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Excitation energies for the ls-2p and ls-2s transitions of a hydrogen atom as a substitutional impurity in 
solid argon have been calculated as a function of nearest-neighbor distance. A tight-binding treatment using 
Schmidt-orthogonalized wave functions is used to obtain the first-order shift from the atomic absorption 
energies. Overlap of atomic wave functions is taken into account through terms of second order, and three-
center contributions are evaluated explicitly. The additional changes in the energies due to van der Waals 
interactions are obtained by a variational technique. Excitation energies for the ls~2p and ls-2s transitions 
are found to be 10.6=b0.2 and 12.3rfc0.2 eV, respectively, for a nearest-neighbor distance of 7.0a0. The former 
gives good agreement with recent experimental observations. 

I. INTRODUCTION 

TH E higher excited states of excitons1 and im
purities2 in solid rare-gas crystals seem to be well 

understood in terms of the familiar hydrogenic effective-
mass model. One expects this model to be less useful 
for the lowest exciton states, and indeed experimental 
evidence seems to confirm this suspicion. No wholly 
satisfactory theory yet exists for the description of these 
lowest excitations in the relatively "tightly-bound" 
systems, or for the similar problem of low-lying im
purity states. The present paper presents a Heitler-
London calculation for the lowest excited states of 
atomic hydrogen as a substitutional impurity in solid 
argon. The first-order energy is computed with the help 
of a Schmidt orthogonalization procedure as discussed 
by Gold.8 The van der Waals energy is evaluated using 
a variational technique due to Buckingham.4 Very good 
agreement between the ls-2p excitation energy, com
puted for plausible values of the nearest-neighbor 
separation, and the experimental work of Baldini,5 

strongly supports the validity of the tight-binding 
model as applied to the description of low-lying states 
of impurities and excitons in the crystalline noble gases. 

II. THEORY 

Following Ref. 3, the total electronic wave functions 
for the system, consisting of a single hydrogen atom in 
an argon crystal, in the ground and excited states, 
respectively, are taken to be 

¥o=G^H(rH,<FH) I I UtnitiiyVii)', (la) 
i>*H i 

^=a^H(rH ,cFH) I I Ufiifa^vu). (lb) 

Here ^ H ^ H ^ H ) is the ground-state one-electron func
tion for the hydrogen electron, ipn(rrl)vii) is the 
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ground-state one-electron function for the ith electron 
centered at the Ith. argon nucleus. & is the usual 
antisymmetrization operator. The excited-state hydro
gen function is denoted by ^ H and is given by 

£ H = ( 0 H - E 5 H , ^ K ) C 1 - E ( S H , « ) 2 ] - 1 / 2 . (2) 

In (2) <£H is the free-atom hydrogen wave function for 
the excited state, and the 5 H , I ; are the overlap integrals 

i,zt= / iwpiidr (3) 

Hence, $ H is orthogonal to the fe, and the total wave 
function (lb) is normalized. The essential assumption 
made is that overlap of the ground-state impurity wave 
function with the host wave functions, and also "host-
host" overlaps, make a negligible contribution to the 
excitation energy. Numerical estimates confirm this 
expectation. The assumptions and approximations 
involved in this procedure are more fully discussed in 
Ref. 3. 

In the following, ^ H is always taken to be the atomic 
Is hydrogen function and the \pn, the solutions of the 
atomic Hartree-Fock equations for the ground state of 
the free argon atom.6 

The first-order excitation energy is given (through 
terms of second order in overlap quantities) by3 

AE=E*+Ec+Ex+ET, 
where 

- E „ - ( l / J V ) £ „ - £ „ - ( l / F ) E £ ( - S H . K ) ' £ „ , 

*"S| / I f c l 

(4a) 

(4b) 

X (CH/+ \ )dr 1 - /" | *H 12C«ir, (4c) 
\ | R H — r H | / i J 

6 D . R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A166, 450 (1938). 
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Ex=- rr-(H,/«|g|/*,H) 

-(H/«|g|7*,H)], (4d) 

1.0 

ET= 
2 r 

NI*H i J 

X 
V RH-rH / 

(4e) 

