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The dynamical or exact symmetry group of the nonrelativistic Kepler problem (a symmetry group in four 
dimensions) is generalized to the Dirac equation and further to elementary particles. The former is a ten-
parameter group of rank two isomorphic to a group in five dimensions, the latter a 16-parameter group of 
rank four isomorphic to a group in six dimensions. Both groups contain the real Lorentz group and couple 
the space-time quantum numbers with the internal quantum numbers. The 16-parameter group has a 15-
parameter simple subgroup and contains two three-dimensional rotation groups, one for ordinary spin and 
one for isotopic spin. The concept of "inhomogeneous dynamical group" is introduced. The inhomogeneous 
group contains two new additive quantum numbers to describe the hypercharge and the baryon number and 
leads to a mass spectrum. The third component of isospin and the new additive quantum numbers commute 
with all the six generators of the Lorentz group. A further generalization leads to a group where all three 
isospin generators commute with the Lorentz group. 

I. INTRODUCTION 

BY an exact or dynamical symmetry group of a 
quantum-mechanical system we mean a group 

which, above and beyond the space-time symmetry, 
gives the actual quantum numbers and degeneracy of 
the system. I t has been called in the literature variously 
as the "hidden" or "accidental" symmetry. I t has been 
known for a long time that the dynamical group of the 
nonrelativistic Kepler problem is a six parameter group 
of rank two whose generators can be taken to satisfy 
the commutation relations of the four dimensional 
orthogonal group1-6 or those of the Lorentz group.7 The 
symmetric irreducible representations of this larger 
group explain the n2 fold degeneracy of the ^th level of 
the hydrogen atom.8 Similarly the dynamical symmetry 
group of an iV-dimensional isotropic harmonic oscillator 
is the group UN, the iV-dimensional unitary group,9 

whose irreducible representations of dimension (N+n— 
1) \/n\(N— 1)! explain the degeneracy of the nth. energy 
level. 

In this paper we discuss the generalizations of these 
dynamical groups applicable to the relativistic case, 
the Dirac electron, and further to elementary particles. 
We shall give to the concept of dynamical symmetry 
a more fundamental meaning than a mere accident. 
The underlying larger space may be thought to contain 
beside the space time coordinates the internal coordi-
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nates (or alternately as some topological deviations 
from the flat space) which give rise to the observed 
quantum numbers, just as the space-time coordinates 
give rise to spin. In the simple cases mentioned above, 
the H-atom or oscillator, the dynamical groups can be 
explicitly constructed in terms of the position and mo­
mentum operators. However, a quantum-mechanical 
problem may be completely defined by its dynamical 
symmetry group, the class of representations which are 
realized and by the connection between the energy (or 
mass) and the invariant (Casimir) operator of the dy­
namical group. In this sense, in generalizing the dy­
namical symmetry groups to elementary particles we 
shall be guided by the group structure and by the 
quantum numbers one obtains; specifically the larger 
group must contain the Lorentz group and, coupled to 
it, all other observed quantum numbers.10 

One generalization of the nonrelativistic dynamical 
symmetry groups is the 16-parameter complex Lorentz 
group with a real metric and has been discussed in 
great detail elsewhere.11 I t contains the real Lorentz 
group, the symmetry group of the three-dimensional 
harmonic oscillator, Z73, and as a limiting case, the sym­
metry group of the Kepler problem. 

A second natural generalization is the subject of this 
paper. We determine first a ten-parameter group gener­
ated by the four Dirac matrices y^ which is isomorphic 
to the orthogonal group in five dimensions with the 
metric (—, + , —, —, —). I t contains the seven-param­
eter subgroup which is actually the dynamical symmetry 
group of the nonrelativistic Kepler problem. We then 
discuss the symmetry group generated by the 16 Dirac 
matrices; it is a group isomorphic to the orthogonal 
group in 6 dimensions with the metric (—, —, + , —, 
—, —). I t contains two rotation groups, one for spin 
and one for isospin, and the inhomogeneous group con­
tains beside the energy momentum operators two other 
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numbers and the internal quantum numbers see A. O. Barut, 
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additive quantum numbers to describe the hypercharge 
F and the baryon number N. The third component of 
isospin, as well as the two other additive quantum 
numbers commute with all the six generators of the real 
Lorentz group. The implications for the mass spectrum 
of elementary particles are discussed. 

