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the two zeros. This is equivalent to the statement that 
the phase shift is decreasing through \-w at the second 
zero, because the derivative of the phase shift is 
proportional to (—ReD'/N). Thus, our second zero is 
not due to the Abers-Zachariasen mechanism, and no 
alternative solution of the Abers-Zachariasen type is 
present. 

I. INTRODUCTION 

THE presence of divergences in quantum field 
theory leads one to consider the possibility of 

modifying the formalism by introducing a fundamental 
length into the theory. Although the proof by Kail en1 

has recently been questioned,2,3 it still seems not un­
likely that the renormalization constants of quantum 
electrodynamics and other field theories are indeed 
infinite. Although the renormalization theory permits 
one to get finite results for physically observable 
quantities in any order of perturbation theory, the 
existence of the infinite quantities makes one feel some­
what uneasy about the theory. Moreover, in the model 
proposed by Lee,4 it has been shown5 that the infinite 
coupling constant renormalization leads in an exact 
solution to the existence of physically unacceptable 
"ghost'' states, which destroy the unitarity of the S 
matrix; and it may be6 that similar difficulties are 
contained in the more realistic field theories as well. 
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It is often stated that the divergences arise from the 
concept of a point particle. This is true, but in a some­
what indirect sense. In the present theory, due to the 
possibility of pair creation, a single particle cannot be 
localized more closely than its Compton wave length 
without losing its identity as a single particle; i.e., if the 
mass of the particle is m, its position will be uncertain 
by Ax>l/m. (Throughout this paper we use natural 
units: fi=c=\.) Therefore, it might be more accurate 
to say that the divergences arise from the assumption 
that field quantities (such as electric field strength, 
charge density, etc.) averaged over arbitrarily small 
space-time regions are observable in principle, thus 
making it physically meaningful to make use of local 
interactions in the theory. The work of Bohr and 
Rosenfeld7-9 tells us how these quantities can be meas­
ured in the case of quantum electrodynamics using test 
bodies equipped with springs, etc. However, these 
authors assume that test bodies having any desired 
properties can exist in principle. It is clear that the 
average of a field quantity in a volume V cannot be 
measured by a test body unless the test body itself is 
known to be located in the volume under study. It is 
therefore possible to state that the divergences in a 
field theory arise, not from the assumption that the 
particles being studied in the theory are point particles, 
but from the assumption that point (or arbitrarily 
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small) particles can exist "in principle,'' and can be 
used as test bodies for measuring the various field 
quantities. For instance, in the case of quantum electro­
dynamics, in which the particles being studied are 
electrons and photons, the electron cannot be localized 
more closely than Ax> 1/m without losing its identity 
as a single particle. Nevertheless, the theory contains 
divergences because the interactions are local, and this 
depends for its physical interpretation on the assump­
tion that test particles exist in principle which can be 
localized with unlimited precision. 

Therefore, if there should exist a fundamental length10 

I such that no particle can be localized with greater 
precision than A%>£, it would appear from the above 
discussion that this would remove the physical cause of 
the divergences, and incorporation of the fundamental 
length into the formalism should lead to a natural cutoff 
for the divergent integrals. Moreover, the existence of 
such a fundamental limitation on the possibilities of 
measurement would be of some interest in itself, 
independently of its effect on the divergence problem. 

The above discussion suggests at once a possible 
physical postulate which would lead to a fundamental 
length. If we postulate that no elementary particles can 
exist with mass greater than M, then, as mentioned 
above, an elementary particle will always have 
Ax>l/M, and composite particles will presumably 
have "radius" > 1/M also. Therefore, the best possible 
test particle can only be used to measure field quantities 
averaged over regions of dimensions of order 1/M in 
each direction, so that the length 1/M satisfies our 
definition of a fundamental length. If we assume that 
M is of the order of the masses of the heaviest baryons 
known at present, we obtain l~ 10~~13 cm. 

Another possibility, which has been speculated on by 
several authors,6,11-12 is that the fundamental length 
might arise in some way from the consideration of 
gravitational effects. In this case, we would have 
^~\/(-r=1.6X10~"33 cm, where G is the gravitational 
constant in natural units.13 Although the first possibility 
would probably be favored by most physicists at the 
present time, this latter idea cannot be ruled out 
completely, and it is our intention in this paper to 
examine it from the point of view of a few thought 
experiments. 

Before starting, a few remarks on the meaning of a 
fundamental length in terms of experimental results 
might be in order. In the first place, it seems clear that 
a single measurement can always be read to whatever 
accuracy one pleases. For instance, one could focus 
light from the body being measured through a pinhole 

10 From now on, whenever the term "fundamental length" is 
used in this paper, it refers to a length having the physical inter­
pretation discussed here, that is, a limitation on the possibility of 
measurement. 

11 J. A. Wheeler, Ann. Phys. (N. Y.) 2, 604 (1957). 
12 S. Deser, Rev. Mod. Phys. 29, 417 (1957). 
13 In cgs units we would have t~(G-fr/c3)1/2. 

on a photographic plate at a great distance, so that a 
small change in the position of the body would produce 
a large change in the position of the spot produced on 
the plate by a single photon used in the measurement. 
The uncertainty manifests itself in the nonreproduci-
bility of the results. That is, successive measurements 
show fluctuations. Another point that should be 
mentioned is that, for reasons of covariance, if a funda­
mental length exists we would expect a similar limita­
tion to apply to the reading of a clock. Thus, the physical 
content of a fundamental length postulate is that 
successive measurements of the position of a body, or 
of the reading of a clock, will show fluctuations at least 
of the order of I. 

This paper will consist of two independent parts. The 
first part (Sees. II-V) deals with the question of whether 
present physical ideas about gravitation, together with 
the uncertainty principle, are sufficient to lead to a 
fundamental length. In these sections, it is initially 
assumed that one can set up a well-defined Lorentzian 
coordinate system, and that the position of a particle is 
a well-defined quantity in this frame of reference. I t is 
then shown that the gravitational effect of the act of 
measurement on the particle being measured produces 
an uncontrollable change in its position, such that the 
result of an immediately subsequent measurement of 
the same kind cannot be forecast with greater accuracy 
than Ax^\/G. In detail, Sec. I I shows that a particle 
cannot be bound within a region of radius smaller than 
R^y/G; Sec. I l l deals with position measurements on 
free particles, and Sec. IV with clocks; Sec. V shows 
that the results hold also for measurements on macro­
scopic bodies. In these sections we make no a priori 
restrictions on the possible properties of elementary 
particles. Thus it is always assumed, for instance, that 
the bodies being measured are sufficiently heavy to 
avoid complications due to pair creation, and the 
clocks satisfy the relevant criteria of Salecker and 
Wigner.14 Hence the possibility is not ruled out of a 
larger fundamental length due, perhaps, to a maximum 
elementary particle mass as discussed above. Our policy 
is always to make the most optimistic assumptions 
about the readabili ty of particles having desired 
properties, so that the resulting limitation on the 
accuracy of measurement is as general as possible. We 
also assume that the gravitational interaction has 
approximately its classical form, at least on the average. 
The results of these sections cannot be considered as 
rigorously established, because they deal with only a 
finite number of thought experiments, and the possi­
bility always exists that someone will be clever enough 
to design a hypothetical method of measurement which 
avoids these results. Nevertheless, it is believed that 
the results are reasonable, and the arguments for them 
fairly convincing. This is reinforced by the fact that 
more formal considerations11,12 lead to similar results; 

14 H, Salecker and E. P. Wigner, Phys. Rev. 109, 571 (1958). 
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in this connection, an Appendix to this paper contains 
a derivation of the fundamental length limitation on 
clock synchronization which does not depend on the 
particular method of measurement used. 

