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I. INTRODUCTION 

IN recent years a great deal of progress has been made 
in understanding the magnetic properties of several 

classes of magnetic insulators on an atomic basis. 
Among experimental tools, paramagnetic resonance has 
been the chief instrument for investigating the indi
vidual magnetic ions (as opposed to the collective be
havior observed in macroscopic studies), such studies 
being made, as a rule, in dilutely doped isomorphic non
magnetic crystals, where the single-ion interactions can 
be observed separately from exchange. 

Yttrium orthoaluminate, a nonmagnetic crystal, is of 
particular interest as a host for paramagnetic ions be
cause of its crystallographic similarity to the important 
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and relatively poorly understood class of magnetic 
materials—the orthoferrites. These are a family of 
mixed oxides of composition ABOz which crystallize 
in a slightly distorted perovskite form.1-8 A is typically 
a trivalent rare earth and B a trivalent transition metal, 
though variations (involving, say, Ca or Ba substitutes) 
have been studied.9-13 The magnetic sites in the ortho-
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The paramagnetic-resonance spectra of Fe3+ and Gd3+ in yttrium orthoaluminate were measured as part 
of an effort directed at understanding the isomorphic orthoferrites. The low symmetry of the ion sites and 
the complicated nature of the spectra necessitated the development of a special method of analysis for ob
taining the relevant spin Hamiltonians. The method consisted of constructing directly from the angular de
pendence of the data "anisotropy surfaces," classical counterparts of the spin Hamiltonian, from which the 
spin Hamiltonian itself could be extracted by the method of operator equivalents. The predominant term in 
both Fe3+ and Gd3+ Hamiltonians was quadratic in the spin components. The fourth-order term of the Fe3+ 

Hamiltonian manifested very nearly cubic symmetry with the biquadratic coefficient a negative, contrary to 
general expectations. The Gd3+ spin Hamiltonian displayed no visible cubicity in the fourth-order terms. The 
"preferred" spin directions as determined in the orthoaluminate were compared with the observed spin 
configurations in the orthoferrites, and with the predictions of crystal-field calculations based on the ion 
position parameters of GdFeOa. Correlation was very poor in both instances. No conclusive explanation of 
the discrepancies is at present available; the most likely explanation involved differences in the local crystal 
distortions between the orthoaluminate and the orthoferrite. 
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FIG. 1. Unit cell 
of the orthorhombic 
orthoferrite, showing 
idealized oxygen and 
iron sites. In actual 
crystal oxygen ions 
are slightly dis
placed from positions 
shown. 

o 
ferrites (and the corresponding sites in yttrium ortho-
aluminate) are distinguished by their low symmetry, 
which makes the theoretical treatment of the paramag
netic spectrum rather difficult. On the other hand, as 
first pointed out by Dzialoshinski,14 it is this low sym
metry which accounts for the manifestation on a macro
scopic scale of the more interesting peculiarities of the 
orthoferrites such as canting, residual magnetism, and 
the spontaneous spin flipping at low temperature from 
one magnetic configuration into a different one.15 

The over-all magnetic behavior of the orthoferrites is 
a composite result of single-ion mechanisms and ex
change interactions.16 The purpose of the present para
magnetic resonance measurements was the separate 
study of the magnetic environment of the single ion 
and in particular the crystalline anisotropy in these 
types of ion sites. The host crystal, yttrium ortho-
aluminate, was chosen in order to conform as closely 
as possible to the orthoferrite structure. Attempts to 
synthesize yttrium orthogalliate which was believed to 
afford a closer correspondence failed, and there is evi
dence that the compound does not exist.4 The magnetic 
ions studied, both having as their ground state an L=0 
(S) state, were Fe3+ substituting for Al3+ and Gd3+ sub
stituting for Y3+. 

The analysis of the spectra presented unusual diffi
culties because of the lack of symmetry. It became evi
dent that the customary procedure of fitting by trial 
and error to a spin Hamiltonian with adjustable param
eters was impracticable in this case. The method which 
was eventually evolved consists in deriving so-called 
"anisotropy surfaces" directly from the data by em
ploying certain sum rules based on a second-order 
perturbation formalism. The surfaces are fitted to po
tential functions which, in turn, yield the spin Hamil
tonian by the method of operator equivalents. The pro-

1 4 1 . Dzialoshinski, Phys. Chem. Solids 4, 241 (1958). 
15 R. M. Bozorth, Phys. Rev. Letters 1, 362 (1958). 
16 D. Treves, Phys. Rev. 125, 1843 (1962). 

cedure, described in Sec. IV, resulted in an accurate and 
detailed determination of the magnetocrystalline anisot
ropy for both Fe3+ and Gd3* ions. 

