
P H Y S I C A L R E V I E W V O L U M E 1 3 6 , N U M B E R 1A 5 O C T O B E R 1 9 6 4 
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We have investigated the lowest energy levels of the paramagnetic ions Mn2+ and Fe3+ in the host crystal 
MgO, as a function of externally applied uniaxial stress. The effect of the stress on the energy levels of the 
paramagnetic ion can be described by introducing into the spin Hamiltonian an additional term of the form 
S-Z>-S. When the components of D are expressed as linear functions of the applied stress components, there 
are only two independent constants of proportionality in our simple case of a cubic crystalline lattice. We 
have experimentally determined these two constants, i.e., spin-lattice coefficients Cn and Cu, for Mn2+ and 
Fe3+ in MgO, and find them to be, in units of 10"13 cm/dyne: for Mn2+, Cn= (+7 .1±3)% and Cu= ( -2 .1 
± 3 ) % ; for Fe3+, Cn= (+26=1=3)% and Cu= (-5.5=fc5)%. We have also investigated the absolute value 
and the angular dependence of the linewidth of the fine structure of Mn2+ and Fe3+ in MgO. We can account 
for these widths in terms of the spin-lattice coefficients, by assuming a random distribution of internal 
stresses in the host sample. We also indicate the relevance of the spin-lattice coefficients in the determination 
of the direct spin-lattice relaxation times. 

I. INTRODUCTION 

THE method of electron spin resonance has been 
widely used over the last two decades in the study 

of paramagnetic ions in crystals. The transitions that 
are observed reflect the surroundings of the ion and 
much information can be obtained from them on the 
symmetry of the environment of the ion and on the 
strength and detail of the interactions between the ion 
and this environment. It has been the purpose of our 
work to study the effect on such electron spin resonance 
spectra of an externally applied uniaxial stress. 

The idea is the following: By means of an externally 
applied pressure, the atoms or ions that form the lattice 
are statically displaced from their equilibrium positions. 
This introduces a change in the crystalline electric field 
at the site of the unpaired electron. It is possible to ex
press the relation between this electric field and the 
displacement of the ions of the lattice in terms of con
stants characteristic of the system under consideration, 
which we call spin-lattice coefficients. These coefficients 
then provide a direct measure of the strength of the 
coupling between the spins and the lattice. What in
formation can be obtained from these spin-lattice 
coefficients? 

Firstly, they may serve to elucidate the mechanisms 
that produce the splittings of the energy levels of ions 
placed in a crystalline environment, which are im
perfectly understood theoretically. Previously, in order 
to study the effect on a given paramagnetic ion of the 
symmetry of its environment, it was necessary to change 
the very nature of this environment (going from, say, 
cubic MgO to axially symmetric AI2O3). Using uniaxial 
stresses, it is possible to choose a simple crystalline 
lattice and to distort it at will; the effect of such dis
tortions on the paramagnetic ions contained in the 

*The portion of this work performed at the University of 3CC=£/3H* S + i a H S ^ + S « 4 + * S s
4 

California was supported by the National Science Foundation and 
the U. S. Air Force; the portion performed while the author was 
at Columbia University, was supported jointly by the U. S. Army 
Signal Corps, the U. S. Office of Naval Research and the U. S. 
Air Force Office of Scientific Research. 

sample will then give a better handle on the problem of 
the mechanisms involved. 

Secondly, the spin-lattice coefficients can provide 
knowledge of the direct spin-lattice relaxation times T\. 
In fact, the classical work in this field1 has established 
that spin-lattice relaxation proceeds via the thermal 
modulation of the crystalline electric field at the para
magnetic ion. If, then, the electric field introduced by 
uniaxial stresses, were not static but were modulated 
with a frequency distribution given by the phonon spec
trum of the substance considered, we would be repro
ducing the mechanism of spin-lattice relaxation. In this 
dynamic case it should also be possible to express the 
relation between electric field and ionic displacement by 
means of the spin-lattice coefficients and so obtain the 
direct spin-lattice relaxation time in terms of them. 
Ideally, then, it would be possible to know the direct 
spin-lattice relaxation time of a system by performing a 
uniaxial pressure experiment, which is a much simpler 
measurement than those usually performed. 

Thirdly, we have found that the spin-lattice coeffi
cients also provide knowledge of the state of internal 
stress of a crystal, which manifests itself in the line-
width of the paramagnetic transitions observed. 

II. ENERGY LEVELS AND TRANSITIONS OF Mn2+ 
AND Fe3+ IN MgO IN THE PRESENCE 

OF APPLIED STRESS 

A. The Spin Hamiltonian 

In our work we shall be concerned with the isoelec-
tronic ions Mn2+ and Fe3+ in the cubic field of MgO. 
The spectra of these systems can be described in terms 
of the following spin Hamiltonian: 

i S ( S + l ) ( 3 S 2 + 3 S - l ) ] + A . S / . 
1 J. H. Van Vleck, Phys. Rev. 57, 426 (1940); R. de L. Kronig, 

Physica 6, 33 (1939). 
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FIG. 1. Distortions under stress (compression) of the octa
hedron formed by the six oxygens that are nearest neighbors of the 
paramagnetic ions considered, after Schawlow, Piksis, and Sugano 
(see Ref. 6). (i) P| |[001]; the upper and lower oxygen ions move 
inward by R\\ the other oxygens move outward by Rz. (ii) 
P| |[110]; the upper and lower oxygen ions move outward by Ri\ 
the other move inward by i?3; the angle a is in the (001) plane. 
(iii) P | | [ l l l ] ; all oxygen ions move inward by i?4. If P = 5.5X108 

dyn/cm2~550 kg/cm2, then i?i = 4.5X10~4 A; i?2 = 1.0 X10~4 A: 
Rz = \(Rx-Ri)\ ie4 = J (^ i -2 i?2) ;a = 5.0X10-3 deg; and0 = }\2a. 

For Mn 2 + the constants are2: 

g=2.0014±0.0005; 3a =(+55.9dz0.9)XlO" 4 cm"1; 
il = ( -81 .0±0 .2 )XlO-*cm- 1 . 

For Fe3+ the constants are3: 

2-2.0037zfc0.0007; 3a= + 615X10~4 cm"1; 

and4 

^ = (10.1±0.2)X10~4cm-

We call this spin Hamiltonian 3CC where the subscript 
indicates that it refers to the undistorted or cubic MgO 
lattice. 

If now the MgO crystal is subjected to a uniaxial 
stress, the cubic symmetry is distorted, and the new 
spin Hamiltonian describing this system of lower sym
metry becomes 0C=JCc+5Cnc, where 3Cnc=]C»i=i,2,3 
XSiDijSj (1, 2, 3, denote the cubic axes of the crystal). 

2 W. Low, Phys. Rev. 105, 793 (1957). 
3 W. Low, Proc. Roy. Soc. (London) 69B, 1169 (1956). 
4 E . Rosenvasser and G. Feher, Bull. Am. Phys. Soc. 6, 117 

(1961); see also J. W. Orton, P. Auzins, J. H. E. Griffiths, and 
J. E. Wertz, Proc. Phys. Soc. (London) 78B, 554 (1961); they 
independently also determined A. This constant describes the 
observed hyperrine structure due to the naturally occurring iso
tope Fe57. Its abundance is only 2.2% and so we shall neglect it 
in the remainder of this paper. 