The second part of the paper (Sec. VI) deals with the 
relation between fundamental length and gravitational 
field fluctuations; it is quite independent of the preced­
ing sections. The idea is roughly as follows: Suppose 
there exists a fundamental length L Since a space-time 
coordinate system, to be physically meaningful, must 
be referred to physical bodies, it follows that no 
Lorentzian coordinate system can be set up capable of 
specifying the coordinates of a space-time event more 
precisely than Ax>t. Conversely, if the limitation on 
the coordinate system holds, the limitation on the 
localizability of particles follows immediately. Thus, 
the fundamental length postulate may be equivalently 
stated as a postulate of a limitation on realizable 
coordinate systems. Now a coordinate system may be 
pictured as a distribution of bodies and clocks through­
out space; the clocks are synchronized by means of 
light signals, and the distances between the bodies are 
known and held constant, also by means of light signals. 
In this picture, the fundamental length appears as a 
limitation on the accuracy of the synchronization of the 
clocks, and of the knowledge of the distances between 
the bodies. In terms of the light signal experiments this 
means, for instance, that the time required for a light 
signal to propagate from body A to body B and back 
(as measured by a clock at A) is subject to uncontrol­
lable fluctuations. However, from the point of view of 
general relativity, it is completely equivalent to define 
the coordinates associated with each body and clock 
reading by some arbitrary convention, and to regard 
the light signal experiments as yielding information 
about the space-time metric associated with the 
coordinated system so defined. From this point of view, 
fluctuations in the results of the light-signal experiments 
are to be regarded as indicating fluctuations in the 
metric, i.e., in the gravitational field. Thus, it seems 
qualitatively plausible that a fundamental length 
postulate is equivalent to a postulate about gravita­
tional field fluctuations. In Sec. VI, this is taken up in 
more detail, and it is shown, again by means of thought 
experiments, that such an equivalence does exist. If 
there is a fundamental length, it leads to uncertainties 
in the measurement of gravitational fields; on the other 
hand, if the gravitational field is uncertain, its unknown 
effect on the motion of a particle between measurements 
is such as to lead to a fundamental length. The question 
of the measurability of gravitational fields has been 
discussed before,15,16 but not from this point of view. 

The results are discussed briefly in Sec. VII. 

15 E. P. Wigner, Revs. Mod. Phys. 29, 255 (1957); Phys. Rev. 
120, 643 (1960). 

16 Wright Air Development Center Technical Report 57-216; 
Armed Services Technical Information Agency Document No. 
AD 118180, 1957 (unpublished). 

II. BOUND PARTICLES 

Consider a particle of rest mass m bound by some 
force field in such a way that it is confined in a spherical 
region of radius R. According to Heisenberg's principle, 
the uncertainty in the momentum of the particle is 
given by Ap>l/R. The gravitating mass M of the 
particle is equal to its average energy, and is of the order 

M=((m'+p^)>(\p\)>Ap>l/R. (1) 

The distribution of energy in this case is spherically 
symmetrical, at least on the average, so we may use the 
Schwarzschild exterior solution for the gravitational 
potential outside the region in which the particle is 
confined.17 We have, for the potential at a distance 
r>R from the center of the region: 

<t>--GM/r<-G/Rr. (2) 

Just outside the region in which the particle is confined, 
(2) reduces to 

4>=-GM/R<-G/R2. (3) 

However, the physical interpretation of the general 
theory of relativity requires17 that 

goo=l+2</>>0. (4) 

Combining (3) and (4), we obtain 

# 2^2G, R>(2G)li\ (5) 

Equation (5) is the result we were seeking in this 
section. It tells us that a particle cannot be bound in a 
region whose radius is less in order of magnitude 
than \/G. This means that any particle can be con­
sidered more or less free as far as motion over distances 
of order of magnitude \/G or less is concerned. There­
fore, to show in general that a particle cannot be 
localized with less uncertainty than A%>\/G, it will 
suffice to demonstrate this for free particles, which will 
be done in the next section. 

The distance R used in this section is defined by the 
equation o-=27ri?, where a is the circumference of a 
circle drawn around the region in question. The radius 
of the region as measured directly by ideal measuring 
rods is somewhat greater17 than this R, so the inequality 
(5) holds for this radius as well. 

There may be some question as to whether (4) really 
needs to be required, since, it may be said, it is at least 
conceivable that some physical interpretation may be 
given the Schwarzschild solution in the region in which 
(4) is not satisfied. However, it is easy to show that a 
signal can never penetrate into this region from outside, 
so that the region in which (4) fails to hold is certainly 

17 L. D. Landau and E. Lifshitz, The Classical Theory of Fields, 
translated by M. Hamermesh (Addison-Wesley Press, Inc., 
Cambridge, Mass., 1951), Chap. 11. 
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inaccessible to observation. Thus, if a bound particle is 
to be observable at all, the region in which it is bound 
must satisfy (5). 

III. FREE PARTICLES 

A. Microscope Experiment: Nonrelativistic 
Treatment 

The simplest method for measuring the position of 
a free particle is by means of a microscope. In this 
experiment, a photon of frequency v is scattered by the 
particle into the aperture of a microscope, where it is 
focused and observed. The direction of the trajectory 
of the photon from the particle into the microscope is 
not known exactly but is spread over an angle e. The 
photon interacts strongly with the particle over a region 
of radius r. Now if it is desired to measure the x coordi­
nate of the particle by this method, there are several 
sources of uncertainty. In the first place, due to the 
limited resolving power of the microscope, we have 

1 1 
A * > — — > - . (6) 

v sine v 

Also, the photon may be scattered from any point in 
the region of radius r surrounding the particle. There­
fore, 

Ax>r. (7) 

Presumably, r~ 1/v, but this will not be needed. 
The photon cannot be focused while it is still inter­

acting strongly with the particle; therefore, the time r 
which must elapse between the scattering event and 
the recording of the result must in general be of the 
order of the time required for the photon to move a 
distance r away from the particle. Thus, at least r>r. 

In this subsection, we treat the problem from a non­
relativistic point of view, in order to give a simple 
physical picture. The final result is then obtained 
relativistically in the following subsection. The gravitat­
ing mass of the photon is v, so that during the time when 
the photon is proceeding from the particle toward the 
microscope, the particle experiences a gravitational 
acceleration in the direction of the photon given by 

a~Gv/r2. (8) 

If the particle does not attain relativistic velocities, the 
time required for the photon to escape from the region 
of strong interaction is of the order of r, so from (8), if 
the particle is originally at rest, it acquires a velocity 
in the direction of the photon given by 

v~Gv/r. (9) 

The average velocity of the particle during the process 
is of the same order of magnitude as the final velocity, 
so that in the time r it moves a distance 

L^Gv. (10) 

This motion is in the direction taken by the photon 
which, however, is unknown. The projection of the 
gravitational motion on the x axis, therefore, is un­
certain by approximately L sine, which gives with (10) 
a further uncertainty in our knowledge of the x coordi­
nate of the particle at the end of the experiment. 