IL THE CRYSTAL STRUCTURE 

The rare-earth orthoferrites and most of the rare-
earth orthoaluminates, orthogalliates, orthochromites, 
etc., crystallize in an orthorhombically distorted pe-
rovskite structure. These compounds have been studied 
in considerable detail by Geller1-7 and associates in this 
country and by Bertaut8 and associates in France. We 
have unit cell dimensions for a wide range of A-B 
combinations but, at present, detailed information, 
e.g., exact oxygen positions, only for gadolinium 
orthoferrite.6 

These materials belong to the orthorhombic space 
group D2hu—Pbnm. There are four distorted perovskite 
pseudocells in an orthorhombic unit cell, giving four 
distinct iron (aluminum) sites and four distinct rare-
earth sites per unit cell. There are excellent visual pres
entations in the literature1""7 and for our purposes a few 
schematic diagrams will suffice. The orthorhombic unit 
cell is drawn in Fig. 1. The rare-earth ions have been 
omitted from Fig. 1 to simplify the picture. They are 
shown separately in Fig. 2. The iron positions are special 
positions (i,0,0; |,0,J; 0,|,0; 0,J,J), but all oxygen and 
rare-earth ions are displaced by as much as a few tenths 
of an angstrom from the idealized sites of Figs. 1 and 2. 
The iron site has only the inversion symmetry; the rare-
earth site has mirror plane symmetry in the c planes. 

III. EXPERIMENTAL PROCEDURES 

The paramagnetic-resonance data were taken on a 35 
kMc/sec superheterodyne magnetic-resonance spec
trometer. Most of the data were taken at liquid-
nitrogen temperatures, but some data were taken at 
4.2°K, primarily to determine the sign of various 
Hamiltonian parameters. The sample crystals, approxi
mately 1 mm on a side, and containing approximately 
0.5 at.% of the magnetic ion, were mounted in the de-

FIG. 2. Unit cell 
of the orthorhombic 
orthoferrite showing 
idealized positions of 
rare-earth ion sites. 
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sired orientation on a fixed probe and the electromagnet 
rotated to give the spectra in a plane. 

A. The Fe3+ Spectra 

The Fe3+ ion has S=f, and therefore gives rise to 
five transitions (of AMg= 1 type) per ion. Since there 
are four magnetically inequivalent sites the spectrum 
consists of 20 absorptions for a general orientation of 
the external magnetic field H. For H in the principal 
planes of the crystal (e.g., the a-b plane) the number of 
magnetically inequivalent sites is reduced to two, and 
for H along the a, b or c directions, to one. 

The low symmetry (inversion only) of the Fe3+ site 
gives us no a priori information as to the orientation of 
the principal axes of the crystal-field distortions, and 
indeed no guarantee that there will be any simple rela
tionships between the principal axes of the quadratic 
potential and those of the biquadratic (fourth-power) 
potential. We are forced to determine these parameters 
entirely from the data. 

The paramagnetic-resonance absorption spectrum of 
the Fe3+ ion in YA103 was first recorded for H in the 
a-b plane and for H in the b-c plane. These data are 
presented in Figs. 3 and 4. It is not obvious from these 
data that any principal axes of the anisotropy surface 
were intercepted. However, the extremal spacings of the 
outermost transitions at about 25° from the b axis in the 
a-b plane, and the near symmetry in the spacings of a 
group of five lines at this orientation (the five transitions 
identified as belonging to sites 1 and 2 in Fig. 3), sug
gested that this direction was nearly a principal direc-
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FIG. 3. Paramagnetic resonance absorption spectrums 
of Fe3+ in YAIO3, withjE/ in the a-b plane. 