We assume that no fourth-order terms in the spin vari
ables are introduced; the validity of this assumption is 
shown in part B of this section. 

The tensor D represents the effect of deformations 
(dilations and contractions) of the system, in the ab
sence of translations, rotations or changes in volume. 
Such a tensor will be symmetric and traceless. In fact, 
like any tensor, D can be decomposed into the sum of 
three tensors: one antisymmetric, one symmetric and 
traceless, one diagonal with elements given by the 
trace of D. The term in 3Cnc that arises from the di
agonal part of D is of the form \_D\\-\-#22+#33] 
XOSOS+l)], and its effect is to shift by an equal 
amount all energy levels belonging to the same spin 
multiplet. Since experimentally we observe only dif
ferences in energy, this term is not detectable and we 
therefore set it equal to zero; i.e., Z)n+Z>22+#33=0, 
or Dij is traceless. The antisymmetric part of D gives 
rise to terms linear in the spin operator. Since the system 
is to be invariant under time reversal, these terms must 
vanish. Hence Dij=Dji and only the symmetric, trace
less part of the tensor D remains. 

We can now express this D tensor as a linear function 
of the applied stresses or strains, in terms of constants 
of proportionality or spin-lattice coefficients. The 
linearity of the dependence is warranted by the small-
ness of the strains introduced (1 part in 104). I t is also 
borne out experimentally, as shown in part B of this 
section. We write then Di3-=^ki CauXu where Xki are 
the components of the external stresses. (In this case the 
spin-lattice coefficients C # H , are called "stress coeffi
cients." If D^ is expressed in terms of strains, instead, 
then the constants of proportionality are denoted by 
djki and are called "strain coefficients.") 

Shulman, Wyluda, and Anderson5 point out that a re
lation such as we have written for D is of the same form 
as the generalized Hooke's law, and they show that the 
spin-lattice coefficients will obey similar relations to 
those that obtain between the elastic constants for 
crystals of cubic symmetry. Namely, in terms of the 
contracted Voigt notation, Cu=C22=Cn; Cu=C$$ 
= C6e; Ci2=C23=C2i=C32=Ci3. The tracelessness of D 
adds one further condition: C n = — 2Ci2. We are there
fore left with two independent constants, Cu and C44. 
We write, then, for the relation between the com
ponents of D and the components of X: 

[Si l l 
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U>23 
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f Cu 
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(1) 
5 R. G. Shulman, B. S. Wyluda, and P. W. Anderson, Phys. Rev. 

107, 953 (1951). 
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FIG. 2. Typical electron spin 

resonance spectrum of para
magnetic impurities in MgO, 
observed at 77°K and with 
H | | [ l l l ] axis (*>e«10 000 Mc/ 
sec). The complexity of the 
spectrum is due mainly to the 
thirty transitions of Mn2+. For 
the orientation shown, the 
Mn2+ lines are flanked at both 
ends of the spectrum by the 
Fe3+ fine structure; at other 
angles, the Fe?+ fine structure 
approaches the central transi
tion near g — 2.00 a n d so 
merges into the M2+ spectrum. 
A certain amount of Cr3+ is 
almost always present in these 
samples; its resonance signal 
is only partially resolved from 
the central, mj=-f-J, Mn2+ 

line in the trace shown. 

mj = -5/2 

In terms of the components of the applied stress, then, 
3Cnc becomes 

5Cno=Ci1{[X11-KX22+X33)]^l2 

+ [X 2 2-§(*33+X 1 1 ) ]S 2
2 

+ tXM-i(X22+XunSz*}+Cu{Xn(S1S2+S2S1) 

-\-Xn(SiSi-{-SzS1)-\-Xn(S2Sz-\rSzS2)}. 

Assuming, as indeed is the case experimentally, that 
D<£g/3H, we treat now 3Cnc as a perturbation on 3CC. In 
order to find the shift of the energy levels under stress, 
we diagonalize the Hamiltonian. We do this in the co
ordinate system where the Zeeman term has the simple 
form gfiHSz. Calling cp and 0 the polar angles of the mag
netic field with respect to the cubic crystalline axes, 
we can write the components of the spin along the cubic 
crystalline axes in terms of the new components and 
evaluate the diagonal elements of the Hamiltonian. We 
get thus an expression for the shift, to first order, of the 
energy level characterized by the magnetic quantum 
number ms. Correspondingly, the change under stress of 
the magnetic field at which the transition nts—>(nis— 1) 
appears, is given by 

8Hm, _ m s_i= - (2ms- l ){ fCi i [Xn( t cosV s in 2 0-J ) 
+X 2 2 ( f s inV s in 2 0- | ) + X 3 3 ( § cos 20- J ) ] 
+3C44[Xi2 cos<p sin<£> sin20+X2 3 cosfl sin0 sin<p 

+X3isin0cos0cos<£>]}. (2) 

This expression gives to first order the shift under stress 
of any transition for any angle (<p,0) of the magnetic 
field with respect to the cubic axes of the crystal and 
for an external stress applied in any direction. The X # 
are the components of the applied stress in the cubic 
system of axes of the crystal; the Cn and Cu are the 

constants defined by Eq. (1). We see then that 

8H(ms=±^ 

8H(ma=±% 

• * ) • = 0, 

± J ) = ^zf(Xij,Cij,<p,d), 

• ± i ) = ±2/(X,yAi,*,0). 
(3) 

That is: to first order, the +^—>—J transition re
mains unchanged, and the ± f —» ± f transitions vary 
twice as much as the ± § —> ± \ for a given angle and 
external pressure. 

I t is customary to express the spin Hamiltonian of a 
noncubic crystal in terms of the constants D and E. In 
such a case the term 'Eij DySiSj is expressed in com
ponents referred to the axes 1, 2, 3 of the deformation; 
Dij is diagonal so 0Cnc can be written DnSi2+jD22S2

2 

-\-Dz%Sz2 and calling 

then 
D = fD33, and E=i(Dn-D22) 

3 C n c = D Z S f - t S i S + V l + E t S f - S f l , 

In terms now of the polar angles </, 6f of the magnetic 
field with respect to the deformation axes: 

8Hn Wr_i= - ( 2 m . - l ) [ Z > ( § cos20'-§) 

+ f £ c o s V s i n 2 0 ' ] . (4) 

We now specialize Eqs. (2) and (4) to three useful 
cases (see Fig. 1), by giving explicitly the shifts of the 
+ f —> + | transition under an applied pressure P . 

Case i. Pressure P | | [ 00 i ] . The stress components along 
the cubic axes are: X 3 3 = P ; X u = X 2 2 = X i 2 = X 2 3 

= X 8 1 - 0 . 
/ - - ~ § C n P ( 3 c o s 2 0 - l ) , 

J 9 = f C n P and E = 0 . 
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FIG. 3. Electron spin resonance signal of the mi——\ pentad 
of Mn2+ observed with # | | [ l l 0 ] and P||[110] at 77°K. (a) shows 
and labels the electronic transitions in the absence of external 
stress, (b) shows the displacement of the transitions when P » 6 0 0 
kg/cm2; the lines ma=— f—>— f and m8=— f —> — J shift to 
lower fields and the other two lines to higher magnetic fields. Also 
the ms = ± j —> ± | transitions shift more than the ms = ± f —> ± J 
lines. • 

Case w. Pressure P\^J.10~\, The stress components along 
the cubic axes are: Xn==X22=Xi2=|P; Xi3=X23 

/ = -P{fCn(f sin2^-l)+3C44 cos<p sin<? sin20}, 

JD=-iCiiP and JE=JC4*P. 