Ax>G^sine. (11) 

Combining (6) and (11), we obtain 

Ax>VG. (12) 

The above derivation is simple, but not entirely 
correct even from a nonrelativistic point of view, since 
it does not take proper account of the conservation of 
momentum in assuming that the particle is at rest at 
the time the photon starts toward the microscope. 
Another derivation which exhibits the momentum 
conservation explicitly, is the following: 

Due to the gravitational attraction of the particle, 
the photon acquires an increased energy and momentum 
while it is in the vicinity of the particle. If the momen­
tum of the photon when it is far from the particle (such 
as when it is focused in the microscope) is v, its momen­
tum during the scattering process is of the order 

k^v-\-mGv/r. (13) 

The direction of this momentum is unknown, however, 
since the direction taken by the photon is spread over 
the angle e. This leads to an uncertainty in the x 
component of the momentum of the particle during the 
scattering process given by 

Apx~k sine^(v+mGv/r) sine, (14) 

with a corresponding velocity uncertainty 

/ v Gv\ 
Avx^ ( — | ] sine. (15) 

The extra velocity due to the gravitational interaction 
will be removed by the gravitational pull of the photon 
as it moves away, but will persist while the photon is 
in the vicinity of the particle, that is, at least for a time 
~r. This leads to an uncertainty in the final position 
of the particle of the order 

fvr \ 
Ax>rAvx^ f —\-Gv ] sine> Gv sine. (16) 

(16) is identical with (11), and can again be combined 
with (6) to give the desired final result (12). 

The basic idea in both of these derivations is very 
simple: In order to reduce the uncertainty (6), it is 
necessary to use photons of very high energy; but a 
high-energy photon carries with it a strong gravitational 
field, which tends to move the particle. Moreover, the 
effect of a gravitational field on the motion of the 
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particle is independent of the nature of the particle, a 
property possessed by no other force. Thus, while the 
position uncertainty arising from any other force 
(e.g., electromagnetic) could in principle be made 
arbitrarily small simply by measuring the position of a 
very heavy particle, the result (12) is independent of the 
mass of the particle being measured and is therefore a 
fundamental limitation on the possibility of localizing 
any conceivable particle. 

The discussion in this subsection suffers from a failure 
to consider relativistic effects, and indeed it is easy to 
see that the nonrelativistic approximation breaks down 
just at the point where the gravitational interaction 
becomes the dominant source of error. The uncertainty 
due to (11) becomes comparable with that due to (6) 
and (7) at about the same values of v and r at which 
the velocity given by (9) becomes of the order of unity. 
Moreover, the Newtonian law of attraction (8) is not 
valid for the case of a gravitational field which is 
changing rapidly with time, such as that of a photon. 
Nevertheless, the result (12) is still correct, as will be 
shown in the next subsection. 

B. Microscope Experiment: General 
Relativistic Treatment 

In this subsection we wish to establish that a result 
similar to (10) holds in the general relativistic treatment 
of the gravitational interaction. Since in a general 
discussion it is necessary to consider the possibility of 
particles other than photons being used to locate the 
particle, and since this causes no special difficulties, we 
will proceed to calculate approximately the gravita­
tional field of a test particle of rest mass /x and momen­
tum k. The case of the photon is obtained by letting 
JU —» 0. Its energy v and velocity v are then given by 

. = (M
2+£2)1/2, 

V=*0*»+4»)-I/». (17) 

In calculating the detailed motion of the particle being 
measured under the gravitational action of the test 
particle, the time dependence of the gravitational field 
is quite important, and this, of course, involves retarda­
tion effects in an important way.18 However, we do not 
need to calculate the detailed motion, and for our 
purposes it will suffice to know the average value of the 
gravitational potential while the two particles are in 
interaction, without inquiring as to how it came about. 
To this end, we can transform the test particle to rest 
by a Lorentz transformation, use the Schwarzschild 
solution for its gravitational field, and then transform 
back to the laboratory coordinate system. Since the 

18 The two-body problem in general relativity has been treated 
systematically by B. Bertotti, Nuovo Cimento 12, 226 (1954); 
4, 898 (1956). 

Schwarzschild solution is a static solution, this neglects 
the fact that the state of motion of the test particle 
changes during the experiment. However, its gravita­
tional field should in a rather short time attain (at least 
in order of magnitude) the value it would have if the 
motion of the test particle had been uniform in the 
direction taken after the scattering. We therefore 
proceed as follows. 

We choose a coordinate system with a;1'axis in the 
direction taken by the test particle after the scattering; 
the origin is a point which we take to be the beginning 
of the motion of the test particle in the x1 direction. The 
world line of the test particle is thus x1=vx°, for the 
portion of its motion that we are considering. The 
measured particle is somewhere "behind" the test 
particle, that is, its x1 coordinate is less than vx°. We 
now transform the test particle to rest by a Lorentz 
transformation, denoting the rest frame by primes. In 
the rest frame, the measured particle moves along the 
negative (x')1 axis. Along this axis, the metric tensor is 
given by17 

- 1 
(gOii= :; (g')oo=l+20' ; 

(g%2=(g'hz=-l; (gf)ij=0, &j, (18) 

where 

Gn GJX 
*'= = . (19) 

\{xj\ (x'Y 

The primed and unprimed coordinates are related by 
the transformation 

(xf)2=x2; (xfy=xd, 

( ^ ^ ( ^ - ^ ( l - v 8 ) - " 1 ' 2 ; 

(X')°= (x^-VX^il-V2)-1!2 , 

X l = [ ( ^ ) l + Z , ( ^ ) 0 ] ( l _ Z J 2 ) - l / 2 . 

«o=[(^)°+w(^)1](l-»2)-1/2. (20) 

To transform the metric tensor given by (18) to the 
unprimed system, we use the general transformation 
law for a second-order covariant tensor 

d(x'y d(xfy 
g</=—: r(g?hi, (21) 

dxz dxJ 

where we use the usual Einstein summation convention. 
To'find the components of the unprimed metric tensor 
in the region of interest to us, we use (18), (19), (20), 
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and (21), and easily obtain: 

#22=g33 = — 1 ; #20 = g30=g21 = g31 = g23=0 , 

1+20 
goo = 

1 + 2 0 ( 1 —z;2) 

- 1 + 2 < K 

" l + 2 0 ( l - * 2 ) 

— 2vcj) 

-20; 

-+2^20; 

gl0=g01 = " 

where 

-2v4>, 
1+20(1 -^ 2 ) 

0 ' Gv 
0 = - -= , 

(22) 

(23) 

and r=vx°—x1 is again the mean "distance" between 
test particle and measured particle during the scattering 
process. 