0 30 60. 90 
ANGLE IN DEGREES BETWEEN H AND b AXIS 

FIG. 4. Paramagnetic resonance absorption spectrum 
of Fe3+ in YAIO3, with H in the b-c plane. 

tion of the dominant perturbation. We expected the 
dominant perturbation to be quadratic in the spin com
ponents, as is usually the case for the Fe3+ spectrum. We 
therefore took data with H in a plane containing the 
c axis and the extremum in the a-b plane. These data 
showed that the extremum was located in, or within 
two or three degrees of, the a-b plane. Concluding then 
that this direction, 25° from b in the a-b plane, was a 
principal axis of the quadratic energy tensor, we took 
data with H in the plane perpendicular to this direction 
(henceforth called the "special plane") and obtained the 
spectrum shown in Fig. 5. 

B. The Gd3+ Spectra 

The rare-earth ion site in the orthoferrite is in a mirror 
plane perpendicular to the c axis. Therefore one principal 
axis of the relevant potential will always be the c axis, 
and the other axes are confined to the a-b plane. Further, 
the rare-earth sites are coupled in pairs by an inversion 
through the iron sites, so there are only two magnetically 
inequivalent rare-earth sites for any orientation of H. 
For H in the b-c or a-c planes the four sites are all mag
netically equivalent. The Gd3+ spectrum is therefore 
relatively more simple than the Fe3+ spectrum, even 
though there is a larger number of transitions per site 
(seven transitions of AJ f z =±l ) because of the larger 
spin, S—I, of the Gd3+ ion. 

The paramagnetic-resonance absorption spectrum of 
Gd3+ with H in the a-b plane is plotted in Fig. 6. The 
absorption spectrum with H in the b-c plane is plotted 
in Fig. 7. All necessary information is contained in 
these two spectra. 
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FIG. 5. Paramagnetic resonance absorption spectrum of Fe3+ 

in YA103, with H in special plane (see text). 

IV. METHOD OF ANALYSIS OF THE SPECTRA 

The paramagnetic spectrum is described in terms of a 
spin Hamiltonian of the general form 

3e=a8H-S+3ea(S). (1) 
The first term is the Zeeman energy of interaction with 
an external field. Since both Fe3+ and Gd3+ are in a 
ground S state, the g factor can be assumed isotropic 
(the method described below can, however, be general
ized to treat anisotropic g factors, too). 3Ca represents 
the anisotropy energy and is usually in the form of a 
polynomial in the components of S. 

The fitting of the spin Hamiltonian for a spin § or f 
ion to experimental data for a low-symmetry site pre
sents a formidable problem. The most general form of a 
spin Hamiltonian for Fe3+ ions contains 14 adjustable 
parameters, that for Gd3+, IS. Each guess at these 
parameters leads t o a 6 X 6 o r 8 X 8 matrix respectively, 
for each value and orientation of H. Even with the use 
of perturbation methods the required labor is prohibitive. 

The method to be described below bypasses these 
difficulties by deriving an approximate form for the 
Hamiltonian directly from the resonance data. This is 
accomplished by extensive use of the following well-
known properties of "operator equivalents"17-23: 

17 K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209 (1952). 
18 R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) 

A218, 553 (1953). 
19 B. R. Judd, Proc. Roy. Soc. (London) A227, 552 (1955). 
20 R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) 

A219, 387 (1953). 
21 R. J. Elliott and K. W. H. Stevens, Proc. Phys. Soc. (London) 

A64, 205 (1951); A64, 832 (1951); A65, 370 (1952). 
22 W. Low, Paramagnetic Resonance in Solids (Academic Press 

Inc., New York, I960), especially Chap. II. 
23 J. M. Baker, B. Bleaney, and W. Hayes, Proc. Roy. Soc. 

(London) A247, 141 (1958). 

(1) For a given value of S, one can assign to any 
classical potential (harmonic) function a corresponding 
operator equivalent. Conversely, an operator X0(S) can 
always be written in the form of the operator equivalent 
of a classical counterpart 5C«(a), which is the form that 
3Ca(S) would take in the correspondence limit that 
5—>oo and becomes a classical vector which can be de
scribed entirely by its direction cosines. This classical 
potential 3Ca(a) represents the dependence of the en
ergy of the system upon the orientation of the mag
netization, and appears regularly in ferromagnetic 
problems as an "anisotropy energy surface." 

(2) Linear relations and transformation laws among 
operator equivalents are the same as among the classical 
counterparts. 

Our approach will consist in determining the angular 
dependence of this classical potential 3Ca(«) directly 
from the spectrum. The form of the spin Hamiltonian 
can then be determined by replacing each term in 
the classical potential by its appropriate operator 
equivalent. 