Case m. Pressure P | | [ i i / ] . The stress components along 
the cubic axes are: X\\—Xn—X%%—X\<i,—X<Li—Xi\ 

/=—2C44-P{cos<^ sin<p sin20+cos0 sin0(cos<p+sin<p)}, 

P -+C44P and E==0. 

B. Experimental Results 

Figure 2 shows the transitions observed in a typical 
spectrum of Mn2+ and Fe3+ in cubic MgO. Figures 3 
and 4 indicate the nature of the changes observed in this 
spectrum when a uniaxial stress is applied. 

a. The Effect of Uniaxial Stress on the 
Parameters A, g, and a 

In the discussion of part A of this section, we have 
assumed that the only effect of a uniaxial stress is to 
introduce a deformation from cubic symmetry, leaving 
the cubic portion of the spin Hamiltonian (i.e., g, a, A) 
unchanged. We now examine the validity of this as
sumption which has been tested experimentally. 

We have determined limits of variation for A and g 
of Mn2+ and g of Fe8-f" at 77°K and under pressures up 
to «600 kg/cm2. The observations were made with 
P||[110] and # | | [001], and consisted in determining 

the position of the central H(m8= + ^ —» — J; wi= dbf) 
transitions, which we refer to below as Hc(mi) for the 
sake of brevity. 

The expressions that give the field H at which the 
transitions appear in a cubic field, are given explicitly 
elsewhere.2,3 From those expressions, a change in the 
cubic field parameters can be expressed so: 

8A 

A 

Mn'+ #c(+f) + # c ( - f ) ' 

2) Ma* #c(+f)-# c(-

8g/g\^+=8Hc/Hc. 

No variation with pressure was observed in any of the 
three parameters, within the limits of experimental 
accuracy. [These limits are given by the limits in the 
reproducibility of the center of a given line Hc(mi) 
rather than by the actual determination of such a 
center.] 

Thus, dg/g\Mn^<0.001%; «i4/4|Mn»+<0.01% and 
«S/g|re«+<0.003%. 

In order to test experimentally for the lack of change 
in a we now focus our attention on the fine structure 
transitions, which are the ones that would show such a 
change to first order. We assume the change 8a intro
duced by an external stress is small and so neglect 

-PRESSURE P « 0 
— PRESSURE P II CHOI 

AND a 600 Kg /cm2 

ANGLE 0 BETWEEN H AND CRYSTAL AXIS, IN THE 110 PLANE -

FIG. 4. Plot of the distance in gauss between the fine structure 
lines and the central +J—> — i transition of the Mn2+ pentad 
mi— — f, as a function of the direction of the magnetic field in the 
(110) plane. The dashed lines show the angular dependence in the 
absence of external pressure; the full lines show the angular de
pendence with P||[110] and P = 580 kg/cm2. 
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PRESSURE INCREMENTS IN K g / c m 2 - — 

FIG. 5. Plot of the absolute magnitude of the shift of the fine 
structure resonance lines of Fe3+ versus increments of applied 

ressure. These data were taken with flllp.11] and P||[110] at 
7°K. The plot shows the linearity of the shifts with applied 

pressure; it also shows that the ws = d b § - > ± § transitions are 
displaced twice as much as the w5 = ± f —> dbf transitions, for a 
given applied pressure. 

second-order terms in <z. Then the change in field 8H 
at which the fine structure transitions appear gives the 
ratio 

8H(m8 = ± f -> ± f ) =F2p8a 
_ J L 

However, the ratio observed experimentally is +2.03 
±0.03. The sign of this ratio is apparent from Fig. 3, 
where we show the effect of an applied external pressure 
on a spin pentad (that of Mn2+, wj= — §). The magni
tude of the ratio is obtained from plots like the one pre
sented in Fig. 5, which shows for Fe8+ and #||[111], the 
absolute magnitude of the shift versus pressure of both 
the f —»f and the f —> | transitions. Similar plots are 
obtained for different orientations of the magnetic 
field and for Mn2+. 

We therefore see that the magnitude and sign of the 
shifts of the resonance lines observed are consistent with 
a description of the system with a term in Dy being in
troduced into the spin Hamiltonian, but inconsistent 
with a change in a. (In terms of our experimental errors, 
if such a change is present, it must be smaller than 1% 
of the D term introduced.) 

b. The Parameters D, E, and the 
Determination of Cn and C44 

The term D{j is related to the external stress by the 
constants Cn and C44. These constants can be obtained 
directly from two distinct axially symmetric distortions 
of the sample obtained, respectively, by stressing along 
the [001] and along the [111] axes (cf. cases i and iii, 
Sec. HA). For this, however, it is necessary to use two 
different samples, and experimentally it is desirable to 

be able to determine both constants in the same 
sample and during the same run. This is possible if we 
do not introduce an axially symmetric distortion but a 
more complicated one corresponding to case ii, discussed 
previously. This is the procedure we have adopted. 

Samples were cut with edges parallel to the [001], 
[110], and [110] axes and the external stress was 
applied along the [110] axis. Then, observation of the 
displacement of a transition along two different direc
tions gives enough information to obtain both Cn and 
C44. Two convenient directions are i7||[001] and 
#II[H1]> since in these cases we can obtain Cn and C44 
separately. However, the direction #11 [111] is very 
sensitive to any misorientations in the system (see 
Appendix). Therefore, from considerations of accuracy 
it is more desirable to determine C44 from the shifts ob
served with £T||[110]. This is, indeed, what we have 
done in the case of Mn2+. For Fe3+, however, it was not 
possible to resolve the fine structure along the [110] 
since it broadens (see Sec. Ill) and merges into the 
Mn2+ spectrum. For Fe3+, then, C44 was determined 
with #||[111]. 

The determination of the constants C# was made by 
comparing at various pressures the difference in the 
magnetic fields at which appear a given fine structure 
line and the central + J —> — J transition of its pentad 
(i.e., of the same mi in the case of Mn2+). From Eq. (3) 

[ # ( ± f - > ± f ) - # ( + § - > — D l t r e s s P 

— [_H{zt:2~-» ± - 2 ) — H(-\~2~~> ~2Jjzero stress 

= ±2f(Xij,Cij,<p,0) 

and 

[ f f ( ± t - > ± i ) ~ # ( + i - > - i ) ] s t r e s s P 

• — [ # ( ± 2 "~* =fc^)~~ # ( + ! " - * """"i)]zero stress 

= dzf(Xy,Cij,<p,d). 

In practice, in our experimental setup, the state of 
zero stress is not well defined mechanically. It is neces
sary to keep the system always under a small amount of 
pressure so that the two halves of the resonant cavity 
and hence the crystalline sample remain in place and 
aligned. We make use then of the linear dependence of 
/ on P and normalize the shifts not to zero pressure but 
to some initial pressure P' (P' — lOO kg/cm2 in our ex
periments). Thus, for instance, 

/ = [ # ( + ! - + + i ) ~ # ( + i - > - i ) ] s t r e s s ( P + P ' ) 

- [# (+§ ~* +J)-tf(+i-> -i)]8tressP, , 
and from case ii Sec. HA: 

if flU[001] then / = - 2 D = + § P C n ; 
if #||[111] then / = + 2 £ = + P C 4 4 ; 
if FHClIO] then / = + (D-3E) = -3P(iCii-iC44). 