We now proceed to discuss the sources of error, and 
inquire whether it is possible to have Ax<K\/G. First, 
to avoid a breakdown of space-time structure in the 
rest frame, we must have [cf. Eq. (4) ] : 

-2cj)'=2(Gv/r)(l-v2)<l. (24) 

I t is clear that (6) and (7) continue to hold. Combining 
them with (24), we find 

Ax2>r/v>2G(l-v2). (25) 

Therefore, we see that we certainly cannot have 
Ax2<^G unless 

( l - f l 2 ) « l , and - 0 = G j / / r » l . (26) 

Thus, we need only consider the case where (26) is 
satisfied. Using (26), we can set v=l in (22), which 
then becomes 

l + 2 0 ( l + a ) l-2(Gv/r)(l+a) 

a a 

-\-2{Gv/r)(\+a) 

a 

2(Gv/r)(l+a) 

(27) 

where 

Because of (24), 

a = l + 20( l -z ; 2 ) . 

0 < a < l . 

(28) 

(29) 

If the reader has any doubts as to the validity of (27) 
in the limit ju —•> 0, he may remove them by directly 
substituting (27), along with its extension into other 
regions of space, into the Einstein field equations, with 

the energy-momentum tensor of a massless particle 
moving with constant momentum. 

The components of the metric tensor "seen" by the 
measured particle during the time we are concerned 
with are given approximately by (27). We do not need 
to calculate its motion in detail, but merely note that 
its world line must be time-like. That is, if u is the 
velocity of the measured particle in the x1 direction, we 
must have19 

ds2 = {goo+2gio^+gn^2} (dx»)2>0. 

(27) and (30) may be combined to give 

«>(ir-l)/fo+l), 
where 

r,= (2Gv/r)(l+a). 

(30) 

(31) 

(32) 

The two particles remain in interaction until the test 
particle has moved a distance r away from the measured 
particle. Since the velocity of the test particle cannot be 
greater than 1, the time r required for it to move a 
distance r from the measured particle is at least 
r > r / ( l — u). The distance moved by the measured 
particle during this time is 

ur r(?7— 1) rr) 
L = UT> > ~ — , 

1-u 2 2 ' 
m) 

since by (26) and (29) *7»1. From (29), (32), and (33) 
then, 

L>Gv (34) 

Equation (34) gives the distance moved by the meas­
ured particle in the direction taken by the test particle, 
and is identical with (10). As before, its projection on 
the x axis fixed in the laboratory is uncertain by L sine, 
leading to an uncertainty in the final x coordinate of 
the particle, 

Ax>Gv sine. (35) 

(6) and (35) combine to give Ax>\/G, which is identical 
with (12). 

I t should be noted that the treatment given here does 
not contradict momentum conservation, although it 
might appear to at first glance. If the test particle is 
moving with velocity close to that of light, its gravita­
tional force on the measured particle is repulsive for 
much of the motion. The particle is accelerated to a 
velocity satisfying (31) largely by retardation effects 
during the early part of the motion, and is then slowed 

19 We are neglecting any velocity the particle might have in the 
x2 or xz directions. However, it is easy to show that for fields 
satisfying (26), such a velocity could not persist long enough to 
interfere with the final result; in other words, the particle could 
not achieve the "escape velocity" in this direction. 
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down, being left with a momentum such that total 
momentum is conserved for the whole process. This is 
similar to the problem of the gravitational action of a 
pulse of light, which has been worked out by Tolman.20 

We have neglected the interaction of the test particle 
with the gravitational field of the measured particle, 
but it seems hardly likely that this will affect the result. 
Its main effect should be to increase the kinetic energy 
of the test particle while in the vicinity of the measured 
particle, thus increasing the gravitational field of the 
test particle, and increasing the result (34). So it seems 
that inclusion of this effect would strengthen, not 
weaken, the result. 

We have also neglected the effect of quantum fluctua­
tions in the gravitational field. However, these would 
be expected to provide an additional source of un­
certainty, not remove those already present. Hence, 
inclusion of this effect would, if anything, strengthen 
the result. 

The main defect of the treatment given in this sub­
section is the neglect of the acceleration of the test 
particle during the measurement. It seems clear on 
physical grounds, however, that these effects must be 
transient; that is, after a sufficiently long time, the 
gravitational field of the test particle should be nearly 
the same as if its motion had been uniform in the 
direction taken by it after the scattering process. What 
we assume is that the field assumes its asymptotic form, 
at least in order of magnitude, for an appreciable portion 
of the time when the two particles are still close 
together. Since we are only interested in orders of 
magnitude, and don't care if we are in error by, say, a 
factor of 10 or 20, this assumption seems reasonable. 
To invalidate the results, one would have to assume 
that Eq. (22) does not even give an order of magnitude 
approximation to the field for any appreciable fraction 
of the time of the experiment. This seems rather far­
fetched, though perhaps not impossible. 

Another point worth mentioning is that the signifi­
cance of the coordinate x1 during the measuring process 
is not clear, and it may be incorrect to identify it with 
a distance. However, at the end of the measurement, as 
at the beginning, the strong gravitational field has 
disappeared and x1 has all the properties of a distance 
in the ordinary sense. This is sufficient for our purposes: 
The value of x1 at the end of the experiment differs from 
that at the beginning by an unknown amount, which 
makes it impossible to predict precisely the result of a 
subsequent position measurement. 

To summarize the argument of this subsection: It is 
first shown that, because of (6) and (7), the result (12) 
cannot be avoided unless (26) is satisfied. It is then 
shown that if (26) is satisfied, the result (12) still holds, 
so it follows that it holds in all cases. The result holds 
no matter what kind of particles are used as test parti-

20 R. C. Tolman, Relativity, Thermodynamics, and Cosmology 
(Clarendon Press, Oxford, 1934), Sec. 114. 

cles. However, the microscope method is not the only 
conceivable way in which the position of a particle may 
be ascertained. In the next subsection we give a brief 
discussion of some other methods, and some possible 
refinements on the microscope method. 

C. Other Methods and Refinements 

We first consider some possible refinements of the 
microscope method for locating the particle, in order to 
ascertain whether they could be used to violate (12). 
First, one might hope to "follow" the gravitational 
acceleration of the particle by some means, perhaps 
indirect. However, it is clear that this would not help. 
If we ascertain the direction of the gravitational 
acceleration experienced by the particle, we can infer 
from this the direction taken by the photon toward the 
microscope; so all we gain is an effective reduction in 
the angle e, which does not appear in the final result. 
This argument is independent of the means used to 
follow the gravitational motion, so we can conclude that 
the uncertainties (6) and (35) cannot be reduced 
simultaneously. However, suppose it could be arranged 
that the microscope records the position of the particle 
at the end of its contact with the photon. In this case, 
its position at the beginning of the experiment would be 
unknown, but we would know its position at the end. 
But even if this is possible (which the author doubts), 
the knowledge thus gained has no physical significance. 
We can only say that we have measured the position 
of a particle precisely if we can predict precisely the 
result of an immediately subsequent identical measure­
ment. If a microscope experiment yields the position 
of the particle at the end of its interaction with the 
photon, a second measurement will give its position at 
the end of its interaction with the second photon, and 
this cannot be predicted from the result of the first 
experiment with greater precision than that given by 
(12). This argument also provides an additional 
refutation of the possibility of avoiding (12) by follow­
ing the gravitational acceleration of the particle. Even 
if this could be done, we could not predict the outcome 
of a subsequent identical experiment, except within the 
limitation imposed by (12). Still another possibility is 
to attempt to compensate the gravitational force, e.g., 
by having the particle emit a photon. But this could 
never compensate the uncertainty, only shift the 
average motion. 

