such a concept can be given quantitative meaning in 
a "bootstrap" calculation. Start with the exchange of 

an un-Regge-ized nucleon (in the u channel) and no 
cutoff. The force resulting from this exchange gives 
rise to a 3,3 trajectory which, when added to the 
"crossed" channel, will give rise to the nucleon tra­
jectory. In this way one obtains driving forces with 
built-in effective cutoffs. We anticipate that the itera­
tive process will be a convergent one. 
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APPENDIX I : INTEGRAL EQUATION FORMULATION 

The kinematics of pion-nucleon scattering have been 
discussed in great detail4-12 and will not be repeated 
here. We employ the standard notation in which W 
is the total energy in the barycentric system, q(W) is 
the magnitude of the three-momentum in that system, 
and M and JJL are the nucleon and pion masses, respec­
tively. Further, s, t, and \i are the familiar Mandelstam 
variables, and we use the natural units h=c=\. Our 
basic partial-wave amplitudes are those of Refs. 4 and 
12, namely, 

MW)= ( 1 / 3 2 T T ^ ) { [ ( T F + M ) 2 - M 2 ] 

XlAl+{W-M)B{]+[_(W-MY-^ 

Xl-Al±1+{W+M)Bl±{]}, (Al) 

Ai(W)= J Pi{x)A{s,t,u)dx, etc. (A2) 

which satisfy the elastic unitarity condition fi±(W) 
= $indi±exp(i8i±)/q in the physical region for both 
total-isotopic-spin states. The one-nucleon-exchange 
driving force fi±B(W) for our calculation is obtained 
from Eqs. (Al) and (A2) by using the invariant 
amplitudes 

AT(s,t9u) = 0, 

BT(s,t,u)=aTg2/(M2-s)-^Tg2/(M2-u), (A3) 

where the familiar isotopic-spin dependence is (XT = 3(0) 
and j8 r= —1(2) for total isospin r = | ( f ) . From Eq. 
(A2) it follows that 

Al
T(W) = 0, Bl

T(W) = 28lQaTg2/(M2-W*) 
+ (pTg2/q*)Qi(e), (A4) 

for the one-nucleon-exchange force, where Qi(e) is the 
Legendre function of the second kind with argument 

e = 1 - (W2-M2-2fM2)/2q\ (A5) 

Using the partial-wave amplitudes hi(W) which are 
finite at both thresholds, we carry out the N/D separa-
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tion in the usual way and obtain 

hl(W) = Nl(W)/Dl(W), 

1 r hi(JV)Di(W)dW' 
Ni(W) = 

Di(W)=l-

2 « Ja.c. W'-W 

(W-Wo) 

(A6) 

(A7) 

X 
q(W)Ni(W)dW' 

K,.Pi(W'){W'-W,){W'-W) 

where the integral over the physical cuts (p.c.) is 

-, (A8) 

/ =\ + 

J p.c. J —oo J ( (M+/0 

(A9) 

and we use the convention q( — W) = q(W). The integra­
tion over the dynamic cuts (d.c.) in Eq. (A7) is along a 
contour bordering these cuts on both sides. Inserting 
(A8) into (A7) and using 

hi(W')dW' 

2wiJd.G. W'-W. 
= Ai*(W0, (A10) 

we obtain the linear inhomogeneous integral equation11 

for Ni(W), namely, 

1 r dW'q{W')Ni(W') 
Nl(W) = hl

B(W)+-

X 

W p . , p,(W)(W'-w) 

(W-W0) 
hB{W)-

(W'-Wt) 
•hiB(W) (All) 

I t is a trivial matter to prove that the solution of (All) 
along with (A8) leads to an amplitude hi(W) which is 
independent of the subtraction point Wo. 

APPENDIX II : PHRAGMEN-LINDELOF THEOREM 

We have made use of the following theorem (with a 
trivial modification) stated in Ref. 21. 

Theorem (Phragmen-Lindelof): Let f(z) be regular 
in the half-plane y > 0 , continuous in the closed half-
plane y^O, bounded on the real axis (\f(x)\^M), 
and f(z) = 6(erP), 0 < 1 , uniformly in 0, for a sequence 
f = f n - > o o . Then \f(z)\^M for y^O. Here f(z) 
= Q[g(z)'] means that f(z)/g(z) is bounded on the 
specified values of z=reid. 

The proof is so concise that we repeat it here. Consider 

F(z) = f(z) exp(-es^e-^7 r / 2) , 

where / 3 < 7 < 1 and e>0 . Then 

| F(z) | = | f(z) | e x p [ - e^ COSY(0-TT/2 ) ] , 

or 
I F(z) K I /(*) I e x p [ - erv cos(77r/2)]. 

By construction \F(z)\ —>0 on the sequence of radii 
rn for 0^0^7r . If rn is large enough, \F(z)\^M on 
\z\=rn, O^d^T. Similarly, \F(x)\^\f(x)\^M for 
x^rn. That is, \F(z)\ ^M everywhere on the bound­
ary of a semicircular region. Since F(z) is analytic in­
side this region, it must attain its maximum value on 
the boundary. I t follows that \F(z) | ^M in the entire 
half-plane since rn can be arbitrarily large. Hence, 
| f(z) | ^ | F{z) | exp(er7) ^ M exp(er^) everywhere in 
the upper half-plane. Letting e—>0 for each fixed z 
proves the theorem. 

21R. P. Boas, Jr., Entire Functions (Academic Press Inc., New-
York, 1954), p. 3. 