Table I shows the experimental values obtained for 
the stress coefficients. The absolute values of the con
stants are obtained from the plots of Figs. 6 and 7. 
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TABLE I. The experimentally determined stress coefficients 
m units of 10~~3 cm/dyne. 

Mn2+ Fe3+ 

C44 
4-7.1 
-2.1 

+26 
-5.5 

Their signs are obtained by observing the displacement 
under stress of the lines that form a spin pentad (Fig. 3). 

The experimental errors are db3% with the exception 
of C44 for Fe34" where it is ± 6 % . A discussion of the 
origin of these experimental errors and their estimate is 
given in the Appendix. 

Since C44 and Cn for any one ion have been deter
mined at the same pressure, their ratio is known to a bet
ter accuracy than the absolute values, namely 2% for 
Mn2+ and 5% for Fe3+. 

I t must be emphasized that these constants are 
evaluated from a first-order perturbation theory. In 
point of fact, a in Fe3 + is large enough so that when we 
neglect second-order terms of the form (Da/Ho) in 
our energy level expressions, we are making an error 
of the same order as the experimental errors. In our 
experimental results we see the deviations due to these 
second-order terms. While for Mn 2 + the experimental 
points due to the transitions -\-(ms—>ms— 1) and 
— (m8—>ms— 1) fall in the same straight line within 
our error, in the case of Fe3 + there is a net difference 
which is proportional to pressure. In order to reduce the 
errors arising from the neglect of second-order terms, 
the values we have plotted in Fig. 6 and from which we 
have obtained the C»/s are the arithmetical average of 
the ± f -> db | shifts. 

Similar experiments to the ones described were in
dependently carried out by Watkins. His values and our 
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FIG. 6. Plot of the absolute magnitude of the average of the 
shifts of the mt — dbf —+ dr J transitions of Fe3+ versus increments 
of applied pressure. Zero shift corresponds to the position of the 
lines under an external pressure of 111 kg/cm2. The data were 
taken at 77°K and with P||[110]. The slope of the line labeled 
— - ' " " - • - ' - IfCnl; the line labeled #| |[111] has a #||[0011 is given by 
slope =1^441. Hence, |C1i|' = 2.6Xl(r13 cm/dyne 
= 5.5X10^13 cm/dyne are obtained from this plot. 

SS-
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'3s 2! 

HHtOCfll/ 
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Hinfo] 
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PRESSURE INCREMENTS IN K g / c m ' - — 

FIG. 7. Plot of the absolute magnitude of the shift of the 
w« = — f —> — § transition of Mn2+ {mi = f) versus increments of 
applied pressure. Zero shift corresponds to the position of the lines 
under an external pressure of 222 kg/cm2. The data were taken 
at 77°K and with P||[110]. The slope of the line labeled 
#|[[001] is given by )}Cn|; the line labeled # | [ [ l l 0 ] has a 
slope=|3(JCii~i)C44|. Hence, \Cu\ =7.1 X10-13 cm/dyne and 
IC441 =2.1X10~13 cm/dyne are obtained from this plot. 

preliminary ones agreed well within the experimental 
errors, and were published together in unified form.6 The 
numbers published then were the strain coefficients G#. 
Throughout this work, however, we have used the stress 
coefficients C# because we feel they have greater physi
cal significance in our experiments since we measure 
stresses rather than strains. To express our results in 
terms of G# it is necessary to use the elastic coefficients 
of MgO. Thus, in terms of the elastic stiffnesses c#: 

G\i/(c\\—ci2) = Cn and Gu/cu—Cu-, 

where7 

c n = 29.54X 1011 dyn/cm2 ; cn= 8.49X 1011 dyn/cm2; 

c4 4=14.99X101 1dyn/cm2 . 

Germanier, Gainon, and Lacroix8 have also deter
mined the D term of Fe3 + and Mn2 + in an MgO sample 
that is stressed uniaxially along a cubic crystalline axis. 
In our terminology their results are: 

and 

C n (Mn 2 +)=(12±2)X10- 1 3 cm/dyn 

Cn(Fe3+) = (37±4)X 10~13 cm/dyn. 

A later revision of their results9 yielded Cii(Mn2+) 
- 8 . 8 X 1 0 - 1 3 cm/dyn and Cn(Fe3+) = 31X10-1 3 cm/ 
dyn. These results are still large, and agree with ours 
only marginally within the experimental limits. 

and 

6 G. Watkins and Elsa Feher, Bull. Am. Phys. Soc. 7, 29 (1962). 
7 A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122, 

1469 (1961). 
8 A. M. Germainier, D. Gainon, and R. Lacroix, Phys. Letters 

2, 105 (1962). 
9 R. Lacroix (private communication). 
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FIG. 8. Diagram showing the lowest lying energy levels of the 
free Mn2+ and how they split in a cubic crystalline field [see Refs. 
11 and L. E. Orgel, J. Chem. Phys. 23, 1004 (1955); Y. Tanabe 
and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954); C. Moore, Natl. 
Bur. Std. (U. S.) Circ. No. 467 (1962)] of strength approximately 
that of MgO [Z>g«1250 cm"1 (see T. R. Gabriel, D. F. Johnson, 
and M. T. Powell, Proc. Roy. Soc. (London) 263A, 503 (1961))]. 
For reference we show the lowest lying state 6D of the first excited 
configuration 3dHs of Cr+. The numbers in parentheses give the 
total degeneracy of a state: spin degeneracy times orbital degen
eracy. The splitting of the ground state 6S is magnified in the 
insert. The insert shows to scale how the sixfold degenerate state 
splits in a cubic and pressure induced axial field (P«500 kg/cm2) 
into a Kramers triplet. 

c. Comparison of Experiment with Theory 

There have been many attempts to obtain the Da 
from first principles. One of the difficulties of such cal
culations, is that the ground state of the ions Mn2+ 

and Fe3+ is an orbital singlet. Now, the electron spins 
can only be affected by the electric crystalline field of 
the lattice through their orbital angular momentum. 
Therefore, there will be a spin-lattice interaction only 
insofar as the ground state is not a pure S state but has 
admixed into it some higher lying energy states with 
nonvanishing angular momentum. The problem then is: 
what are the mechanisms that admix these excited 
states? 

Pryce10 proposed that the important mechanism is a 
second-order process involving the axial field Fax and 
the spin-spin coupling Fss, via an intermediate state 
(see Fig. 8) from an excited configuration. 

Watanabe11 added another mechanism to the above: 
a fourth-order process, quadratic in the axial field and in 
the spin-orbit interaction. He made an explicit calcula
tion for Mn, of Z)=Z)(Watanabe)+£(Pryce) = -.4A2 

+ B A . Expressing D in cm"1, the constants A and B are 
approximately 10~9 and 10~6, respectively. The param-

10 M. H. L. Pryce, Phys. Rev. 80, 1107 (1950). 
11 H. Watanabe, Progr. Theoret. Phys. (Kyoto) 18, 405 (1957). 

eter A is a measure of the strength of the axial crystal
line field (Fax=C2of2Fo2, expressing Fax in spherical 
harmonics Yn

m and A=J(57r~1)1/2C2o(^2) as defined by 
Watanabe). The usual axial fields are of order A= 10+3 

cm-1, and both the linear and quadratic terms con
tribute to D. However, for our stress experiments a 
point-charge calculation shows that at the pressures we 
use, the axial fields introduced are A «10 cm-1. The term 
quadratic in the axial field then drops out and only 
Pryce's mechanism remains operative. The D values 
obtained for Mn2+ using Watanabe's calculation of 
Pryce's mechanism are approximately one order of 
magnitude less than those found experimentally. There 
is a certain amount of indeterminacy in these estimates 
because they involve the overlap of the radial wave 
functions of the 3d and 4s electrons which is not well 
known. 