In Eqs. (4) Eat is an atomic excitation energy plus a 
correction term due to overlap. 7V=[1—Yin CSH,I«)2]; 
En and En are, respectively, the excited and ground-
state energies of the hydrogen atom, and En the one-
electron Hartree-Fock eigenvalues for the host electrons. 
Ec is the so-called "Coulomb overlap" energy. CH is the 
classical electrostatic potential in the crystal with the 
hydrogen atom removed, CHI is that with the impurity 
and the Ith host atom gone, and RH and rH are the 
coordinates of the hydrogen nucleus and electron, 
respectively. Ex is the exchange contribution, and the 
matrix elements appearing are the usual exchange 
integrals containing excited or ground-state hydrogen 
functions as dictated by the presence or absence of a 
bar. ET is a "three-center" term, and, like the others, 
is more completely discussed in Ref. 3. 

The dipole-dipole part of the second order, or van 
der Waals, energy between a pair of atoms is given 
(neglecting interatomic exchange and overlap) by4 

Ea~d~ —C12/R126, (5) 
where 

c « = - Z £ {(R2)iHR2h?/l(R2)u+ ( * % ] } , (6) 
9 U 1i 

with 

(R*)Kk=(Kk\r*\Kk)- "Z Z(Kk\x\Kk')* 
k'^k 

+ (Kk\y\Kk'y+(Kk\z\Kky]. (7) 
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FIG. 1. Plot of r times the radial wave function 
for Ar 3s and H 2p. 

In (5) Ru is the internuclear separation of the pair, 
and in the matrix elements of (7) r, x, y, and z retain 
their usual meaning as coordinates measured from the 
nucleus of atom K. This expression is summed over the 
crystal for hydrogen in its ground and excited states to 
obtain the van der Waals contribution to the excitation 
energy in a manner previously described.7 Neglect of 
overlap and exchange in the second-order contributions 
is a minor approximation since the second-order energy 
is already only 5-10% of AE, and overlap and exchange 
effects give at most a 10% change in the second-order 
terms. 

III. RESULTS AND DISCUSSION 

Numerical computations for the ls-2p and ls-2s 
excitation energies of Ar:H have been carried out with 
the aid of Fortran programs8 written for the University 
of Rochester IBM-7074 computer. All two- and three-
center integrals were evaluated numerically using 
LowdhVs alpha-function technique.9 Calculations were 
carried through for nearest-neighbor distances of 6.0, 
7.0, and S.0a0. 

The normal lattice constant of argon at absolute zero 
is 7.1ao. Because of the smallness and relative "softness" 

TABLE I. Hydrogen-argon overlap integrals. Separations are in oo, and the interatomic axis is taken as the z direction. 

H 2 s 

H 2p 

R (flo) 

4.0 
6.0 
7.0 
8.0 

10.0 
12.0 

4.0 
6.0 
7.0 
8.0 

10.0 
12.0 

ArL? 

-0.005 
-0.004 
-0.003 
-0.002 
-0.001 
-0.000 

0.010 
0.006 
0.004 
0.003 
0.001 
0.000 

Ax 2s 

0.041 
0.031 
0.024 
0.017 
0.008 
0.004 

-0.083 
-0.046 
-0.033 
-0.023 
-0.011 
-0.004 

Ar 3s 

-0.210 
-0.173 
-0.137 
-0.104 
-0.054 
-0.026 

0.397 
0.257 
0.194 
0.138 
0.067 
0.036 

Ar 2px 

0.000 
-0.003 
-0.003 
-0.002 
-0.001 
-0.000 

-0.002 
-0.006 
-0.005 
-0.003 
-0.002 
-0.001 

Ar2^z 

0.002 
0.003 
0.002 
0.001 
0.000 
0.000 

Ar 3px 

-0.016 
0.069 
0.073 
0.066 
0.042 
0.023 

0.039 
0.137 
0.126 
0.099 
0.056 
0.030 

Ar 3pz 

-0.150 
-0.091 
-0.062 
-0.038 
-0.015 
-0.005 

N 

0.488 
0.699 
0.832 

. . . 
0.488 
0.733 
0.860 

^ A. Gold, Phys. Chem. Solids 18, 218 (1961). 
8 T . H. Keil, University of Rochester, 1963 (unpublished). 
9 P. Q, Lowdin, Advan. Phys. 5, 1 (1956). 
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FIG. 2. Typical hydrogen-argon overlap integrals. 

of hydrogen in its ground state and because of the close-
packed nature of the lattice, it would be expected that 
the relaxation about the hydrogen atom in its ground 
state will be about the same as the relaxation about a 
vacancy. According to Kanzaki,10 the nearest neighbors 
about a vacancy in solid argon will move inward the 
order of 1% of the lattice constant. Thus 7.0a0 is likely 
a rather good estimate of the nearest-neighbor distance 
for Ar:H, and excitation energies calculated at that 
value should be regarded as those theoretically "pre
dicted." In any event, the final result is relatively 
insensitive to small variations of distance in this region. 