The extraction of 5Ca(a) from the data proceeds by 
utilizing two facts: 

(1) The angular dependence of the diagonal elements 
of the spin Hamiltonian contains all the information re
quired in order to determine the complete form of the 
potential. 

(2) The experimental data can be processed in such a 
way as to obtain a direct determination (to 2nd order 
in perturbation theory) of the diagonal elements of the 
spin Hamiltonian. 

ANGLE IN DEGREES BETWEEN H AND [a] AXIS 

FIG. 6. Paramagnetic resonance absorption spectrum 
of Gd3+ in YA103? with H in the a-b plane. 
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»5p—•—i—'—f-—i—'—«—i—'—«—i—I Consider first the diagonal term 

1 j (M.\Xa\M.) = gP2:(M.\Vi(S)\M.). (4) 
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FIG. 7. Paramagnetic resonance absorption spectrum 
of Gd3+ in YA103, with H in the b-c plane. 

We start by expanding 3Ctt in the form 

3C0(S) = ^ E ^ ( 5 i , 5 a , 5 8 ) , (2) 
1 

where the coordinate axes denoted (1,2,3) are fixed 
with respect to a given site, and where summation is 
over even values of I for 2<1<2S. Each term Vi(S) is a 
polynomial of order I in the spin components Si, £2, S* 
and is the operator equivalent (in the following we shall 
consistently use bars to denote operator equivalents) 
of some classical potential V i(aha<L,az) which is a har
monic polynomial of order / in the components (direc
tion cosines) of the unit vector a. Thus Vi(a) is one 
component of the "classical" 3Ca(a) to which we alluded 
above. Each "anisotropy surface" Vi(oi) can be written 
as some linear combination of the 2/+1 spherical har
monics (or Kubic harmonics) of order I; and each Vi(a) 
therefore contains 2/+1 expansion coefficients which 
are the parameters to be determined from the data. 

The analysis relating the Vi(a) to the data proceeds 
initially along conventional lines. We first introduce a 
new coordinate system (x,y,z) with z along H. Next, we 
quantize the system with respect to the z direction, 
and, regarding 3Ca as a perturbation, write the energies 
of the system correct up to the 2nd-order terms in 3Ca. 

W(M.)=gPHM.+ (M9\Wa\M.) 

+ E J^——^ jr, (3) 

where Ms represents, as usual, the eigenvalues of Se. 
Equation (3) differs slightly from the standard form in 
that H0( = jiv/gj3, where v is the fixed operating fre
quency) has been substituted for H in the denominator 
of the 2nd-order term. It can be shown that this change 
in fact represents a slight improvement in the approxi
mation when we are required to fit data from the usual 
fixed frequency—variable magnetic-field resonance 
experiment. 

To determine this element we first expand the cor
responding "classical" potential at the ion site VI(OL) 
in terms of spherical harmonics defined relative to the 
(x,y,z) system: 

Vi{«)= E 4,*(h)F,~(*,y,*), (5) 

where x, y, z are the components of a in the (x,y,z) 
frame, and h = H / | # | is a unit vector specifying the 
direction of H (and z) in the (1,2,3) coordinate frame. 
The functions Yim are defined by 

Yi±m=Nim(x±iy)m(dm/dzm)Pi(z), 

where Pi is a Legendre polynomial, Nim is a normaliza
tion factor, and m>0. The coefficients Af depend, 
apart from a phase factor, only on the orientation of H. 
The "operator equivalent" of the classical potential 
(5) is given by 

F,(S)= E ^,«(h)F|»(5.,5lf,5.)- (6) 
7»=— I 

The operator equivalents of the Yim have been tabu
lated22'23 for l<6, as have many of the matrix elements 
(MJI Yim(S) IMs), and in particular we know that 

<Jf/|F,«(S)|ilf.>=0, (7) 
if m^O, 

i.e., that we have diagonal elements only if m—0. To 
evaluate the diagonal element (4) we need, then, retain 
only the m=0 term in the summation over m of (6) and 

(Ms 17,(S) \M9)=A i°(h)(Ms IY ,o(S) I Ms) 
= Nl0Al«(h)Pl(M8), (8) 

where Pi(M8) is the operator equivalent of Pi(z), with 
Ms substituted for s.24 We may obtain NioAi°(h) by 
reference to the classical potential Vi(cc) of Eq. (5) for 
the special case a=h . We note that the components of 
h in the (x,y,z) frame are, by definition, (0,0,1) and that 
the Yim(x,y,z) have the property 

Fi"(0,0,l) = 0, 

if w^O. 