Germanier, Gainon, and Lacroix8 also tried to ob
tain a theoretical interpretation of the D terms. They 
considered, in addition to Pryce's mechanism, two other 
processes that contribute to the part of D that is linear 
in Fax. Their result, however, is 100 times too small and 
also of the wrong sign. 

Blume and Orbach12 have obtained the strain co
efficients of Mn2+ in MgO through a refined calculation 
that takes into account the spin-orbit coupling and the 
axial crystalline field. Thus they obtain for Mn2+ in 
MgO, Gii=-1.21 cm-yunit strain ( . \Cn= — 5.7 
X10-13 cm/dyn); and Gu = +0.0391 cm~Vunit strain 
(.\C44=+0.26X10-13 cm/dyn), a result that is of the 
wrong sign compared with experiment (cf. Table I). 
The authors feel that the difficulty lies in the use of a 
point-charge model to evaluate constants. An alternate 
explanation would be that their assumed mechanism is 
not the only one present. 

A refined version of the process of Pryce, introducing 
spin-spin coupling in the presence of an axial field, was 
worked out by Leushin,13 who obtained Gn=+0.52 
cm~Vunit strain (/. Cii=+2.5X10~13 cm/dyn) and 
G44=-0.37 cm-Vunit strain (. \C4 4=-2.5X10-1 8 

cm/dyn). This result is of the right sign compared with 
experiment; it is also of the right order of magnitude 
although, once again, there is a certain amount of in
determinacy due to the fact that the overlap of the 3d 
and As electronic wave functions is not well known. 

A different approach to the same problem is presented 
by Kondo.14 He argues that all efforts so far have been 
based on naive crystalline theories which take into 
account the deformation of the metal ion by mixing in 
higher excited states by the crystalline field, but where 
no attention is paid to overlap and covalency. By taking 
these into account, Kondo obtains the spin-lattice co
efficients in terms of two parameters which he can fit 

12 M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962). 
13 A. M. Leushin, Fiz. Tverd. Tela. 5, 605 (1963) [English 

transl.: Soviet Phys.-Solid State 5, 440 (1963)]. I wish to thank 
Dr. R. Orbach for having brought this work to my attention. 

14 J. Kondo, Progr. Theoret. Phys. (Kyoto) 28, 1026 (1962). 
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FIG. 9. Linewidth of the fine structure of Mn2+ (mi — — f) as a 
function of the direction of the magnetic field in the (110) plane; 
T=77°K. The theoretical curve is a plot of Eq. (6) with a = 104 
kg/cm2 and /3 = 96 kg/cm2. 

so that Gn and Gn agree with our experimentally ob
served values. 

Probably all three mechanisms proposed contribute 

O 10° 20° 30° 40° 50° * 60* 70« 80* 90* 
* 1 A 

[001] [1111 [110] 
ANGLE B BETWEEN H AND CRYSTAL AXIS > 

FIG. 10. Linewidth of Fe3+ as a function of the direction of the 
magnetic field in the (110) plane; r=77°K. The theoretical curve 
is a plot of Eq. (6) with a =112 kg/cm2 and /3 = 80 kg/cm2. 

to the constants Gn and Gu'- spin-orbit mixing of higher 
excited states, spin-spin mixing of higher excited con
figurations, and overlap and covalency. We do not know, 
however, what their relative importance is and a good 
theoretical account of the origin and magnitude of the 
spin-lattice coefficients is yet wanting. 

This lack of satisfactory agreement between experi
mental and theoretical spin-lattice coefficients manifests 
itself also in the evaluation of direct spin-lattice relaxa
tion times. Blume and Orbach, and also Kondo, in the 
papers referred to above, calculate T\ for Mn2+ in MgO. 
They both obtain expressions for T\ in terms of Gn 
and Gu, which, evaluated with our experimentally de
termined spin-lattice coefficients yield relaxation times 
that roughly agree with preliminary measurements of 
Castle and Feldman15 of the direct process. This seems 
to indicate that even though efforts to calculate Tx 

must fail if the spin-lattice coefficients cannot be 

FIG. 11. Change in width of the electron spin resonance line 
observed for three different directions of the magnetic field; 
T=77°K and *>«9000 Mc/sec. The traces depict the Mn2+ transi
tion, ms—~f —> — | , mi— — | , but all of the fine structure lines 
of Mn2+ or Fe3+ show a similar behavior. 

accounted for theoretically, it is still possible to 
obtain T± in terms of the experimentally obtained spin-
lattice coefficients used as phenomenological parameters. 

III. LINEWIDTHS OF Mn2+ AND Fe3+ IN MgO 

A. The Fine Structure Lines 

a. The Observed Linewidths and Their Presumed Origin 

We have plotted in Figs. 9 and 10 the angular de
pendence of the linewidths of the Mn2+ and Fe3+ 

transitions as observed in the (110) plane at 77°K. The 
outstanding feature of these curves is that the linewidths 
are largest with #||[001] and least with ^ [ l l l ] (see 
also Fig. 11). In the present section we will show that 
this variation in linewidth is due to stresses built into 

15 J. G. Castle and D. Feldman (unpublished). 
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the crystal, and we will account for it quantitatively by 
assuming a random distribution of internal stresses.16 

From Eq. (2) it can be seen that the shifts of the reso
nance lines observed with £r||[001] are proportional to 
Cii only, while the shifts observed with £T||[111] are 
proportional to C44 only. Since for Mn 2 + and Fe3+ 
\Cn\ >Cu\, it seems likely that a random distribution 
of internal stresses in the crystal will give rise to line-
widths that vary with angle as those observed. This sup
position is strongly substantiated by observing the line-
widths along the cubic axes, where the effect of stress is 
most pronounced. From the experimental curves, with 
-fiT|| [001] we note that the ratio of the linewidths: 

AH of the ( ± f —» ± | ) transition 
— the ratio 

AH of the (dbf —> zb^) transition 

of the corresponding shifts under s t ress=2. 

Also with # | | [001], 

AH of a fine structure transition in Fe3 + 

AH of the same fine structure transition in Mn 2 + 

C u in Fe3+ 
= ~ 4 . 

Cn in Mn2+ 

However, these ratios cease to hold as we leave the 
cubic axis and move toward the [111], where stresses 
are less effective and therefore, other broadening 
mechanisms may predominate. This leads us to the 
following assumption; the observed linewidth AH0ba of 
the fine structure is a superposition of two linewidths, 
one is that due to random internal stresses, which we call 
AHs', the other is the intrinsic breadth AHi which the 
line would have in the absence of internal stresses (i.e., 
AHs—fy and which we take to be independent of ms 

and of mi. We assume, therefore, 

AHoha=(AHs*+AH*y<\ (5) 

b. Calculation of Linewidth Due to Stress 

We assume that the total probability of the system 
being in a certain state of stress is given by the product 
of the probabilities of each of the components of the 
stress tensor, namely, 

Ptotal^1 P(X1 2)P(X23)P(X3i)P(Xn)P(X2 2)P(Z3 3) . 
16 Other workers in the field [i.e., J. W. Orton, P. Auzins, J. H. E. 