A related method for locating a particle is that in 
which the time for a light signal to propagate from 
some reference point to the particle and back is meas­
ured. If the time of emission and/or return of the light 
signal is in doubt by At, then we have for the uncertainty 
in the position 

A*>A/>1/A,>1A, (36) 

where v is the average frequency of the light signal, Av 
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the spread in frequency, and we have made use of the 
Heisenberg principle 

AvAt>l. (37) 

As before, the light signal (consisting of at least one 
photon) may be reflected from a region of radius r 
around the particle, so that 

Ax>r. (38) 

From (36) and (38), we have 

Ax2>r/v. (39) 

In order to have Ax2<£.G, therefore, we must have 
Gv/r^>\. In this case, (26) is satisfied, so that from (34) 
the particle moves during the experiment a distance of 
the order Gv. If v is not known exactly, this leads to an 
uncertainty in the final position given by 

Ax>GAv. (40) 

(36), (37), and (40) combine to give (12) again. Refine­
ments on this experiment similar to those already 
discussed for the microscope experiment might be 
tried, but would fail for similar reasons. 

Another method for localizing a particle is to cause 
it to pass through a very narrow slit. However, the slit 
must be made up of elementary particles, and the 
precision with which they can be held in fixed positions 
is limited by (5). Therefore, the edges of the slit will 
be "fuzzy" over a region at least of extent \/G, with 
the result that the slit could not be used to locate a 
particle closely enough to violate (12). For a similar 
reason, it will not help to tie the particle to a long 
pointer. Because of (5), it could never be tied tightly 
enough for the pointer to be sensitive to movements of 
the particle over distances of order of magnitude \/G 
or less. Indeed, the pointer itself would be quite "limp" 
with respect to movements of its constituent elementary 
particles over distances of order \/G or less. 

Although a completely exhaustive discussion of 
methods for locating a particle is obviously impossible 
without taking up an undue amount of space, it is felt 
that the examples discussed in this section are suffi­
ciently typical so that there can be little doubt about 
the result. 

IV. CLOCKS 

The usual method by which a clock is synchronized 
with some standard clock is by passing light signals 
between them, with a light signal consisting of at least 
one photon.21 If the time of emission and/or return of 
the light signal from the standard is uncertain by At, 
the reading T of the other clock is still in doubt at the 

21 An alternate treatment of the clock problem, applicable to 
macroscopic as well as microscopic clocks, is given in the Appendix. 

end of the experiment by an amount 

AT>At>l/Av>l/v, (41) 

where we have again made use of (37), and v is again 
the frequency of the photon. T is also in error by an 
amount of the order r, the time during which it is 
strongly interacting with the photon; that is, the 
reading brought back by the photon might correspond 
to any time within the interval r. Also, r>r. So we 
write 

AT>r>r. (42) 

If the clock remains stationary during its interaction 
with the photon, the time recorded by it during the 
interaction is 

a r = V g o o . (43) 

Inserting v = a—\ in (27), which corresponds to the 
test particle being a photon, we obtain 

g0Q=l~4Gv/r. (44) 

Combining (43) and (44), and noting that r^r in this 
case since the clock remains stationary, we find 

dT^(l-AGp/ryi2T= (\-4Gv/r)Wr. 

If the frequency is not known precisely, this leads to an 
uncertainty in the final clock reading given by 

AT>2GAv/ {l-±Gv/r)li2>2GAv. (45) 

(37), (41), and (45) combine to give 

AT>VG. (46) 

The second inequality in (45) holds because we have 
assumed that the clock remains at rest throughout, and 
this is impossible unless goo ̂  0. 

A more general derivation is as follows: From (41) 
and (42), we cannot have AT<£\/G unless Gv/rS>l. In 
this case we can use the results of the preceding section. 
The clock cannot remain stationary in this situation 
but must move with a velocity satisfying (30). As shown 
previously, it moves a distance of the order Gv during 
its interaction with the photon; since its velocity cannot 
be greater than unity, the time r during which photon 
and clock are in interaction is also of the order Gv. The 
time recorded by the clock during this time is the 
proper time, given by [cf. Eq. (30)] 

dT= [ds^(g0o+2goiU+gllu
2y/2T. (47) 

The elements of the metric tensor are given by (27), 
with a=\. Using (27) and (47), it is easy to show that 

bT<r/[ 1+4— J « r . (48) 
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That is, the clock is essentially stopped during the 
interval T^GV, and this must be taken into account in 
making predictions of future readings. However, if v is 
not known precisely, we will not know how great an 
allowance to make for this, and the error introduced 
is given by 

AT>GAv. (49) 

(37), (41), and (49) can be combined to give (46) again. 
The considerations of this section show that the same 

limitations apply to the synchronization of clocks as 
were derived in the earlier sections for the localization 
of particles. This was to be expected on grounds of 
relativistic invariance. Refinements similar to those 
previously discussed for the localization experiments 
might be tried, but could be refuted by similar 
arguments. 

V. MACROSCOPIC BODIES 

The arguments of the preceding sections do not 
include any assumptions about the mass or size of the 
objects being tested, so it is clear that they apply 
equally well to direct position and time determinations 
on macroscopic bodies.21 However, there is another 
kind of macroscopic measurement which deserves 
further attention. This consists of determining, e.g., 
the positions of a large number of microscopic bodies 
and taking the average. This average might be inter­
preted as the position of a macroscopic body, or in the 
case of time measurements, as the reading of a macro­
scopic clock. However, this method does not avoid the 
results of the preceding sections. We show this below 
for the case of the macroscopic clock; it is clear that 
analogous arguments hold for position measurements. 

Suppose we have a "macroscopic clock" made up of 
N microscopic clocks spread out over a region of radius 
R. The reading of the macroscopic clock is defined as 

T^N-^Ti, (50) 

where the summation goes over all the microscopic 
clocks, whose readings are taken independently. Thus, 
N photons must be used, and for simplicity we assume 
the errors in the frequency and time of all the photons 
are the same, although the result still holds without 
this assumption. The average distance of one of the 
microscopic clocks from the standard with which we are 
trying to synchronize the macroscopic clock is at least 
of the order of R. All the Ti are subject to the limitation 
(41), but due to thejndependence of these errors, this 
leads to an error in T of only 

AT>N-V2At. (51) 

However, the errors due to the gravitational effect on 
the rate of the clocks are not reduced, but increased. 
Due to the long-range character of the gravitational 
force, an average gravitational potential of order Gv/R 

persisting for a time R is seen by the entire macroscopic 
clock during each microscopic measurement. Thus, as 
in Sec. IV, the error in T produced by one microscopic 
measurement is given in order of magnitude by (49), 
and since N microscopic measurements must be made, 
we have 

AT>Nl'2GAv. (52) 

Combining (51) and (52), we obtain 

AT>G. (53) 

That is, the fundamental length result holds equally 
well for the reading of a macroscopic clock, and, for 
similar reasons, for the position of a macroscopic body 
as well. 