A further generalization to the orthogonal group in 
7 dimensions with the metric ( 1 ) 
leads to the case where all three generators of isospin 
commute with all the generators of the Lorentz group. 
It should be remarked that a dynamical group should 
give an exact mass spectrum and is therefore different 
than symmetry considerations based on compact groups, 
such as SU3, independent of the Lorentz group, which 
can only give a very approximate or broken symmetry. 

II. THE LIE GROUP GENERATED BY 
THE DIRAC MATRICES 

Let us consider the four Dirac matrices as generators 
of a Lie group. What is the group? The commutation 
relations of these matrices lead to new generators. For 
example, in the representation in which 

we find 

[><,ary] = 2iAk, (tjk cyclic); [>;,/?] = 2Biy (2.2) 

where 

\0 J - W O / 
(2.3) 

These ten independent generators a, /?, A, B now form a 
Lie algebra because their commutation relations do not 
give anything new: 

D4<,£y] = 2«*; [AM=2iAh; 
[_BhBj]=-2iAk (2.4) 

(ijk cyclic). 

Moreover, as seen from (2.4) the 6 generators A and B 
form a subalgebra or generate a subgroup. Let us in­
troduce the new generators 

1 1 
R=—A; M = —B; L = - | a , N0o~-

2i 2i 
-if3. (2.5) 

Then R and L, and also R and M, satisfy the commuta­
tion relations of the Lorentz group with R being the 
generators of the subgroup of three-dimensional 
rotations. 

We now show the relation of this group to the group 
of complex Lorentz transformations A satisfying 
AtGA=G, where G is the diagonal matrix with elements 
(+1 , —1, —1, —1). This latter group is generated by 

the following 16 

M^= 

#„,= 

generators11: 
ro u u v 

0 Rx Rz 

0 i?2 

0 , 
'iVoo Mi Mz 

Nu Ui 
NM 

MI 

Uz = NV (2.6) 

with the commutation relations 

[Af M<r,Af „„]= —gvffMpp—gupMpv+gpeMvp+gptMp,, 

ZN^9Ncp2 = gvM^p+g^PM9ff+gllffMVp+gypMllffy (2.7) 

[M^Nop} = — gv<rNfip+ gupNw+g^Nvp ~ gvpNM<r . 

If we set in these commutation relations the generators 
U and Nu (i= 1, 2, 3) identically equal to zero, we obtain 
again the commutation relations of the Lie Algebra of 
the Dirac matrices. In other words, the underlying 
complex space is such that only the x° component has 
an imaginary part: x°+iy°. 

It will be shown now that, alternatively, the Lie 
group of the Dirac matrices is isomorphic to the five-
dimensional real "Lorentz" group with the metric 
(—1, + 1 , — 1, — 1, — 1). For this purpose we introduce 
the following antisymmetric set of generators 

Mab = 

1 
2 

0 iNoo 
0 

fO - 7 o 
0 

iM2 

U 
0 

7 i 

7o7i 
.0 

u u 
Ri Rz 
0 R2 

0 , 

72 73 
7o72 7o73 
727i 737i 

0 7372 
0 

(2.8) 

Then the commutation relations become 

ZMab,Mcdl=—gbMad — gadMbc+gaMbd+gbdMac 

a, 6=1, 2, 3, 4, 5; gah= ( - 1 , + 1 , - 1 , - 1 , - 1 ) , (2.9) 

which are the commutation relations of the real 
"Lorentz" group with the metric gai. We shall discuss 
the structure constants and the invariant operator of 
this group in connection with the larger group in the next 
section. 

A third convenient way of representing the generators 
is by means of an antisymmetric tensor M^ and a four-
vector In 

M^iiytfp-gn,), h=y»/2 (2.10) 

with the commutation relations 

[M^lJ] = g,Jr-g<rJp, (2.11) 

[MwMrp^—gvMw — gtpMn+gpMrp+gppMp,. 
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III. THE LIE GROUP GENERATED BY 
DIRAC-CLIFFORD MATRICES 

We now consider the 15 Dirac matrices as generators 
of a Lie group. If we order these matrices in the form 

Mab=h 

0 7 5 

0 
— 757o 
- 7 o 

0 

757i 
7 i 

7o7i 

0 

7572 
72 

7o72 
727i 
"0 

7573 
73 

7o73 
737i 
7372 

0 

(3.1) 

we have again the commutation relations 

[_MahMcd] = — gbcMad— gadMbc+gacMbd+gbdMac , 

a, b=l, 2, • • • 16; 