Griffiths, and J. E. Wertz, Proc. Phys. Soc. (London) 78B, 554 
(1961); J. S. van Wieringen and J. G. Rensen, Proceedings of the 
First International Conference on Paramagnetic Resonance, Jeru
salem, 1962 (Academic Press Inc., New York, 1963), p. 105; N. S. 
Shiren, ibid., p. 482; W. Low and J. T. Suss, Solid State Commun. 
2, 1 (1964)] have considered that a distribution of lattice imper
fections causes the linewidth of paramagnetic ions in MgO. 
However where quantitative estimates were attempted, the, 
anisotropics were not properly taken into account. In any event, 
in the absence of the experimentally determined values of Cn and 
Cu, it is not possible to make any meaningful comparison between 
theory and experiment. 

That is to say, we assume that the probabilities of the 
components of the stress tensor are uncorrelated. As to 
the form of these probabilities, calling Xy the com
ponents of stress along the cubic axes of the system, we 
assume that the probability P{Xi3) of finding a stress 
component Xy along the cubic axes is given by a 
Gaussian curve whose width is taken as a parameter to 
be fitted from the experimental values. We further 
assume that there are only two such parameters, i.e., 
that 

P(Xn) = P(X22) = P(X33) = P(Xu) 

= (2^-1)1/2^-1 e x p ( - 2 X ^ 2 / « 2 ) , 

P(X12) = P(X13) = P(X23) = P(X{j) 

= (27r~1)1/2r1 exp(2Xii
2/i^2) • 

This is substantiated by the fact that the observed line-
widths are identical when H lies along each of the three 
cubic crystal axes: [001], [010], [100]. Also the line-
widths observed with H along the four-body diagonals: 
[111], [111], [111], [111] should be the same (this is 
assumed but unchecked experimentally). With these 
assumptions we are now in a position to evaluate the 
second moment (8H2) of the observed resonance line: < 8 H , >- / / / / / /r^ 

X{exp[-2(X 1 1 2+X 2 2
2 +X 3 3 2 ) /a 2 ]} 

X { e x p [ - 2(X12
2+X23

2+X13)//52]} 

X (2/ira/3ydXndX22dXZsdX12XudX2z. 

Here 8H2 is obtained by squaring Eq. (2). Evaluating, 
we obtain17 

<^ 2 ) m s - , m 8 _ 1 =(2m s _ 1 ) 2 

X i j ( C n i ) 2 ( - ) ( 1 - 3 P ) + C 4 4
2 / 5 2 3 P ) 

with 
P = (sin20 cos20+sin2<p cosV sin40). (6) 

For <p=45°, i.e., for H lying in the (110) plane, this ex
pression shows that 

if # | | [001] , then (5 / / 2 )= (2w s - l ) 2 (27 /8 )a 2 C n
2 ; 

if # | | [111] , then (8H*)=(2tns-iy3(3*Cu*; 

if # | | [110] , then (dH2)=(2ma-l)
2 

X3{(9/32)a2Cn
2+!^2C442}. 

Equation (6) gives the linewidth of any transition for 
any angle (<p,6) of the magnetic field with respect to the 
cubic axes of the crystal, in terms of two parameters a 
and /3 that characterize the distribution of internal 
stresses in the crystal. If both the crystal and the dis
tribution of stresses were isotropic (this is not our case), 

17 Elsa Feher and M. Weger, Bull. Am. Phys. Soc. 7, 613 (1962). 
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the linewidth would be independent of angle and char
acterized by one parameter and one stress coefficient 
only. 

c. Comparison of Experiment with Theory 

In order to compare experiment with theory, we use 
now the symbol AH to denote the width of a line taken 
between the points of maximum slope. Since in our ex
periments we observe the derivative of the line, the 
quantity AH is what we directly measure. To express the 
predicted width in terms of AH we must just note that 
for a Gaussian line shape AH2=4:(8H2). Now, AHS is 
proportional to (2m$—l) [from Eq. (6)], so we can set 

AH f i(±$ -> ± f ) = 2Aff f l(±t -> ± J ) s 2AHS 

throughout. From Eq. (5) then we obtain for the line-
width due to stress and for the intrinsic linewidth, 
respectively: 

Ai7s2 = ! [ A i W ( ± f - > ± f ) 

- A f f o b . 2 ( ± ! - * ± * ) l (8) 
and 

A#,2 = A# o b s
2 (±f -> ± J ) - A # s 2 . (9) 

From the experimentally observed linewidth with 
#11 [001] and Eqs. (7), (8), and (9), we obtain a value 
for a. Similarly, from the experimentally observed 
linewidth with £T||[111] and Eqs. (7), (8), and (9), we 
obtain a value for /?. 

Evaluation of a and /3 for Mn2+. From Eqs. (8) and 
(9) evaluated in the [111] direction, we obtain AHi 
= 0.70 G. This value of AHi coincides with the line-
width of the central ( + J —» — J) line, as expected, since 
the latter is unaffected by stresses to first order. We 
take AHi to be independent of angle as the linewidth of 
the central line is independent of angle to first order. 
With this value of AHi we now obtain AHS in any direc
tion from Eq. (9) using the appropriate observed value 
A#0bS. Comparing the AHS obtained from Eq. (9) with 
that from Eq. (7) if # | | [ H 1 ] , we obtain /5 = 96 kg/cm2. 
Similarly, if # | | [001] we obtain a =104 kg/cm2. This 
is the arithmetic mean of the values of a obtained with 
A#obs(f - » f) and with #0bs(f -> 5). 

With these values of a and fi we have plotted Eq. (6) in 
Fig. 9. I t can be seen that the theoretical fit to the ex
perimental curve is excellent. Whatever lack of agree
ment remains between the theoretical and experimental 
curves is probably due to the fact that the observed lines 
are not truly Gaussian as the theory assumes, but more 
nearly Lorentzian. 

Evaluation of a and p for Fez+. Following a procedure 
analogous to that described for Mn2 + , we evaluate Eqs. 
(8) and (9) in the [111] and obtain A#;=0.84 G. Taking 
this value to be independent of angle, we evaluate AHs 
from Eq. (9) and hence a and 0 from Eq. (7). We ob
tain a =112 kg/cm2 and 0 = 80 kg/cm2. Equation (6) 
with these values of a and fi has been plotted in Fig. 10. 

The agreement with the experimental curve is not as 
good as for Mn2 + . This is not too surprising since the 
value found and used for AHi does not portray the be
havior of the central line at all. We see from Fig. 10 that 
the observed linewidth of the central Fe3+ line shows a 
marked angular dependence. If we assume AHi to be a 
function of angle and to coincide at each point with the 
observed linewidth of the Fe(+ |—> — §) line, then the 
theoretical curve obtained fits the experimental points 
very poorly. 

Until we understand the mechanisms that broaden 
the central Fe3 + line (cf. Sec. IIIB) and how they, in 
turn, affect the fine structure, we cannot expect better 
agreement between theory and experiment than has 
been obtained. 

d. Discussion of the Results 

The error estimated in the determination of the ex
perimental linewidths is ± 4 % which brings the error 
in a and /3 to ± 19%. The values of a and (3 obtained for 
Mn2 + and Fe3 + agree well within this margin. This was 
to be expected since the measurements reported were 
made on Fe3+ and Mn3 + in the same MgO sample. 

