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The magnetic form factor of hexagonal cobalt has been determined by measuring the coherent scattering 
of a polarized neutron beam from single-crystal samples. A Fourier inversion of the data indicates a nearly 
spherical distribution of positive moment around each atom, decreasing to a negative level in the space be
tween atoms. A comparison of the results with calculated free-atom form factors shows that the observations 
can be accurately described by a model in which the net spin density is given by the sum of a positive free-
atom 3d distribution and a negative constant. In terms of this model, the total moment per atom is com
posed of the following parts: 3d spin, -f-1.86=b0.07 HB; 3d orbital, +0.13±0.01^5; constant spin, —0.28 
db0.07^s. The form factor showed no dependence on temperature between 78 and 300°K. 

INTRODUCTION 

TH E periodic distribution of magnetic moment in a 
ferromagnet can be determined by precise 

measurements of the magnetic scattering amplitude in 
neutron diffraction experiments. A polarized neutron-
beam technique1 has recently been employed to investi
gate several metallic ferromagnets. Both the radial and 
angular dependence of the spin density have been deter
mined for Coo.92Feo.08,2 FesAl,3 and Fe.4 The present 
work extends these measurements to the case of 
hexagonal cobalt. 

The measurements give the Fourier coefficients in 
the series expansion of the periodic magnetic-moment 
density; hence, density maps can be prepared from the 
data. Also, by comparing the data with calculated form 
factors, some idea of the identity of the electrons 
responsible for the magnetization may be obtained. 
Both of these approaches to the analysis of the data 
will be employed. 

Knowledge of the spatial distribution of the 3d elec
trons is fundamental in understanding the properties 
of the transition metals. Magnetic form-factor measure
ments are one of the best methods of gaining such 
knowledge. However, the relationship between the 
observed magnetic-moment density and the 3d wave 
functions is not as direct as might be desired, and it is 
well to remember the following points when interpreting 
magnetic form factors of ferromagnetic metals. First, 
there is a small orbital contribution to the magnetiza-
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tion, and the measurements give the sum of the spin 
density plus the small orbital moment density. Second, 
the spin density itself is different from the charge 
density since spin-up electrons do not have the same 
radial density as spin-down electrons. This point has 
been emphasized in atomic calculations by Wood and 
Pratt5 and Watson and Freeman.6 Third, when the 
band structure of the transition metals is considered, 
the interpretation in terms of wave functions becomes 
even more complex. Wood7 and Stern8 have shown that 
in Fe a large difference between the radial wave func
tions at the top and bottom of the 3d band is to be 
expected. At the top of the band the wave functions are 
slightly contracted relative to the free-atom case, with 
small amplitude at half the nearest-neighbor distance. 
At the bottom of the band the wave functions are very 
diffuse with a large amplitude at half the nearest-
neighbor distance. The observed spin density is associ
ated with unpaired states near the top of the band plus 
a possible contribution from the "paired'' electrons in 
the remainder of the band, as in the free-atom calcula
tions of Watson and Freeman.6 Fourth, there may be a 
contribution to the spin density from the conduction 
band and a very small contribution from the argon 
core. Despite these complications, magnetic form-factor 
measurements constitute one of the most direct methods 
of studying the distribution of 3d electrons in the 
transition metals. 

EXPERIMENTAL TECHNIQUE 

The experimental arrangement was identical to that 
described by Nathans et at.1 The experiments were 
performed on two polarized neutron diffractometers 
installed at the M I T Nuclear Reactor. These instru
ments utilized the (200) reflection from a saturated 
Coo.92Feo.08 crystal to produce the monochromatic 
polarized beam. The experiment consists of measuring 
the intensity in a Bragg peak when the incident neu
trons are polarized antiparallel, and then parallel, to 
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the sample magnetization. In an ideal experiment, the 
ratio of these two intensity measurements is given by 

* - ( i+ iOV( i - iO» , (l) 
where v=p/b, the ratio of the magnetic to nuclear 
scattering amplitudes. The magnetic scattering ampli
tude is related to the normalized form factor by 