* . » = ( - 1 , - 1 , + 1 , - 1 , - 1 , - 1 ) , (3.2) 

which are those of the Lorentz group in six dimensions 
with the metric ( - 1 , — 1, + 1 , — 1, - 1 , — 1). The 
structure constants are given by 

(Cah)cd
ef=-gbc(gaegdf-gafgde)-gad(gbegcf-gbfgce) 

+ gac(gbegdf-gbfgde) + gbd(gaegcf-gafgce). (3.3) 

The invariant or the Casimir operator of the homo­
geneous group can be derived from the structure con­
stants by first constructing a "metric" tensor in the 
space of the generators defined by12 

gab,a0=(Cab)cdef(Cap)efCd, ( 3 . 4 ) 

with the result that 

gab,afi= COnst(gapgb*-gaagbfi) . ( 3 .5 ) 

We see that 
det(gab,ae)^0, (3.6) 

so that the group is at least semisimple. The Casimir 
operator is then given by 

F*=(g*gb°-g*°gW)MalMafi 
= 2ti(MGMG), (3.7) 

or, in terms of the generators (2.8) by 

F2=2(M2+L2-R2-iVoo2 

-Mi2
2+M1 3

2-Mi42-Mi52-M1 6
2). (3.8) 

In the case of the 10-parameter group it takes the form 

F 2 =2(M 2 +L 2 -R 2 -AV) , (3.9) 
which is indeed the limiting case of the invariant 
operator of the complex Lorentz group.11 

A second invariant operator is given by 

G4= tr(MGMGMGMG) (3.10) 

which reduces, in the case of the 10-parameter group to 

G4= - (M.R) 2 - (R.L)2+pVooR- (MXL)]2. (3.11) 
12 G. Racah, Institute for Advanced Study Lecture Notes 

(1951) (Reprinted CERN 61-3); W. Pauli, Lecture Notes, 
CERN-31; A. Salam in Theoretical Physics (International Atomic 
Energy Agency, Vienna, 1963). 

Again a convenient way of representing the gener­
ators is in terms of one antisymmetric tensor MMV 

= Hyny»-.gnv) t w o four-vectors l^\i^ V = ihW/*, 
and one scalar K — 75/2 with the commutation relations 
(2.11) between AfM„ and l^ plus the following: 

DJvl=-g»>K, (3.12) 

[iT,M,J = 0. 

The Clifford algebra has actually 16 elements. But 
one generator commutes with all others and is equal to 
a multiple of identity in every irreducible representation. 
The remaining 15-parameter group is simple. This situa­
tion is exactly the same as in complex Lorentz group.11 

Finally, we discuss the inhomogeneous group. There 
are six generators for the translations. Four correspond­
ing to space-time coordinates must be identified with 
the energy momentum vector of the composite system, 
k^ and two others which we denote by hi and A2.. The 
commutation relations are with &a= (hifafin), 

[Mab,kc~] = gackb—gbcka , 
(3.13) 

The invariant of the inhomogeneous group is no longer 
k\ but 

k2+h1
2+Ji2

2 = C. (3.14) 

The same commutation relations (3.2), (3.13) hold 
in the case of larger group in 7 dimensions. 

IV. THE PHYSICAL INTERPRETATION 
OF THE GENERATORS 

According to general principles of quantum theory, 
extended now to the larger dynamical symmetry group, 
the infinitesimal generators of the group will be identi­
fied with the quantum-number operators whose possible 
values will be determined by their eigenvalues in a 
given irreducible representation. 

As we mentioned before the generators M^ in Eq. 
(2.10), or the generators R and L in the notation of 
Eq. (2.8) span the real Lorentz group. This is the space-
time subgroup of the dynamical symmetry. Accordingly, 
we must identify the three-dimensional rotation group 
generated by R with the spin or angular momentum 
group. This particular subgroup is common to all prob­
lems, in particular, all special systems mentioned in the 
Introduction. The remaining generators correspond to 
quantum numbers of dynamical origin from the usual 
point of view. Thus, the generators M describe the 
Kepler problem together with R and iVoo. In the rela-
tivistic case we add to these the remaining generators L 
of the Lorentz group. The resultant 10-parameter group, 
discussed in Sec. II, is of rank two. That is, there are 
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two mutually commuting generators, which can be taken 
as the third component of angular momentum i?3 and 
NQO. The energy levels will then be given in terms of two 
quantum numbers as is well known. We note that in the 
nonrelativistic case (L put identically equal to zero), 
Noo commutes with all the six generators R and M and 
therefore it is equal to a multiple of identity in any 
irreducible representation. The remaining group is 
simple and of rank two. 