We can therefore write 

Vl(h) = Ai<>(h)Yl«(0,0,l) 
= Al°(h)NloPi(l) = Al°(h)Nlo, (9) 

since P*(l)=l for all I. Substituting (9) into (8) we 
obtain 

(M9\?i(S)\M9)=Pi(M9)ViOk). (10) 
24 Pi is related to the commonly used unnormalized operators 

0*° as follows: 02
0=2P2, 04

0=8P4, 06°=16P6 (see Ref. 23). 

^s — 
-5/2-*~3/2>r __ 

r-3/2-*- l /2^ 

L 
-

[c] 

. 1 

—.—. 
^ -1/2-*-1/2 ̂  ~ 

1/2-^3/2^ "j 

. 3/2-^5/2^ J 

5/2—7/2 1 

CM J 

. . , 1 
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FIG. 8. Plot of the potential Vi as a function of angle for Fe3+ 

in YAIO3. The curves can be regarded as cuts of the quadratic 
anisotropy surface at the indicated planes. The angle is measured 
from the b, b, and c axes in the a-b, b-c and special planes, 
respectively. 

The diagonal element of Vi is therefore a product of 
two terms: the first, Pi(Ms), is a function solely of the 
quantum number M8, is fixed for a given \S, Ms) 
state, and is not a function of orientation. The second, 
Vi(h), contains the angular variation of the element, 
and is none other than the classical equivalent of Fz(S). 
The functional form of Vi(h) can therefore be com
pletely determined from the angular dependence of 
(Ms\Vt(S)\Ms). 

In order to extract (Ms\Vi\Ms) from the experi
mental data one must first eliminate the contribution 
from off-diagonal terms. If one reverses the signs of Ms 

and Ms in (3) one finds 

W(-Ms)=-gpHMs+(Ms\3Ca\Ms) 

- E J —J j - , ( ID 
Ma>=Ms g/3Ho(Ms — Ms) 

and hence the sum W(MS)+W(—M8) is to first order 
independent of the off-diagonal terms. In practice, 
since H is varied while v is kept constant, this elimina
tion is accomplished by subtracting from each other 
equations relating to opposite transitions, e.g., (f —> f) 

from (—§ —> — •§). The result, after substituting (4) and 
(10) into (3) and (11) is given by 

2E VMtPl(M8)-Pl(Ms-l)l 
i 

= H{-Ms-*(-Ms+l)} 

-H{(Ms-l)-^Ms}, (12) 

where H{ } represents the magnetic field for which the 
transition indicated inside the brackets will occur at the 
fixed operating frequency v. There is one such equation 
for each value of Ms, 1<MS<S. The number of equa
tions exactly equals the number of different I. Equa
tion (12) can therefore always be solved to give the po
tentials Vi directly in terms of the measured resonance 
fields. Solutions of Eq. (12) for S= f and S = | are given 
below in Eqs. (13) and (18), respectively. 

The complete procedure can now be summarized as 
follows. For a given orientation h, the resonance fields 
are determined for the various transitions. The values 
of these fields are introduced into the solutions of Eq. 
(12) [e.g., Eqs. (13) and (18) below], yielding experi
mental values of Vi(ct) for a = h. Vi(<x) is then plotted 
as a function of magnetic-field orientation and the 
curves are fitted to an analytic expression having the 
form of a harmonic polynomial of order I in <xh «2, a*. 
The method of operator equivalents then allows one 

i i—] i i | i i | i i p n i | i r 

FIG. 9. Plot of the potential Vi as a function of angle for Fe3+ 

in YAIO3. The angle is measured from the b, b, and c axes in the 
a-b, b-c and special cuts, respectively. 
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to determine uniquely the form of the operators V*(S) 
and thus the complete form of the spin Hamiltonian. 