VI. EQUIVALENCE OF FUNDAMENTAL LENGTH 
WITH GRAVITATIONAL FIELD FLUCTUATIONS 

A. Effect of Fundamental Length on Gravitational 
Field Measurements 

In this subsection, we postulate the existence of a 
fundamental length and inquire as to its effect on 
gravitational field measurements. The fundamental 
length postulate still allows us some freedom of choice 
as to what assumption we make regarding errors in 
macroscopic measurements. For instance, as was shown 
in the preceding section, in the case of a fundamental 
length arising from gravitational effects we have 

for any measurement, microscopic or macroscopic. 
Another possibility would be to postulate that the errors 
in position measurements on elementary particles are 
independent, but that the maximum number of such 
independent measurements that can be made in a space-
time volume R4 is given by N= (R/-t)A. In this case we 
would have, for the error in a macroscopic measurement 
spread out over a space-time region of four-volume R4, 

Ax>l/^N^t{l/R)\ 

We can include both these possibilities, and many 
more, if we simply require 

Ax%0(R/t), (54) 

for the error in a coordinate measurement on a body 
(macroscopic or microscopic) spread over a cubic 
space-time region of volume RA. Here f$(y) is a non-
increasiDg function which is approximately unity when 
y is unity and need not be defined for y<Cl. Thus, for 
the two special cases mentioned above, we have /3= 1 
and /3=y~2, respectively. We choose a coordinate system 
which is quasi-Lorentzian on the average and for the 
moment assume that the gravitational field is not too 
strong. 

Now, assuming that (54) holds, suppose we wish to 
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measure a component of the gravitational field F 
averaged over a space-time region of volume RA. To do 
this, we must measure the acceleration of a body 
confined in the given region. We have 

F=(v2-vi)/T, 

where v± and v2 are the results of two velocity measure­
ments separated by a time T. We see that F is uncertain 
by at least 

AF>Av/T>Av/R, (55) 

where Av is the error in either one of the velocity 
measurements, and we note that T cannot be greater 
than R. A velocity measurement, in turn, consists of 
two successive position measurements separated by a 
time t<R.We find 

and, with the aid of (54) 

Av>Ax/t> Ax/R>lp(R/l)/R. (56) 

Combining (55) and (56), we obtain 

AF>l(3{R/l)/R\ (57) 

From (57), we see that the average gravitational 
potential (or component of the metric tensor) in the 
region is uncertain by 

Ag>l${R/l)/R. (58) 

Equation (58) should not be thought of as applying 
independently to all components of the metric tensor, 
but to those components, or linear combinations of 
components, which are taken as independent. In 
general, the different components may be related by 
some subsidiary ("gauge") condition which is used to 
fix the coordinate system. Equation (57) presumably 
applies to any ChristofM symbol r*^, in the given 
coordinate system. 

Another example, more closely related to the situation 
discussed in the introduction, is as follows: Let there 
be two bodies, A and B, each of radius R, separated by 
a distance L>R along the x axis. Each body is equipped 
with a clock, and the two clocks are kept synchronized 
as closely as possible; however, if (54) holds for clock 
readings as well as for position measurements (as it 
must), an exact synchronization will be impossible. In 
particular, if a light signal leaves A at a time t (meas­
ured on A's clock), and arrives at B at a time t+r, as 
measured on B's clock, then the time of propagation r 
will be subject to fluctuations given by 

Ar>®(R/t). (59) 

On the other hand, we are permitted to regard the two 
bodies and their clocks as defining part of our coordinate 
system. Thus let the measured position of A at any 

time be assigned the space coordinates x = y = s = 0 , and 
that of B the coordinates x=L, y = z=0. The time of 
an event taking place at A is given by the reading of 
^4's clock, and that of an event at B by 5 's clock. If we 
define our coordinate system in this way (which is as 
good a way as any), there can be no question of fluctua­
tions in the coordinates of A and B, since these are fixed 
by convention; for the same reason the time of each 
single event can be known exactly. In this case, the 
light signal experiments must be regarded as yielding 
information about the metric tensor associated with 
the given coordinate system in the space-time region 
swept out by the world-line of the light signal. This 
world line must be a "null geodesic," i.e. 

ds2 = goodt2+2goidxdt+gndx2 = 0. 

We find for the time of propagation: 

{• 
-goi+(goi2- •gllg y/2-

L, (60) 

in which the g's represent suitable averages over the 
region through which the light signal passes. Thus, a 
measurement of r gives us some information about the 
metric tensor. If r is subject to fluctuations given by 
(59), we see from (60) that the average value of one or 
more of the components of g must be uncertain by 

Ag>0{R/D/L. (61) 

Equation (61) agrees with (58) for the special case 
L^R. For the gravitational force, which is made up 
of derivatives of the g% we have 

AF>l${R/l)/L2, (62) 

which agrees with (57) if L^R. 
We see from the above examples that the funda­

mental length postulate, as expressed by (54) and (59), 
has as a consequence the existence of certain gravita­
tional field fluctuations, given by (57), (58), (61), 
and (62). 

B. Effect of Gravitational Field Fluctuations 
on Coordinate Measurements 

In this subsection, we initially postulate the existence 
of gravitational field fluctuations given by (57), (58), 
(61), and (62), and study the consequences of this 
postulate with respect to coordinate measurements. 

First, suppose we wish to measure the position of a 
particle with radius R. The time required to carry out 
such a measurement is at least of the order of R, so that 
the time between two successive measurements is of 
the order of R. During this time, the body is acted on 
by the gravitational field, whose magnitude is not 
exactly known. We have for the uncertainty of the 
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acceleration of the particle, from (57): 

Aa>AF>0(R/l)/R\ (63) 

During the time R, this unknown acceleration will lead 
to an uncertainty in the coordinate given by 

Lx>®{R/t), (64) 

which is the same as (54). This means that, if (57) holds, 
the result of one position measurement cannot be used 
to predict the result of a subsequent one more precisely 
than is permitted by (64) or (54). 

Furthermore, a glance at (60) is sufficient to show 
that (59) is a consequence of (61) for the experiment in 
which light propagates between two bodies. 

As a further example, we consider the measurement 
of the x coordinate of a body of radius R by means of a 
microscope. We imagine that the microscope is placed 
above the body to be measured, at a distance L>R, in 
the z direction. Now if Fx is the average x component of 
the gravitational field in the region traversed" by a light 
signal between the body and the microscope, the light 
signal will be deflected in the x direction from its 
original trajectory, such that its final direction of 
propagation makes an angle 6 with its original direction, 
where 

smd^LFx. (65) 

Thus, when focused in the microscope, the light signal 
will appear to have come, not from the point x at which 
the particle is "actually" located, but from a point 

xoh$=x—Lsm0^x—L2Fx. (66) 

We must correct for this effect in deducing the position 
of the body from the result of the measurement. 

x^xohs+L2Fx. (67) 

If Fx is not known exactly, then x is uncertain by 

Ax>L2AFx. (68) 

Equation (68), in conjunction with (62), gives 

Ax>0{R/l), (69) 

which again is identical with (54). 
The conclusion of this subsection is that, if we 

postulate the existence of the gravitational field fluctua­
tions (57), (58), (61), and (62), we can deduce the 
fundamental length limitations (54) and (59). 