' P<to = to*ftmd)nBf(to, (2) 

where y is the magnetic moment of the neutron in 
nuclear magnetons, nB is the number of Bohr magnetons 
per atom in the sample, and /(k) is the form factor. 
The assumption is made that the magnetic-moment 
distribution may be described in terms of a scalar 
density function, g(t) =p(r)i£ where El is a unit vector 
in the direction of the bulk magnetization. In practice, 
Eq. (1) must be modified to take into account the 
operating characteristics of the instrument and various 
troublesome crystal effects. These corrections are 
briefly discussed in the following paragraphs: A more 
detailed discussion has been published elsewhere.9 

Instrumental corrections. The data must be corrected 
for the effects of imperfect beam polarization, imperfect 
spin reversal, and |X contamination. Limits on the 
magnitude of these corrertions were obtained experi
mentally using an analyzing crystal (v~l) in the test 
position. The uncertainty in these experimental correc
tions constituted the major source of error in the data 
for the inner reflections. 

Secondary extinction. The secondary extinction effect 
was minimized by using thin crystals and small correc
tions were calculated to remove the residual effect. 
These calculations were based on experimental values 
of the mosaic width, determined by observing the shape 
of the crystal reflectivity curve in a double-crystal 
"parallel position" arrangement with a sharp Ge crystal 
in the monochromating position. The calculated extinc
tion corrections were checked experimentally by varying 
the crystal thickness and neutron wavelength. 

Simultaneous reflections. Closely allied to secondary 
extinction are the effects of simultaneous reflections.10 

When the crystal is oriented so that more than one 
Bragg reflection can occur, the intensity in any single 
reflected beam is modified by the presence of the other 
reflections. The crystal geometry was usually restricted 
to pillar shape to minimize the magnitude of this effect. 
In addition, the data were collected as the crystal was 
rotated in azimuth so that the presence of simultaneous 
reflections could be detected. Data showing a rapid 
variation with azimuth were not included in the 
average. 

Magnetic anisotropy. One of the basic experimental 
requirements is that the sample be magnetized to 
saturation in the direction of the neutron polarization. 
It is difficult to satisfy this requirement in the case of 
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hexagonal cobalt because of the high magnetic anisot
ropy. This difficulty was responsible for restricting the 
measurements to those reflections for which the 
deviation from the desired saturation was small. With 
the available field strength, saturation could be attained 
by magnetizing along the c axis or in the basal plane. 
Of the twenty reflections studied, ten experiments were 
performed with the applied field along the c axis and 
seven with the field in the basal plane. In all these cases, 
the beam depolarization was negligible as determined 
by polarization transmission experiments. In two of the 
remaining three cases, the measured polarization trans
mission was combined with a calculation of the angle 
between the applied field and the magnetization, based 
on the known anisotropy constants, to give a small 
correction to the data. The remaining reflection showed 
zero magnetic scattering and all corrections were 
unnecessary. 

Sample purity and preparation. A supply of high-
purity cobalt was obtained through the courtesy of 
F. R. Morral of the Cobalt Information Center, Battelle 
Memorial Institute. This material was in the form of 
polycrystalline cylinders of 99.95% purity.11 Two single 
crystals were prepared from this material. Small 
corrections were applied to the data to remove the effect 
of the major impurities, Ni and Fe. Samples were cut 
either in the shape of pillars (approximately 
0.1X0.2X1.0 cm) or disks (approximately 1.0 cm in 
diameter). The samples were polished on fine (000) 
emery paper to reduce the beam depolarization at the 
surface.9 
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FIG. 1. The magnetic form factor of hexagonal cobalt compared 
with the fee case. The solid line was drawn to emphasize the 
smooth decrease in the hexagonal form factor, indicating almost 
spherical symmetry. 
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Stacking faults. It is well known that hexagonal cobalt 
crystals have a strong tendency toward faulting. These 
faults may be described as an interruption in the normal 
hexagonal layer stacking sequence along the c axis by 
the inclusion of a local fee stacking sequence. The local 
environment of an atom is such a faulted region would 
appear more nearly cubic than hexagonal. Since the 
form factors for the two structures differ very little, as 
shown in Fig. 1, we expect a negligible influence on the 
hexagonal form factor due to faulting. Although no 
experiments were performed to measure the form 
factors in crystals which were known to have different 
degrees of faulting, it is believed that the general repro
ducibility of the results for different crystals lends 
support to the above argument. 