V. THE Fe3+ SPECTRUM 

There are five first-order allowed transitions, namely 
( - * - ! ) , ( -*-* -i), (-§-**),(!->§),and(§->§), 
and we shall denote the corresponding resonance field by 
Hi, H2, Hz, H4, and H$, in the given order. Equation (12) 
can be solved for V2 and F4 , to give 

72(«>= ( l / 8 4 ) [ 5 ( F 1 - F 5 ) + 4 ( i Z 2 - ^ 4 ) ] , (13) 

F4(a) = ( l / 2 1 0 ) [ ( F 1 - ^ 5 ) - 2 ( F 2 - ^ 4 ) ] . (14) 

Empirical values of V2(a) derived from Figs. 3, 4, 
and 5 are plotted in Fig. 8: the theoretical curves repre
sent a surface of the form 

F2(a) = D ( a 3 2 - J ) + £ ( a i 2 ~ a 2
2 ) , 

where D, E and the orientation of the (1,2,3) axes were 
chosen for best fit. The assigned values are D= —1.45 
kOe and E=0.30 kOe. The orientation of the principal 
axes is given by the transformation 

(15) 

where the e* represent unit vectors along the axes speci
fied. The fit is excellent. 

The term in the spin Hamiltonian which is quadratic 
in the spin is thus given (in kilooersted) by 

f 2(S) = - 1 . 4 5 [ ^ 2 - ^ ( 5 + l ) ] + 0 . 3 0 [ 5 1 2 - 5 2
2 ] , 

relative to principal axes given by (15). 
The fourth-order surface F4(a) is represented in Fig. 

9. In general, the theoretical surface would contain 9 
adjustable parameters. However, since the environ
ment of the Fe3 + retains, in spite of some distortions, a 
high degree of octahedral symmetry, it was decided to 
attempt a fit to an octahedral potential of the form 

74(«) = K««4+a,4+«r4-f]. 

A best fit was obtained for a— —350 Oe, and principal 
axes defined by 

"er 
e2 
e8. 

= 
'-0.570 

0.730 
. 0.375 

0.231 0.788^ 
-0.295 0.616 
0.927 0 . 

X 
'e«T 
e& 
^ec> 

0.808 -0 .574 0.122 
0.565 0.819 0.122 

-0 .174 -0 .052 0.985. 
X 

fe«. 
(16) 

The fit, while not perfect, indicates that F 4 is still by and 
large octahedral in character. The term in the Hamil
tonian which is 4th order in the spin, is accordingly, in 
oersteds, 

F 4 ( S ) ^ ~ - ( 3 5 0 / 6 ) [ ^ 4 + S / + S r
4 

- J S ( S + 1 ) ( 3 S 2 + 3 S - 1 ) ] . 

The negative value of a is in contradiction with the 

general conclusions of Watanabe25 and of Geschwind26 

on the sign of a for Fe3 + in octahedral coordination, but 
the experimental evidence seems conclusive in this case. 

I t is interesting to compare the axes of the octahedral 
potential with the radius vectors of the ligating oxygens. 
The orthogonal (rotational) part of the transformation 
relating the oxygen ligand system for a particular Fe3 + 

site to the crystalline frame is given by the matrix 

0.781 -0 .614 0.1221 
0.580 0.796 0.174 

-0.203 -0 .064 0.982 
(17) 

The deviation between the two frames is less than 3°. 
This provides unambiguous site identification in the 
spectrum. 

Because of the magnitude of the anisotropy energy 
the g factor can be determined only to an accuracy of 
about 1.5%. Within these limits there is no indication of 
anisotropy or of deviation from the g value for a free 
electron. 

VI. THE Gd3+ SPECTRUM 

There are seven first-order allowed transitions, namely 
V 2 * 2 / > V 2 * 2 / J V 2 * 2 / J V 2 * 2 / > 

(J—>f), ( f~>f ) , and (f—»!). We denote the cor
responding resonance fields by Hi, H2, H%, HA, H&, H6, 
and H7 in the given order. Equation (12) can be solved 
for V2, Vi, and F 6 to give 

V2(^ = (l/252)l7(Hi-H7)+S(H2-H6)+5(Hz-H5)-], 

74(«) = ( l /4620) [7 (# i - i l7 ) 

- 6 ( # 2 - # 6 ) - 9 ( # 3 - # 5 ) ] , 

F6(«) = ( l /20 7 9 0 ) [ ( # 1 - # 7 ) 

- 4 ( # 2 - # 6 ) + 5 ( # 3 - # 5 ) ] . (18) 