The full 16-parameter group of Sec. I l l is of rank 
four. One of the generators is however again equal to 
the identity so that the 15-parameter simple group has 
three mutually commuting generators or quantum 
numbers. Furthermore, we notice that the generators 
Mu, —iMn, and — iMn span another three-dimensional 
rotation group disjoint from the spin group. We can 
identify it with the group of isotopic spin I. 

Although both the complex Lorentz group and the 
group presented here are 16-parameter groups of rank 
four with a 15-parameter simple subgroups with a lot of 
generators in common, there are some differences. One 
generalizes the Kepler problem, the other the oscillator 
type of problems. In the case of the 7-dimensional group 
the isotopic spin generators all commute with the 
Lorentz group. 

The identification of the dynamical symmetry group 
is only part of the problem. The more important task 
is the determination of energy or mass levels in terms 
of the quantum numbers determined by the group. This 
question is discussed in the next section. 

V. THE ENERGY AND MASS SPECTRUM 

In nonrelativistic problems where one can explicitly 
construct the generators in terms of the variables enter­
ing the Hamiltonian the energy, being a number in a 
given irreducible representation, is a function of the 
Casimir operator of the homogeneous dynamical group: 

E=jm. (5.i) 

Thus, for a rotator one has trivially 

£ = J 2 , (5.2) 

in proper units; for the two-dimensional isotropic 
harmonic oscillator 

E=2X(J 2 +1/4) 1 / 2 , \ = tua, (5.3) 

(the dynamical group in this case is £/2, the four gener­
ators of U2 can be grouped into the three angular mo­
mentum operators J and one other generator which is a 
multiple of identity). For the Kepler problem one 
obtains1-6 

£ = X 2 ( M 2 - R 2 - / ) - 1 , \*=Z*An/#. (5.4) 

The Casimir operator in this case reduces by (3.9) to 

M2—R2—TW, but Noo can be chosen to be the identity. 
From the commutation relations of M and R one finds7 

that the eigenvalues of M2—R2 are — (n2— 1) so that 
the eigenvalue of the invariant operator in (5.4) is 
p%=: —n2. The occurrence of iVoo, therefore of the seven-
parameter dynamical group is thus essential in account­
ing for correct degeneracy and the correct value of the 
energy levels. 

In the case of the Dirac electron the explicit form of 
the Eq. (5.1) is not known. We are checking this relation 
within the Hamiltonian formalism in terms of the in­
variant of the 10-parameter group discussed in Sec. I I . 

We write Eq. (5.1) for relativistic bound-state prob­
lems conveniently in the form 

» * = / ( * * ) , (5.5) 

where m is the rest mass of the system. We can under­
stand the occurrence of this fundamental relation by 
requiring an invariance under the inhomogeneous dy­
namical symmetry. In the case of relativistic mass 
points the dynamics is really contained in the inhomo­
geneous Lorentz group. The subgroup of translations 
leads to the concept of energy momentum fourvector. 
Now we have an invariance with respect to transforma­
tions in a larger space. If we introduce translations in 
the space-time coordinates x» alone and not the remain­
ing "internal" coordinates, the square of the energy 
momentum vector k2 would be an invariant and no mass 
quantization can be obtained. I t is thus natural to in­
troduce the full inhomogeneous group in which case the 
invariant is 

• &+h2=m2+h2 = C, (5.10) 

where h2 is the square of a four-vector for the complex 
Lorentz group,11 of a two component quantity in the case 
of the group of Sec. I l l , Eq. (3.14). The two generators 
hi and h% commute, by Eq. (3.13), with all the six gener­
ators of the Lorentz group. They correspond to additive 
quantum numbers and can be identified with the hyper-
charge and baryon number. The inhomogeneous group 
has other invariants involving the generators of the 
homogeneous group. An irreducible representation of 
the inhomogeneous group is characterized by fixed 
values of these invariants; then it would be possible to 
determine the eigenvalues of h2, and consequently, by 
Eq. (5.10), the quantized mass states of the composite 
system. This is the program proposed to determine the 
energy and mass spectrum of quantum mechanical 
systems once the full dynamical group is known. I t would 
lead, if successful, to an alternate formulation of 
quantum theory with no Hamiltonian or space-time 
coordinates.13 

13 For phenomenological mass formulas resulting from (5.5) 
see A. O. Barut, in Proceedings of the Conference on Symmetry 
Principles at High Energy (W. H. Freeman and Company, New 
York, 1964). 