Temperature effects. Implicit in the interpretation of 
the data is the assumption that the outer electrons 
follow the nuclei in their thermal motion; hence the 
Debye-Waller factors for nuclear and magnetic scatter
ing are equal. Menzinger and Paoletti12 have observed 
that there is a change in the polarized neutron results 
for fee cobalt when the temperature is changed from 
300-873 °K. This is taken to be an indication that either 
the spin distribution is temperature-dependent or that 
the nuclear and magnetic Debye-Waller factors are not 
equal. In the present investigation a comparison of 
results on three reflections, the (100), (200), and (300), 
was made at room temperature and 77 °K. No significant 
difference was observed in the effective form factor at 
these two temperatures. To interpret their results, 
Menzinger and Paoletti suggest that the mean-square 
electronic displacement may be smaller than the mean-
square nuclear displacement, (we

2)av=0.37(wn
2)av. The 

present results indicate that (ue
2)&Y= (l±0.15){wn

2)av 
over the temperature range from 77-300°K. The two 
results are not necessarily inconsistent. A more general 
relationship may exist, (ue

2)SiV=G(T)(un2)s,v, where G(T) 
equals unity at low temperatures and decreases as the 
temperature increases. An alternate explanation of the 
results of Menzinger and Paoletti has been advocated 
by Weiss.13 He assumes that the spin-up and spin-down 
charge densities change with temperature in such a way 
that their sum is constant and their difference gives the 
Menzinger and Paoletti result. In any event, the 
position taken here is that at room temperature the 
nuclear and electronic Debye-Waller factors are equal, 
and that the form factor does not change between 300 
and 77°K. 

RESULTS 

To determine the absolute value of the magnetic 
scattering amplitudes, it is necessary to know the 
nuclear coherent scattering amplitude. Two inde
pendent determinations of the nuclear amplitude were 
obtained by measuring neutron-diffraction powder 

12 F. Menzinger and A. Paoletti, Phys. Rev. Letters 10, 290 
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patterns for pure cobalt metal and C03O4. The average 
value for the two experiments was & = 0.250±0.003 
X 10~12 cm, in good agreement with the results of Roth.14 

The quoted error in the value of b was based on counting 
statistics and internal consistency of the two experi
ments. In both experiments there were possible sources 
of systematic error which were difficult to evaluate, but 
which might increase the error in b to ±0.01 X 10~12 cm. 
In calculating the magnetic scattering amplitudes from 
the measured values of p/b, a 1% error in b has been 
assumed. In a later section we will return to this 
question, to see whether a larger error in b would have 
any important consequences. 

The results of the polarized beam experiments are 
summarized in Table I. Using the above value for b, 
the normalized form factor values were obtained from 
Eq. (2) with ^=1.707.15 The values of smd/X were 
calculated using a— 2.5059 and c—4.0695, as deter
mined by Morral.11 

In Fig. 1 the hexagonal form factor is compared with 
the results of Nathans and Paoletti2 on fee Coo.92Feo.os. 
There is a small but significant difference in the two 
sets of data in the high sin0/\ region. It is uncertain to 
what extent the iron, which is present in the cubic case, 
is responsible for this difference. The aspherical effects, 
indicated by departure from a smooth function, are 
more pronounced in the cubic case, and this could be 
responsible for some difference in the two sets of data. 
The radial spin density must be similar in the two cases. 

One important conclusion can be reached immediately 
by inspection of Fig. 1. The smooth decrease of the 
experimental points in the hexagonal case indicates that 
the magnetic moment distribution must be almost 
spherical. 

The rather large number of reflections in the hexa-

TABLE I. The magnetic form factor of hexagonal cobalt. 

hkl sin0/X p/b f 

M W. L. Roth, Bull. Am. Phys. Soc. 8, 213 (1963). 
16 H. P. Myers and W. Sucksmith, Proc. Roy. Soc. (London) 

A207, 427 (1951). 