The spectra of Figs. 6 and 7 were processed to yield the 
angular forms of V2, F4 , and F6 . The magnitude of F6 

was below experimental scatter, and its information 
could not be regarded as meaningful. V2 and F 4 are 
represented in Figs. 10 and 11. The gadolinium site has 
reflection symmetry about the (a—b) plane. The crystal
line c axis is therefore a principal axis for V2 as well as 
for V4. V2 is fit to 

where 
F 2 - D ( a c

2 - i ) + E ( a 1
2 - a 2

2 ) , 

£>=100.Oe, 

£ = - 3 5 0 Oe, 

and where the (1,2) axes are obtained from the (a—b) 
axes by a clockwise rotation of 28° about the -\-c 
direction. This set of axes bears no obvious relation
ship to the rather severe local distortions at the rare-
earth site. 

25 H. Watanabe, Progr. Theoret. Phys. (Kyoto) 18, 405 (1957). 
26 S. Geschwind, Phys. Rev. 121, 363 (1961). 
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FIG. 10. Plot of the potential F2 as a function of angle for Gd3+ 

in YAIO3. The angle is measured from the a and c axes in the a-b 
and b-c planes, respectively. 

The most general form for F4 is 

F4(a) = a(35ac
4-30ac

2-f-3) 

+ 2d(aJ+ab4c—6aa
2ab2)+Seaaab(aa2--0Lb2), 

with the operator equivalent 

VA(S) = a[355 c
4- 305(5+ 1)5C

2+ 255c
2 

- 6 5 ( 5 + l ) + 3 5 2 ( 5 + l ) 2 ] 
+5{(5 +

2 +5_ 2 ) [75 c
2 -5(5+l)-5]+H.c .} 

- ^ { ( 5 + 2 - 5 _ 2 ) [ 7 5 c
2 - 5 ( 5 + l ) - 5 ] - H . c . } 

+^(5+
4+5_ 4 ) - ie(5+

4 -5_ 4 ) , 

where 5±=5adbiS,&, and where H.c. represents the 
Hermitian conjugate of the preceding expression. The 
coefficients a, b, c, d, and e are adjustable constants. 

In the a-b plane 

V±(a) = 3a—46 cos2<£—4c sin20+2d cos4<£+2e sin4<£, 

where <j> is the angle between H and the a axis, and in the 
b-c plane 

74=f(3a-46+2(O+i(50-4&--2<Z) 
Xcos20+§(35a+28&+2d) cos40, 

where 0 is the angle between H and the c axis. A best 
fit is obtained for 

a = - 0 . 1 2 O e , 
6= 0.05 Oe, 
c= 0.24 Oe, 
<2= 0.27 Oe, 
e=-0 .30Oe. 

The fit is fair or good, but not excellent. Since VA 
represents a very small contribution to the present spec
trum and is obtained by subtraction of large, nearly 
equal, magnitudes, this is not unexpected. 

One may note that in a site of cubic symmetry one 
would expect b=c=0 and a=\(d2+e2)l/2. It is obvious 
that these relations do not hold even approximately. 
This indicates that the rare-earth site in the ortho-
aluminate is so severely distorted from the cubic pro
totype that no visible cubicity remains. Calculation of 
the crystal-field effects based on a cubic approximation 
would appear invalid. 

A comparison of the gadolinium spin Hamiltonian 
with that of iron, shows that (a) in the former the pre
ponderance of the quadratic term is much more pro
nounced and (b) the cubic symmetry of the fourth-order 
term is no longer apparent. This behavior is consistent 
with the character of the local distortion of the oxygen 
atoms. A substantial component of this distortion con
sists of a rigid rotation of the oxygen octahedron about 
the iron sites. The nonrotational part of the distortion is 
much more severe at the rare-earth site and in fact re
duces the coordination number from 12 in the ideal 
perovskite to an effective coordination number 9.6 

VII. DISCUSSION: RELATION TO CRYSTAL FIELDS 
AND TO THE ORTHOFERRITE PROBLEM 

The state of crystal-field theory is not advanced to the 
point where the magnetic properties of a given ion can 
be completely calculated from the crystal structure. 
This is especially true of 5-state ions, where in order to 
account for the magnetocrystalline anisotropy it is 
necessary to invoke high-order compound mechanisms 
involving joint action of the crystal field and the spin-
orbit interaction. There are nonetheless certain cor
relations we may expect between the crystal field 
present at an ion and the spin Hamiltonian. First, they 

~ i — 1 — I — 1 — 1 — ( — I — i — J — r 

THEORY 
o DATA 

-]—1 1 1 1 — r -

60 90 • 120 
ANGLE IN DEGREES 

FIG. 11, Plot of the potential VA as a function of angle for Gd3+ 

in YAIO3. The angle is measured from the a and c axes in the a-b 
and b-c planes, respectively. 
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must have the same symmetry. Secondly, we may ex
pect the crystal field and the anisotropy surfaces Vi(a) 
of Sec. IV to have certain topological similarities. 