C. Remarks 

The results of the preceding subsections show that 
the fundamental length postulate, as expressed in 
Eqs. (54) and (59) is equivalent to a postulate about 
gravitational field fluctuations, embodied in Eqs. (57), 
(58), (61), and (62), in the sense that either postulate 
may be deduced from the other. The derivations are 
not completely general, since they depend for their 

strict validity on the assumption of slowly moving 
bodies and of weak fields. That is, we must have 
Ag<$Cl, and AZK^I. Comparing this with Eqs. (56) and 
(58), we see that the derivations are valid if R5>1. As R 
becomes of the order of t, but remains somewhat larger, 
the relativistic corrections become appreciable, but the 
results remain correct in order of magnitude. The 
derivation definitely breaks down for R.<& However, 
this case is inaccessible to observation anyway if (54) 
holds, since it refers to space-time regions of extent less 
than the fundamental length. I t is also inaccessible if 
we postulate (58), since the fluctuations in the metric 
tensor then become of the order of unity, leading to a 
breakdown of the metric structure of space-time due to 
violation of Eq. (4). Hence, it seems that the qualitative 
results of the preceding subsections are probably more 
general than would appear at first glance. 

I t should also be emphasized that an attempt to 
carry out an argument similar to that of subsections A 
and B, but using some field other than the gravitational, 
would not lead to similar results without also making 
some postulates about the properties (e.g. mass, electric 
charge) of the bodies being measured. No field other 
than the gravitational has the property of imparting 
the same acceleration to all bodies, regardless of mass, 
charge, etc. Therefore, while the existence of the 
fundamental length would of course limit all field 
measurements to averages over regions of extent 
greater than I, the equivalence between fundamental 
length and field fluctuations deduced above holds only 
for the gravitational field. 

These results enable us to view the problem of 
formulating a fundamental length theory in a somewhat 
different light. Instead of asking how to formulate a 
theory in which (54) is obeyed, we can ask the com­
pletely equivalent question of how to formulate a theory 
in which (58) is obeyed. This question may be somewhat 
easier to answer. For example, if we restrict ourselves 
to the special case ($= 1, we can answer it in a tentative 
way simply by expressing the metric tensor as 

where g;/0) is the Lorentzian metric tensor, and in­
serting a term in the Lagrangian density: 

£)g={\/l2)dihjkd
iy\ (70) 

The coupling with the matter field is determined auto­
matically up to first order in h, by covariance require­
ments; e.g., derivatives are replaced by covariant 
derivatives, etc. If we calculate the vacuum fluctuations 
of the metric tensor from the Lagrangian (70), we find, 
for the fluctuation in the average of a component of g 
over a cubic space-time region of volume i£4, 

*g>t/R, (71) 

which is the same as (58) for the special case considered 
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here.22 However, this approach is just the quantization 
of the gravitational field in linear approximation with 
the role of the gravitational constant G taken by I2. 
Hence, such a theory would lead to gravitational effects 
contrary to experiment unless -t^\/G. Of course, it does 
not necessarily follow that any fundamental length 
theory would have to have 1^>\/G\ however, the 
equivalence between fundamental length and gravita­
tional field fluctuations deduced in this section indicates 
that any fundamental length theory is likely to involve 
gravitational effects of some kind in an important way. 

VII. DISCUSSION 

We may summarize our conclusions briefly as follows: 
First, present-day physical ideas about gravitation, 
together with the uncertainty principle, imply the 
existence of a fundamental length of order \/G. This 
fundamental length applies to macroscopic as well as 
microscope measurements; in the notation of Sec. VI, 
l~\/G, /?= 1. This does not rule out the possibility of 
some larger fundamental length, but is to be thought of 
as a lower limit. However, a larger fundamental length 
probably could not be deduced from present-day 
concepts without making some assumptions about the 
properties of the particles being measured. Furthermore, 
it is shown in Sec. VI that a fundamental length 
postulate is equivalent to a postulate about gravita­
tional field fluctuations, in which the fundamental 
length appears as the distance at which the metric 
structure of space-time breaks down due to these 
fluctuations. Hence, any fundamental length theory is 
likely to involve gravitational effects of some kind. 

A word might be said about the correspondence 
between the results of Sees. II-V with those of Sec. VI. 
The fundamental length result derived in the earlier 
sections correspond to t^"s/G, /?= 1 in the notation of 
Sec. VI. According to Sec. VI, this is equivalent to 
postulating (58) which, according to (71), is just what 
one gets for the vacuum fluctuation of the gravitational 
field when one quantizes in linear approximation. It is 
also to be noted that our result for the gravitational 
field uncertainty is stronger than that of Peres and 
Rosen,23 who derive essentially our Eq. (57) with 
t^\/G, fi(y) = y~1. Discussions similar to theirs had 
been given previously by Anderson,24 and by Regge.25 

Superficially, it might appear from all this that the 
thing to do is to go ahead with the quantization of the 
gravitational field, sticking as close to the usual method 
of quantization as the peculiar properties of the gravita­
tional field will allow. However, it should be remem-

22 The field Lagrangian (70) can only be used in conjunction 
with some subsidiary "gauge" condition. Therefore, Eq. (71) 
cannot be thought of as applying independently to all components 
of g, but only to those taken as independent dynamical variables. 
Cf. the discussion following Eq. (58). 

23 A. Peres and N. Rosen, Phys. Rev. 118, 335 (1960). 
24 J. L. Anderson, Rev. Mex. Fis. 3, 176 (1954). 
25 T. Regge, Nuovo Cimento 7, 215 (1958). 

bered that the usual method treats field quantities 
averaged over arbitrarily small regions formally as 
observables which can be measured in principle with 
any desired degree of accuracy. But the existence of 
the fundamental length, through Eqs. (57) and (58), 
imposes definite limitations on the measurability of 
these quantities. The greater the desired accuracy, the 
larger must be the space-time region over which one 
averages. Hence, a theory in which the gravitational 
field is quantized in the usual way—at least if the 
physical interpretation is to be analogous to that of 
Bohr and Rosenfeld7-9 for the electromagnetic field— 
can at best be an approximate theory, though it may 
be a very good approximation if one restricts oneself to 
space-time regions large compared with the fundamental 
length. The very careful analysis of DeWitt26 leads to 
the same qualitative result. Thus, if one wishes to 
construct a theory which is applicable to regions of the 
order of the fundamental length in extent, fundamental 
changes in the quantization procedure would seem to 
be in order. 