010 
002 
011 
110 
013 
020 
014 
120 
030 
032 
006 
220 
130 
222 
116 
034 
040 
224 
230 
140 

0.2304 
0.2457 
0.2611 
0.3991 
0.4347 
0.4608 
0.5428 
0.6096 
0.6912 
0.7336 
0.7372 
0.7982 
0.8307 
0.8351 
0.8383 
0.8481 
0.9216 
0.9374 
1.0043 
1.0559 

1.424 ±0.010 
1.335 ±0.014 
1.283 ±0.014 
0.704 ±0.005 
0.591 ±0.005 
0.527 ±0.003 
0.334 ±0.002 
0.223 ±0.002 
0.1297±0.0014 
0.0926±0.0007 
0.0794±0.0010 
0.0519±0.0015 
0.0351±0.0014 
0.0302±0.0009 
0.0306±0.0008 

+0.0297±0.0010 
-0.0030±0.0022 
-f0.0002±0.0015 
-0.0110±0.0020 
-0.0194±0.0014 

0.774 ±0.010 
0.726 ±0.010 
0.697 ±0.011 
0.383 ±0.005 
0.321 ±0.004 
0.286 ±0.004 
0.182 ±0.002 
0.121 ±0.002 
0.0705±0.0011 
0.0503±0.0006 
0.0432±0.0006 
0.0282±0.0008 
0.0191±0.0008 
0.0164±0.0005 
0.0166±0.0005 

-f-0.0161±0.0006 
-0.0016±0.0012 
+0.0001 ±0.0008 
-0.0060±0.0011 
-0.0105±0.0008 

Coo.92Feo.os
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FIG. 2. Projection of magnetic moment density on basal plane. 
Lower right diagram shows projected position of atoms in ortho-
rhombic unit cell. Dashed lines indicate portion of cell shown in 
density map. 

gonal case and the difficulties associated with the 
magnetic anisotropy precluded the collection of suffi
cient data for an accurate three-dimensional inversion. 
However, all reflections of type (hkO) were measured 
out to sin0/X= 1.06. These data have been used to make 
a Fourier projection of the distribution onto the basal 
plane, using the 7090 computer at the M I T Computa
tion Center. 

The projected density is given by 

p=nBA lY, Z Fhk0exp(—ik^o-r), 
h k 

(3) 

where nB is the number of Bohr magnetons per atom, 
A is the area of the unit cell projection and 

Ffiko— Hjfhkoexpiikhko'Tj), (4) 

where the summation goes over the atomic positions 
within the unit cell. For this inversion, the hexagonal 
structure was represented in terms of an orthorhombic 
cell of dimensions (a, V^a, c) with atoms at (0, J, f) , 
(0, f, i ) , ( i , | , i ) , ( | , f, f) . The results are shown in 
Fig. 2. The spherical nature of the distribution is 
apparent from the fact that the first six contour lines 
shown around each site are actually circles within the 
arithmetic round-off error of the computer program. In 
interpreting the outer contour lines, it must be remem
bered that the two atoms are on different levels, 
resulting in the apparent overlap of the distributions. 
The true nearest-neighbor distance is greater than the 
projected distance by a factor of VJ. Of particular 
interest is the negative moment in the regions farthest 
from any atom. The plot indicates that a nearly con
stant negative plateau of projected density is reached 
at sufficient distance from the atoms. The suggested 
picture is that of almost spherical mountains of positive 
moment localized around each atom and partially 
immersed in a sea of negative moment. 

This negative density is more apparent in Fig. 3, 
which is a plot of the profile of the projected density 

along a line parallel to the [100] vector in the hexagonal 
reciprocal lattice. In this figure, point C is the center of 
a structural hole. I t corresponds to position C in the 
familiar ABC stacking nomenclature, and is empty in 
the hexagonal structure. If the region between atoms is 
filled with a nearly uniform negative spin density, then 
the best value for the magnitude of this density is to be 
found at point C in the projection. Also shown in Fig. 3 
is a resolution function obtained by including the same 
number of terms in the series but using a constant form 
factor for each reflection. The resolution function shows 
the diffraction effects which would be obtained in 
attempting to map a lattice of point atoms with data 
from the same set of reflections used in the cobalt 
projection. Any detail in the cobalt spin density on a 
scale smaller than the width of the central maximum 
of the resolution function cannot be resolved. In 
examining Figs. 2 and 3 one should not forget the effects 
of finite resolution and the fact that these figures 
represent the integrated magnetic-moment density 
along the direction of the c axis over a distance z=c. 
For both of these reasons one should not expect to see 
the decrease in 3d spin density near the nuclear sites. 