We may conclude, then, that there remains no doubt 
that the dominant broadening of the fine structure lines 
of Mn2 + and Fe3 + in MgO is caused by stresses built into 
the crystal. Now that the line-broadening mechanism is 
understood and substantiated by experiment, it is pos
sible to turn the problem around. Thus, the experimen
tally determined linewidths can be used to determine 
quantitatively the state of internal stress of a crystalline 
sample of MgO. 

B. The Central (or +£• -> - J ) Transitions 

The observed ( + § —» —J) transitions are Lorentzian 
in shape. For Mn2 + the observed linewidth is —0.5 G. 
For Fe3+ the observed linewidth ranges approximately 
from 0.5-5 G, depending on temperature and angle. 
This striking behavior of the Fe3 + central line is de
picted in Fig. 12. 

Since these transitions are unaffected to first order by 
externally applied stress we would expect their line-
widths to be equal to what we have termed the intrinsic 
linewidth AHi. The question then arises: What is the 
origin of AHi? The mechanisms that first come to mind 
are static dipolar broadening and broadening due to 
second-order stress effects. But these are too small in 
magnitude and would not give the observed angle and 
temperature dependence. 

We are here confronted, then, with some gross un
explained effects. To name a few: the anisotropic line-
width; the relative magnitude of the linewidths at dif
ferent temperatures; the fact that the broadening be
havior is not the same for Mn2 + and Fe3+ . Much more 
experimental and theoretical work will be necessary to 
understand the processes that occur and give rise to 
these features. 
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FIG. 12. Observed linewidth of the + | —>— \ transition of 
Fe3+ as a function of the direction of the magnetic field in the (110) 
plane, for three different temperatures: r=300°K, r=77°K, 
and r=1.3°K. The unexplained angular dependence remains 
qualitatively the same versus temperature, but quantitatively 
there is a decrease in going from room temperature to liquid-
nitrogen temperature, and a subsequent increase again on going 
further down to liquid-helium temperatures. 

The origin of the linewidths of Mn2+ and Fe3+ in 
MgO, then, has been firmly established in the case of the 
fine structure transitions (as shown in Sec. IIIA), but 
remains a puzzle in the case of the central lines. 

IV. EXPERIMENTAL APPARATUS AND 
TECHNIQUES 

A. The Microwave Spectrometer 

The microwave spectrometer with which the experi
ments were done, operates at X band and conforms 
closely to the description and discussion given by 
Feher18 of systems using superheterodyne detection. 
The system uses magnetic-field modulation and achieves 
frequency stability by locking the klystron frequency to 
that of the external resonant cavity that contains the 
paramagnetic sample; in this fashion, the signals ob
served are proportional to the derivative of the absorp
tion, dx"/dH. The magnetic field is measured using the 
nuclear magnetic resonance of a proton probe which is 
observed simultaneously with the electron spin reso
nance by recording both signals in different channels of 
the same recorder. 
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B. The Uniaxial Stress Assembly or Squeezer 

This part of the apparatus is based on the "per
pendicular squeezer" first used and described by Wilson 
and Feher,19 and it is shown in Fig. 13. It operates by 
applying the external stress to the resonant cavity; the 
stress will then be transmitted to the crystal sample that 
is properly mounted inside the cavity. During the ex
periments, the values of the applied stress were read off 
the scale of the spring; this scale had previously been 
calibrated as described below: 

The absolute magnitude of the stress applied on the 
crystalline sample was determined by means of two 
strain gages (Baldwin-Lima-Hamilton FAB 28-S9) 
cemented (with Eastman Adhesive 910) one on each 
of the broad faces of a typical MgO sample. (By the use 
of two strain gages, rather than just one, we were able 
to monitor gradients in the pressure applied to the 
sample.) The strain gages operate by showing a change 
in their characteristic resistance value that is propor
tional to the pressure they support. These changes are 
~ 1 part in 104 for the pressures we use, and they were 
observed by means of two Wheatstone bridges whose 
outputs were amplified and fed to a double-channel re
corder. The gages were first calibrated by placing known 
weights on the crystal sample and observing the cor
responding changes in the resistances of the gages. Then, 
the sample was mounted in the squeezer and the changes 
in resistances in the gages were noted as a function of 
the stress read off the spring scale. No hysteresis was 
observed. 

The stress experiments were done at 77°K. This 
allowed us to work with a comfortable signal-to-noise 
ratio and also provided a reliable mounting of the crys
tal. In fact, if the system is prestressed before cooling, 
then the cardboard "cushions" will distort to accom
modate the crystal and then freeze in this state. Any 
changes in the state of stress of the system after that 
will result in virtually no change in size of the cavity: 
the resonant frequency will change by only 0.5 Mc/sec 
per 100 kg/cm2. This change in frequency was used as 
an additional monitor of the relative pressures applied 
during the experiment; it is extremely reproducible and 
leads to an error due to randomness in applied pres
sure <1%. 

C. The Samples 

In choosing MgO as the host material in which to 
carry out these experiments, the guiding considerations 
were the following: It possesses a simple lattice struc
ture, amenable to direct interpretation when distorted 
by stress; it incorporates paramagnetic impurities 
easily; it possess good mechanical qualities such as 
lack of buckling under stress, and rigidity (a test sample 
normally mounted in the squeezer reached its breaking 
point somewhat above 2000 kg/cm2). 

18 G. Feher, Bell System Tech. J. 26, 449 (1957). 19 D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961). 
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STRANDED 
" COPPER WIRE 

CAVITY HOLDER-

FIG. 13. Schematic drawing of the mechanical assembly used to 
apply uniaxial stresses. The spring pulls on a copper wire which, 
in turn, pulls on a lever arm that transmits the force to the cavity 
holder and hence to the cavity. The insert shows the details of the 
mounting of the crystal sample inside the microwave cavity. 
The assembly of sample plus quartz spacers is slightly longer 
than the inside dimension of the cavity. The external load is 
applied to the boss and transmitted to the crystal via the hinging 
action of the cavity at the Teflon strip. Not shown is the Styra-
foam that fills the free volume of the cavity to keep the various 
parts in place during assembly. 

The samples used for the stress experiments were ob
tained from Norton Company. They contain varying 
amounts of Mn2+, Fe3+, V2+, Ni2+, Cr3+ in the range of 
1017 to 1018 paramagnetic centers per cc. 

As we explained previously, the samples used in the 
stress experiments had to be cut with edges parallel to 
the [001], [110], and [HO] axes so the external stress 
could be applied along the [110] axis. Since the MgO 
crystals can be cleaved very well in the planes of the 
cubic axes, the procedure used was to cleave a thin slab 
of material and two of its sides and then make the 

necessary cuts with a diamond wheel at 45°. In mounting 
the crystal in the resonant cavity it would be desirable 
to have samples that are long enough to dispense with 
the quartz spacers. In practice, however, the blocks of 
MgO we start out from are not large enough to permit 
this. 
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APPENDIX: ORIGIN AND ESTIMATE OF THE 
EXPERIMENTAL ERRORS IN THE DE

TERMINATION OF THE STRESS 
COEFFICIENTS 

A. Sources of Experimental Errors 

1. Magnitude of the pressures applied. The accuracy 
to which the pressure applied to the crystalline sample 
is known, is ± 3 % . This represents a systematic error 
due to uncertainty in the calibration of the strain 
gages. 