The dominant term in 3Ca(S) for S-state ions is usually 
that quadratic in the spin coordinates. Such a quadratic 
form can always be diagonalized, that is, a coordinate 
frame ei, e2, e3 can be found such that 

F 2 ( S ) = £ I W . 

The Z)M are the principal values of the quadratic form. 
For Fe3+ in YA103 the orientation of the eM is not pre
scribed by symmetry considerations and must be de
termined from the data. This was done in Sec. V and 
the direction cosines of ei, e2, and e3 in the crystal unit 
cell frame are given by the rows of the transformation 
matrix of Eq. (15) of that section. The associated princi
pal values of the Z)M are Dx=0.78, Z)2=0.10, and 
£ 3 =-0 .97kOe . 

Let us now calculate the portion of the electrostatic 
crystal-field potential at the Fe3-H ion which is quadratic 
in the coordinates [and hence corresponds in some way 
to F2(a)]. Unfortunately, we do not have the detailed 
ion position parameters for YA103; we do, however, 
have them for the structurally similar GdFe03.

6 Using 
the ion position parameters for GdFeOa, and including 
the effects of nearest-neighbor oxygens, and of next-
nearest Fe3+ (or Al3+) and Gd3+ (or Y3+) ions, we 
obtain the potential, in unit cell frame coordinates 

Vc,2= 720(-5.17*2+0.13;y2+5.03z2 

-4:.20xy-0A0yz+5.60xz), 

where various constants have been lumped into F20, 
whose exact definition is immaterial since we are inter
ested primarily in the topology of the quadratic form. 
The quadratic form is diagonalized by the coordinate 
transformation 

ef 
e2 
©8. 

= 

r 0.886 
-0.246 
. 0.387 

0.283 
0.953 

-0.128 

-0.334P 
0.149 
0.910. 

'ea 

e& 
.ê  

with the principal values \ i = — 6.45, X2=0.08, and 
X3=5.77. 

Though the principal values show a superficial similar
ity there is essentially no correlation of the spatial 
orientation of the ellipse corresponding to F2(S) that 
corresponding to Ve,2- It seems exceedingly unlikely that 
any combination of physical processes could cause the 
observed F2(S) to result from the above calculated 
crystal field. It is known that F2(S) depends sensitively 
on the local distortions of the host lattice from a cubic 
prototype, and that the distortions in YAIO3 are dif
ferent from those of GdFe03 (based on x-ray unit-cell 
dimensions). Moreover, the substitution of the some
what large Fe3+ for an Al3+ ion must create additional 
distortions. Therefore, it is most probable that the 
crystal-field calculation above fails to correlate with 
the spin-resonance data because inappropriate ion posi
tion parameters have been used in the calculation. In the 
absence of more accurate and appropriate ion position 
parameters there appears to be no profit in pursuing 
further the crystal-field calculations of either Fe8+ 

or Gd3+. 
The correlation with magnetic behavior in the ortho-

ferrites is equally poor. Assuming that the magnetic 
environment of the Fe3+ ion is similar in orthoferrite 
and orthoaluminate one would on the basis of the 
paramagnetic-resonance data, expect the ansiotropy in 
the former to be described by an effective field of ap
proximately 6000 Oe along a direction close to the b axis, 
with a small component in the a direction. In fact, how
ever, the iron spins are aligned in antiferromagnetic 
order along the a axis with slight canting towards the c 
axis. This suggests that the crystal fields operative in 
the two cases are significantly different or that the effec
tive anisotropy in the orthoferrite is strongly exchange-
dependent. In any event, the magnitude of the anisot
ropy interaction corroborates the conclusion of 
Treves15 that one must invoke anisotropic exchange to 
explain the canting of the iron sublattices, since single-
ion anisotropics cannot give effective canting fields large 
enough (^ 105 Oe) to produce the observed magnitude 
of canting. 
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