I t is believed that the regions of negative density do 
not result from experimental errors in the magnetic 
amplitudes nor from the series termination error. One 
indication of the importance of the series termination 
error is in the size of the density oscillations in the 
cobalt projection of Fig. 3. Any diffraction rings which 
are present are on a smaller scale than the indicated 

FIG. 3. Profile of projected density along the indicated line. The 
resolution function has been normalized to equal the cobalt 
projection at fi? = 0. 
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FIG. 4. Conversion of Fourier series for projected density at 
point C and for average projected density over area around 
point C, of size 0.2#X0.2v3a(5 = 0.1). Successive points were 
calculated by increasing the number of terms in the series by one 

negative level. A more convincing case can be made by 
studying the effect of changing the number of terms 
included in the series. The projected density at point C 
is given by 

pc = nBA~l YL E Fhko , (5) 

where Fhko are the orthorhombic structure factors. Let 
us also ask for the average density over a rectangle 
centered on point C of size (25aX2v35a). I t is easily 
shown that this average density is given by 

Pc($)^nBA-l(2>irb)-2 

X Z E (hQ-Wkko sm(2whd) sin(27r&5). (6) 
h k 

The factor {hk)~l makes the convergence of the series 
for the average density much faster than that for the 
point density series.16 

In calculating the average density we are asking a 
less detailed question than in the point density case, 
and can get an accurate answer with less input data. 
The values of pc and pc, with 5 = 0.1, are shown in 
Fig. 4 as a function of the maximum value of sin0/\. 
The indicated errors are based on the experimental 
errors given in Table I. At high values of (sin0/X)max, 
the point density still shows oscillations of appreciable 
magnitude, but pc has converged very nicely. If we take 
the amplitude of the oscillations as an indication of the 
series termination error, then for pc the error is about 
0.04 VB/A2, and for pC the error is about 0.002 HB/A2. 
In the latter case the series-termination error is in
significant compared to the experimental error in the 
density. Even in the point-density case, the series 
definitely appears to be approaching a negative limit. 

16 The author is indebted to W. Marshall for suggesting this 
approach to the series termination problem. 

The limiting value for pc of -0 .085 PLB/A2 corre
sponds to an average magnetic field of —2.4 kg. This is 
the average field in a pillar containing the center of the 
unit cell, of dimensions 0.2aX0.2^aXc. 

What is the origin of this negative magnetic-moment 
density? I t is tempting to assign it to negative-spin 
polarization in the conduction band. However, this 
conclusion cannot be justified without prior knowledge 
of the spin distribution in the 3d band. Unfortunately, 
we have only free-atom calculations available with 
which to make a quantitative comparison. 

FORM-FACTOR ANALYSIS 

In comparing experimental and free-atom form 
factors, we are testing a model in which a periodic 
density function is constructed by superposition of 
atomic functions centered at each atomic site, 

p ' ( r ) = ] D p a ( r - r ; ) . (7) 

Here, pa is a normalized free-atom density function, 
with form factor 

/*)=y"pa (r)eik'rdv. (8) 

The form factor, / ' ( k ) , for the periodic function, p'(r), 
is nonzero only when k satisfies the Bragg condition. 
For this set of scattering vectors, khki, the crystal form 
factor is equal to the free-atom form factor, 
fhkl=f(khkl)-

In constructing the free-atom form factor, contribu
tions to the magnetic moment density from the follow
ing sources were considered: spin polarization of the 
outer electrons, orbital moment of the unquenched 3d 
electrons, and spin polarization of the argon core. Each 
of these sources may be further divided into spherical 
and aspherical parts. We neglect all the aspherical 
contributions except that arising from the 3d spin. The 
total form factor is written as 

2 
~f0S+fc 

2 
(9) 

where the subscripts s, 0, and c refer to spin, orbital and 
core, and the superscripts 5 and a refer to spherical and 
aspherical. The g factor determines the fraction of the 
total moment due to spin polarization and the fraction 
due to unquenched orbital motion. Its value for metallic 
cobalt is 2.17, based on the magnetomechanical experi
ments of Scott.17 