2. Orientation of the sample. Deviations from the ideal 
stressing configuration will occur if the sample is rotated 
around the [001] axis, or the [110] axis, by an angle 
which we shall call y. 

Deviations by rotation around the [001] axis will 
occur if the upper and lower sides of the crystal are not 
cut accurately, or if the inside walls of the cavity are 
slanted. We estimate that these deviations amount to 
less than 0.5°. 

Orientation of the magnetic field along a known di
rection in the (110) plane is achieved by rotating the 
magnet, whose base is provided with an angular scale 
and vernier. If we can "zero" this scale by knowing one 
crystalline direction in the (110) plane, it is possible to 
obtain any other by rotation. We find we can zero the 
scale along the [001] direction to ^0.1° by making use 
of the symmetry of the spectrum of Fe3+ (or Mn2+) 
around the inflection point along the [001] (see 
Fig. 4). ^ 

Misorientation due to rotation around the [110] 
axis can be estimated from the pressure gradients it in
troduces. These gradients manifest themselves in an in
crease under stress of the paramagnetic resonance 
linewidths of the fine structure of Mn2+ and Fe3+ since 
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the linewidth of these transitions is due to random 
stresses built into the crystal; if these lines broaden un
der stress, it is due to an additional distribution of 
stresses being introduced. In a run with a carefully 
mounted sample the stress broadening of a line is 
characteristically 30% of its stress shift. 

What tilt angle will give rise to gradients of this 
magnitude? This can be estimated from the determina
tions made with two strain gages cemented to the 
sample. By playing very delicately with the positioning 
of the sample, it is possible to eliminate the difference 
in reading between both gages. That is, it is possible to 
eliminate the gradients introduced to within the ac
curacy of our measurement. These gradients, however, 
are extremely sensitive to tilts in the sample. Thus, 
deviations from the "straight" position that are not 
visually detectable will introduce gradients ~ 30% from 
face to face of the sample. In terms of the dimensions of 
the MgO sample used in these determinations, we esti
mate the tilt to be 

J the narrowest dimension of the sample 0.2 mm 

length of the sample 20 mm 

This yields a deviation y of less than 1°. 
What is the error in the stress coefficients due to a 

misalignment Y = ± 1 ° around the [110] axis? We can 
estimate this explicitly using Eq. (2). The pressure P 
now lies off the [110] axis by an amount 7, small 
enough so we can set cos 7 = 1 and sin 7 = 7. Its com
ponents in the cubic system, then, are Xu—X^ 
= X 1 2 = i P ; X 3 , = 7 2 ; X 1 3 = X 1 2 = X 2 S = - 2 - 1 / 2 7 P . I f n o w 
# | | [110] , then 

S#3/2 -> 1/2= 3 P { i C n ( l - J 7 2 ) - i C 4 4 } ; 

the error depends quadratically on 7 and is —0.05%. If 
H± [110] and also ±P (i.e., H is off being || [001] by 7), 
then 

5 i?3 /2 - . i /2=-3P{ |C 1 1 ( l -5 /47 2 ) -C447 2 } ; 

the error again depends quadratically on 7 and is 
« 0 . 0 5 % . If, however, H±P and 55° off [001] (i.e., H 
is slightly off being ||[111]), then 

S#3/2 -. i / 2 - | C n P ( ^ 7 + i T 2 ) + C 4 4 P ( l - V 2 7 + i 7 2 ) 

+higher order terms in 7; the error depends now linearly 
on 7 and is — 5 % . 

If possible, therefore, it is best to choose #11 [001] 

and # | | [110] as the two directions along which ob
servations are to be made to determine Cu and C44. 
The error in these constants due to misorientation will 
be of the order 0 .1% and negligible compared to the 
other sources of error. However, in the case of C44 of 
Fe3 + which is determined with # | | [111] (as explained 
in Sec. IIB), the error due to misorientation will be 
±5%. 

3. Determination of the center of a line. The limitations 
to the accuracy with which we can determine the center 
of a line of width AH, are the asymmetries in the line 
shape and the signal to noise of the trace analyzed. 

The usual source of asymmetry is admixture into a 
dx"/dH trace, of some amount of signal proportional to 
dispersion dx'/dH. With the external cavity stabiliza
tion scheme (see Sec. IV), the asymmetry due to ad
mixture of dispersion is at worst 1%. Calling dH the 
discrepancy between the central crossing of the abscissa 
of the asymmetric line and the crossing or true center of 
the perfectly symmetric line, we estimate 8H/AH^ 1%. 

If we now consider the line to be perfectly symmetric 
there is still some error involved in determining the 
central crossing because of noise. In our experiments, 
the ratio signal/noise«100 so that 25H/AH~1%. 

b. Evaluation of the Experimental 
Error in the C# 

1. Random errors. These are the errors in determining 
the shift of a line under stress, and the random errors in 
the increments in pressure. The former are due to the 
determination of the center of the lines from which the 
shifts are obtained, and have been estimated to be 
± 2 % of the shifts measured. In the absence of other 
errors, this alone yields ± 1 % in the C#, and fully 
accounts for the spread of the experimental points in the 
plots of Figs. 6 and 7. 

2. Systematic errors. These are due to uncertainty in 
the total pressure applied and to misorientations. Errors 
due to misorientation only become important in the 
case of C44 of Fe3+ . They were estimated to be ± 5 % and 
must be added to 3 % error in pressure giving a total 
systematic error of 6%. The other three stress coeffi
cients have a total systematic error of 3 % . 

The total errors will be given by the independent addi
tion of the systematic and random errors, yielding 6% 
in C44 for Fe3 + and 3 % in the other three stress 
coefficients. 
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FIG. 11. Change in width of the electron spin resonance line 
observed for three different directions of the magnetic field; 
7" = 77°K and »-«9000 Mc/sec. The traces depict the Mn t+ transi
tion, m,= — $ —• —i, mi=— \, but all of the fine structure lines 
of M n H or Fe*"*" show a similar behavior. 



FIG. 2. Typical electron spin 
resonance spectrum of para
magnetic impurities in MgO, 
observed at 77°K and with 
/7||[111] axis (r ,«10000 Mc/ 
sec). The complexity of the 
spectrum is due mainly to the 
thirty transitions of Mn H . For 
the orientation shown, the 
Mn2+ lines are flanked at both 
ends of the spectrum by the 
Fe3"*" fine structure; at other 
angles, the Fe*+ fine structure 
approaches the central transi
tion near £ = 2.00 and so 
merges into the M2+ spectrum. 
A certain amount of Cr34" is 
almost always present in these 
samples; its resonance signal 
is only partially resolved from 
the central, *»/ = +£ , Mn2+ 

line in the trace shown. 
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FIG. 3. Electron spin resonance signal of the >«/=— i pentad 
of Mn«+, observed with / / | | [ l iO] and P||[110] at 77°K. (a) shows 
and labels the electronic transitions in the absence of external 
stress, (b) shows the displacement of the transitions when P«600 
kg/cm2; the lines m,= — f —»— $ and m,= — §—•— i shift to 
lower fields and the other two lines to higher magnetic fields. Also 
the m, = ± f —* ± 2 transitions shift more than the m, = ± § —» ± j 
lines. 