It should also be emphasized that, because of the 
equivalence established in Sec. VI, the remarks of the 
preceding paragraph apply regardless of what funda­
mental length postulate one makes. For example, if a 
fundamental length of the order of nuclear dimensions 
is postulated, it follows that gravitational field fluctua­
tions become large in regions of the order of nuclear 
dimensions (and conversely). With such a fundamental 
length, according to (58), the fluctuations in the com­
ponents of the metric tensor become of the order of 
unity in regions of the order of nuclear dimensions. The 
fluctuation in gravitational potential energy of a 
nucleon is therefore 

where M is the mass of a nucleon. Coulomb energies in 
this region are of the order 

Ec^>e2/r=e2M, 

where e is the electronic charge, and r by hypothesis is 
about 1/M. This means that, if one postulates a funda­
mental length of the order of nuclear dimensions, one 
must conclude that gravitational energy fluctuations 
in nuclei should be greater than Coulomb energies by a 
factor of about 137. Since no such effects are observed, 
this appears to be an argument against a fundamental 
length of the order of nuclear dimensions. 
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APPENDIX: ALTERNATE TREATMENT OF 
CLOCK PROBLEM 

In this appendix we give a treatment of the clock 
problem which does not depend on the particular 
method of measurement being used, but only on 
commutation properties of operators. I t is based on the 
concept of an "inner time" as discussed, for instance, 
by Aharonov and Bohm.27 

Initially, we assume that all gravitational fields are 
weak, so that we can speak unambiguously of such 
things as "distance," "time," etc., with the gravitational 
effect on the rate of a clock being a small correction. We 
consider a physical system spread out over a region of 
radius R which is to be used as a clock. The energy 
operator of the system is 3C. The "inner time" T (e.g. 
the position of a pointer on a scale marked off in time 
units) is a dynamical variable of the system whose time 
derivative is unity. Thus we have 

i ? = [ r , 3 e ] = i . (Al) 

This refers, however, to the local time. The rate p of the 
clock relative to the "world time" (as measured by a 
clock at infinity) is 

p = l + 0 = l - G X / i ? . (A2) 

Here it is assumed that the gravitational potential is 
constant in the interior of the system, though it will be 
clear that the result does not really depend on this 
assumption. Combining (Al) and (A2), we find 

[T,p]=-iG/R. (A3) 

" Y, Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961). 

The time required to make a measurement (e.g., 
synchronization by means of light signals with a nearby 
clock) is at least of the order of R, so the smallest 
possible change r in the reading of the clock during the 
course of the measurement is 

r=pR. (A4) 

Equations (A3) and (A4) may be combined to give 

[ 7 > ] = - i G . (A5) 

We therefore have the uncertainty relations 

ATAT>G, (A6) 
and 

ATA(T+T)>G. (A7) 

Since T-\-r is just the reading of the clock at the end of 
the measurement (also the predicted result of an 
immediately subsequent measurement), the meaning 
of (A7) is that the clock cannot be kept synchronized 
with the "world time" with greater root-mean-square 
accuracy than \/G. Successive synchronization measure­
ments will therefore show unpredictable fluctuations, 
and all the consequences discussed previously will 
follow. 

I t is clear that the above considerations apply equally 
well to macroscopic clocks, since no assumptions were 
made about the specific nature of the dynamical 
variable T. In particular, it could be a macroscopic 
time such as that defined by Eq. (50). 

I t is also clear that the result applies equally well to 
the difference Ti—T2 in the readings of two separate 
clocks (that is, the errors cannot be made to cancel). 
To see this, we simply note that 

£(T1-T2),(Pl-P2)l=-iG(-+-) . 
\Ri R2J 

The time for a synchronization measurement is at least 
Ri+R2, so we have 

Tl— T2 = (pi — p2)(Rl+R2) , 

from which we find 

il(T1-T2),(r1-r2)'] = G(R1+R2y/R1R2>G. (A8) 

I t is also easy to verify that the assumption of weak 
fields is not necessary by doing a more accurate calcula­
tion. In what follows, we will use the words "distance" 
and "t ime" to refer to the radial and temporal coordi­
nates, respectively, in the usual Schwarzschild coordi­
nate system.17 "Velocity" will mean "distance" per 
unit "time." I t is understood that these coordinates do 
not have all the usual properties of distance and time, 
but it is nevertheless convenient to have some words to 
call them by. We also assume that R is large enough so 
that there is no singularity in the Schwarzschild 
solution, 
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With this understanding, we now have instead of 
(A2) the more exact relation 

p=[\-2{G3Z/R)Ji\ (A9) 

and if T is to measure the local time we must have 

[TflQ!~] = i, (A10) 
where 

SC^SCp-1 (All) 

is the "local Hamiltonian." (A9) and (All) may be 
solved to give 

^f=(R/2G)(p-1-P). (A12) 
The velocity of light is now not unity but p2, so the time 
for a measurement is R/p2. I t follows that 

r = Rp~\ 

p = R/r. (A13) 

Combining (A 12) and (A 13), we find 

W=(1/2G)(T-R2/T); 

dX!/dr= (1/2G) (l+R2/r2) ; (A14) 

dr 2G 2G 

= = ^G. (A15) 

dw I+R2/T2 I+P2 

Combining (A 10) and (A 15), we finally obtain 

dr 
-i\T^-i[TX~] = 2 G / ( l + p 2 ) > G . (A16) 

d3Cf 

Thus, the more accurate treatment results in a change 
in sign of the commutator (the difference between 3C 
and 3C' and the effect on the velocity of light were not 
treated even in lowest order in the approximate treat­
ment), but the resulting uncertainty relations are the 
same. 

The results of this appendix permit a somewhat more 
precise interpretation than those of the body of the 
paper. The quantity T alone can apparently be meas­

ured with arbitrary accuracy, which means that one 
may say that two clocks are arbitrarily well synchro­
nized at a particular time. However, one cannot prepare 
a pair of clocks which will remain reliably synchronized 
over a period of time. This situation is exactly the same 
as that discussed in the introduction: The result of a 
single measurement may be read with arbitrary 
accuracy, but successive measurements will show 
unpredictable fluctuations. Since the description of 
phenomena in terms of a Lorentzian coordinate system 
presupposes the physical possibility of setting up clocks 
at different points in space which can be relied on to 
remain synchronized, the conclusion is that such a 
coordinate system can only be set up with a mean error 
of the order of the fundamental length. 

The considerations of this appendix, depending as 
they do only on the commutation properties of the 
operators, have some advantages over the methods used 
in the body of the paper. As stressed by Aharonov and 
Bohm,27 when one considers a particular experiment, 
one runs the risk that the experiment chosen may not 
be sufficiently typical for the result to be generally 
valid. Hence, a result is to be believed only when it has 
been derived from the mathematical formalism. This 
point of view is unquestionably correct when one is 
concerned with interpreting a theory for which a 
definitive mathematical formalism exists. In the present 
case, however, as pointed out in the discussion section, 
the existence of the fundamental length may necessitate 
fundamental changes in the formalism, so that it is at 
least conceivable that the physical considerations of the 
body of the paper have a wider validity than the 
operator formalism. In this case, one must simply live 
with the risk of choosing atypical methods of measure­
ments until a satisfactory formalism has been developed. 
This is the philosophy behind the relegation of these 
considerations to an appendix. In any case, it is highly 
satisfying that both approaches lead to identical results. 
Each reader may decide for himself the question of 
which approach is more convincing. 