In the case of Fe, Shull and Yamada4 found that the 
experimental results were in good agreement with a 
combination of free-atom 3d and 45 form factors. I t was 
necessary to assume that the 4s polarization was oppo
site in direction to the 3d polarization. We have seen 

17 G. G. Scott, in Proceedings of the International Conference on 
Magnetism and Crystallography, Kyoto, 1961 (Physical Society of 
Japan, 1962). 
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that the Fourier inversion of the cobalt data also shows 
the presence of a diffuse negative polarization. Let us 
therefore build a constant negative-spin polarization 
into our model and at the same time increase the 3d 
spin contribution to maintain the normalization. The 
form factor for a constant density is 5(k), so we rewrite 
Eq. (9) as 

2 

g 
g-2 2 

+ /o*+/c*+-(l+c*)/S3/. (10) 
i g 

Equation (10) describes the model we wish to test 
against the experimental data. While the introduction 
of the 8 function may seem arbitrary, it is really quite 
natural. The Fourier analysis of any periodic function 
in a specified lattice can be resolved into three questions 
concerning the shape, scale and average value of the 
function. The periodic function can be written as 

p(r) = ^ 0 + E ^ y e x p ( - i k r r ) , (11) 
3 

where the index j runs over all the allowed Bragg 
reflections except the (000). The shape of the function 
is determined by the relative size of the Aj, the scale is 
determined by the absolute values of the A3; and the 
average value is determined by Ao. Two functions, pa 

and pb have the same shape if Aja=KAjb, where K is a 
constant defining the relative scale of the two functions. 
In the present analysis, we wish to ask whether the 
shape of the observed periodic spin density is the same 
as that produced by superimposing atomic 3d spin 
densities according to Eq. (7). The proper way to ask 
this question is to test for proportionality between the 
observed and calculated form factors for all reflections 
other than (000). From this point of view, the introduc
tion of the 5 function is merely a convenient way to 
separate the questions of shape and scale from that of 
the average value. Practically speaking, this treatment 
is equivalent to that of Shull and Yamada, because 
their 4? atomic form factor almost goes to zero before 
the first Bragg reflection. 

Aspherical Form Factor 

Let us first examine the experimental data to see if 
there is any evidence that the term in fs

a is nonzero. 
The outer portion of the experimental form factor is 
shown on a greatly enlarged scale in Fig. 5. The only 
striking departure from a smooth curve is the (006) 
point, and the pair of points near / = 0 seem out of line. 
The data shown in Fig. 5 have been analyzed in terms 
of crystalline-field effects, following the treatment of 
Weiss and Freeman.18 In the hexagonal case, the 

18 R. J. Weiss and A. J. Freeman, Phys. Chem. Solids 10, 147 
(1959). 
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FIG. 5. Effect of aspherical spin distribution on high-angle results. 
Solid points should fall on a smooth curve. 

crystalline field splits the 3d electrons into three sub-
states, two doubly degenerate levels with rotational 
properties like xy, x2—y2 and yz, xz and a single level 
like 3z2—r2. The total aspherical form factor is written 
as a linear combination of the aspherical form factors 
for the three substates, 

/ . „ •= (0.4+e)/-(£*)+ (0A+r,)f°(Elg) 
+ (0.2-e-v)f(AUl). (12) 

The parameters e and TJ measure the departure from 
spherical symmetry. When e=^ = 0, the three terms on 
the right of Eq. (12) add to zero. The work of Weiss 
and Freeman18 and Watson and Freeman19 allow the 
calculation of the fa for each substate, based on free-
atom wave functions. It was possible to obtain values 
of e and rj from the experimental data without using 
any calculated spherical form factors. Details of this 
analysis are given in Appendix A. The best values are 
e=—0.006 and rj=0.016. An experimental spherical 
form factor was then obtained by subtracting the small 
aspherical contribution from the experimental data. 
This spherical form factor is shown in Fig. 5 as the 
solid circles. If the analysis is valid, these points should 
lie on a smooth curve. This analysis gives a reasonably 
consistent interpretation in terms of crystal-field effects, 
but the very small departure from spherical symmetry 
implies a small crystalline-field splitting in comparison 
to the 3d bandwidth. 

It is worth noting that the calculated form factors 
are quite sensitive to changes in the population; that is, 
the form factors for the substates are widely different. 
For example, for the (006) reflection fa(E2g) = +0.238, 
fa(Eig) = -0.255, and fa(Alg) = +0.034; while the 
observed f8

a is only —0.006. 
The implications of this analysis may be better 

visualized with the help of Fig. 6. The whole analysis 

19 R. E. Watson and A. J. Freeman, Acta Cryst. 14, 27, 231 
(1961). 
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is based on the assumption that the wave function can 
be separated into a radial and an angular part. Shown 
in Fig. 6 is the 6 dependence of the square of the angular 
part of the wave function for each substate and for the 
sum of the three substates, weighted by the indicated 
population. The largest effect is in the c direction where 
the distribution deviates from the spherical case by 
about 6%. 

Radial Form Factor 

The contribution of the core polarization term of 
Eq. (10) was estimated from unpublished calculations 
of Watson and Freeman for iron. It is quite small, the 
largest contribution for any of the reflections being 
only 0.003. 

Three different calculations by Freeman and Watson 
were considered in estimating the spherical part of the 
spin and orbital contributions of the 3d electrons. Two 
of these were restricted Hartree-Fock calculations for 
an outer electron configuration of 3dHs2 and 3ds4sl. The 
other was a spin polarized Hartree-Fock calculation 
for a 3d74:S2 configuration. The spin form factors for the 
two restricted calculations have been published,19 and 
the remainder of the calculated results were privately 
communicated. By subtracting the orbital, core, and 
aspherical contributions from the experimental form 
factor, and then testing the resulting experimental spin 
form factor for proportionality with the calculated spin 
form factors, it was possible to judge whether the 
calculated-3d spin density had the same shape as the 
observed density distribution. It was quickly apparent 

FIG. 6. Angular dependence of the spin density in hexagonal 
cobalt. Dashed circle is for spherical symmetry, solid figure is for 
\u(0)\*=0.39^u(E29)\*+OAl6\u(Elg)\*+OA90lu(Alg)\*. 
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FIG. 7. Comparison of experimental results for hexagonal cobalt 
with free-atom calculation when a=0.18. The free-atom form 
factor is based on a 3d14s2 spin-polarized Hartree-Fock calculation 
by Watson and Freeman. 

that the spin-polarized 3d74?2 calculation is the best, 
and it is very good indeed. The comparison between the 
calculated and experimental form factors is illustrated 
in Fig. 7. The points are the experimental values minus 
the small aspherical contribution and the solid line is 
given by the first four terms of Eq. (10) with a=0.18. 

The remarkable agreement illustrated in Fig. 7 shows 
that the shape of the periodic spin distribution is 
accurately given by the proposed model. Let us return 
to the question of the effect of uncertainty in the nuclear 
scattering amplitude. The conclusion about the shape 
of the distribution is independent of the nuclear ampli
tude, because this conclusion rests only on the relative 
sizes of the fhu. A large error in b will only introduce an 
uncertainty in the proportionality factor (1+a). The 
most pessimistic view of the error in b is 4%, whereas b 
would need to be 18% lower to avoid introducing the 
negative spin density. In terms of our model, and assign
ing a 4% error in (1+a), the net magnetic moment per 
atom is distributed as follows: 

3d spin +1.86±0.07/is, 
constant spin — 0.28±0.07 JJLB , 
3d orbital +0.13±0.01 pB. 

It is interesting to compare the value of the constant 
polarization introduced in the form-factor analysis with 
the level of the negative density seen in the Fourier 
inversion. A constant spin density of — 0.28/x^/atom 
corresponds to a projected density onto the basal plane 
of — 0.10 HB/A2

y in good agreement with the level 
indicated in Fig. 3. 
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SUMMARY AND DISCUSSION 

The Fourier inversion has shown that the magnetic 
moment in cobalt looks like an almost spherical distri
bution of positive moment localized around each atomic 
site, decreasing to a negative level in the region between 
atoms. The purpose of the form-factor analysis was to 
see if this distribution could be described in terms of 
some more familiar atomic distribution. It was found 
that the spin distribution can be accurately represented 
as the sum of two parts; one looks like a superposition 
of calculated atomic-3d-density functions located at 
each atomic site and the other is a negative constant. 
One should be cautious in ascribing significance to the 
form-factor analysis beyond the fact that it is a con
venient way to describe the observed spin distribution. 
In particular, we cannot claim that this analysis proves 
the existence of a constant negative polarization in the 
conduction band or that the spin density in the 3d band 
is just like that calculated for the free atom. All that 
can be said with certainty is that the sum of the polar
ization in the 3d and conduction bands has the spatial 
dependence described by the model. 

The appearance of a contribution to the spin polariza
tion which is similar in shape to the calculated free-atom 
distribution is not surprising. On the basis of the band 
theory calculations7,8 for Fe, the unpaired spin distribu
tion, which is derived from a group of states near the 
top of the band, is expected to be similar to the calcu
lated free-atom distribution. The diffuse negative 
polarization is more difficult to understand, although 
the theoretical approach of Anderson20 seems promising. 
The contribution of the paired electrons near the bottom 
of the 3d band should also be considered in relation to 
the diffuse negative spin density. The unrestricted 
Hartree-Fock calculations for free atoms5,6 show that 
the paired 3d electrons produce a negative spin density 
at large radii. The combination of this effect and the 
diffuse wave functions near the bottom of the 3d band 
might help in understanding these results. 
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APPENDIX: ASYMMETRY ANALYSIS 

The separation of the experimental form factor into 
spherical and aspherical parts is not quite so straight-

20 P. W. Anderson, Phys. Rev. 124, 41 (1961). 

forward as in the cubic case, where there are a number 
of different pairs of reflections occurring at the same 
value of sin0/X. Such pairs occur in the hexagonal case 
only if the structure is perfectly close packed. Since 
cobalt is almost a perfect close-packed structure, there 
are pairs of reflections at almost the same value of 
sin0/X. Substituting (12) into (10) and grouping the 
spherical parts in a single term, the total form factor is 

f=f+e'U«(E2g)-f«(Alg)l 
+v'U*(Elg)-f«(Al9)l, (Al) 

where e'= (2/g)(l+a)e and rjf= (2/g)(l+a)rj. The dif
ference between the form factors for a pair of reflections 
at nearly the same value of sin#/X is 

dfs /sin0\ 
A / = — — - A )+^Ua(E2o)-fa(Alg)l 

d(sm$/X) \ X / 
+r,'A\Ja@i*)-faUi*)l. (A2) 

Because the experimental data showed such a small 
aspherical contribution, the slope of the spherical part 
could be accurately estimated from the data by drawing 
a smooth curve through the points. In the above 
equation, A/ is the observed form-factor difference 
between two reflections, the first term on the right was 
estimated from the data, and the form factors in the 
last two terms were calculated as outlined below. Thus, 
each such pair of reflections gives a linear equation in 
e' and 77'. Seven pairs of reflections in the high-angle 
region were considered and the best values of e' and r?' 
were selected to satisfy all seven equations simul
taneously. For the selected values of e' and rj', the 
calculated and observed values of Af were in reasonable 
agreement in six of the seven cases. 

Based on the work of Weiss and Freeman,18 the 
following expressions for the coefficients of e' and 77' 
were obtained: 

10 
fa(E2o)-fa(Alg)= - - ( 1 - 3 cos2/3)<y2> 

7 
15 

(3-30 cos2£+35 cos4/3)<i4>, (A3) 
56 

5 
fa(Elg)-f«(Alg)^ ( 1 -3 cosW(y2) 

14 
15 

(3-30cos2/H-35cos4/3)0*4>. (A4) 
28 

0, the angle between the normal to the reflecting planes 
and the c axis, is determined by 

P 
cos20= . (A5) 

Uc/a)2(h2+hk+k2)+P 

The functions 0'2) and (jA) were taken from the work 
of Watson and Freeman,19 based on a restricted Hartree-
Fock calculation for a 3d7 configuration. 