Figure 1 shows a plot of r times the radial wave func
tion for an argon 3s function centered at R=0r and a 
hydrogen 2p function centered at R =7.0. Table I lists 
the values of the overlap integrals for the hydrogen 2p 

TABLE II. Contributions to Ar:H ls-2p excitation energy as a 
function of nearest-neighbor distance. Numbers without explicitly 
quoted error are correct to the number of significant figures given. 

Term 

Eat 
Ec 
Ex 
ET 
Ed d 
E 

Nearest-neighbor distance (a0) 
6.0 

43.3 
-20 .1 
-21.6 

11.5±0.5 eV 
- l . l i O . l e V 
12.0db0.6 eV 

7.0 

21.5 
- 6 . 7 
- 7 . 5 

3.7±0.2 eV 
- 0 . 5 
10.6±0.2 eV 

8.0 

15.0 
- 3 . 6 
- 3 . 3 

1.4=b0.1 eV 
- 0 . 2 

9.4±0.1 eV 

TABLE III. H 2s exciation energy. Contributions to Ar:H ls-2s 
excitation energy as a function of nearest-neighbor distance. 
Numbers without explicitly quoted error are correct to the number 
of significant figures given. 

Term 

Eg,t 
Ec 
Ex 
ET 
Ed d . 
E 

6.0 

51.8 
-21.6 
-19.3 

Nearest-neighbor distance (a0) 

9.9±0.5 eV 
- - 5 . 6 ± 0 . 5 e V 

15.4±1.0 eV 

7.0 

26.8 
- 8 . 2 
- 7 . 7 

3.8±0.2 eV 
2.2±0.2eV 

12.3±0.4 eV 

8.0 

17.7 
- 3 . 7 
- 3 . 6 

1.6±0.1 eV 
1.0=b0.1 eV 

10.9±0.2 eV 

and 2s functions and the argon functions for a variety 
of interatomic distances. It also contains the values of 
N for the Ar:H system at 6.0, 7.0, and S.0a0 to empha
size the degree of nonorthogonality for the excited 
states. Figure 2 gives a plot of the H 2^-Ar 3s and 
H 2^-Ar 3p overlaps. 

Table II details the results of the computation of the 
ls-2p energy at three nearest-neighbor distances. The 
errors quoted for each of the contributions of Eqs. (4) 

6.0 7.0 
NEAREST NEIGHBOR DISTANCE (a0> 

FIG. 3. Hydrogen 2s and 2p excitation energies as a 
function of nearest-neighbor distance. 

are computational errors arising from the expansions 
and numerical integration techniques employed. The 
van der Waals result is taken to give about 10% 
accuracy for the second-order terms. Table III gives 
the same information for the ls-2s energy difference. 
The contents of Tables II and III are summarized in 
Fig. 3, where the total excitation energies are plotted 
as a function of the nearest-neighbor distance. Table 
IV summarizes the results obtained for a nearest-

TABLE IV. Excitation energies and blue shifts for the 
nearest-neighbor distance of 7.0a0. 

Excited state 
2p 2s 

E 
Shift 

10.6±0.2 eV 
0.4±0.2 eV 

12.3±0.4 eV 
2.1±0.4 eV 

°H. Kanzaki, Phys. Chem. Solids 2, 24 (1957). 

neighbor distance of 7.0a0. The shifts of the absorptions 
with respect to those of the free hydrogen atom, at 
10.2 eV, are also included for reference. The value of 
10.6db0.2 eV agrees closely with Baldini's5 observed 
value of 10.56 eV for the first absorption in Ar:H. 
There is little doubt of the identification of this band as 
the hydrogen 1 -̂2^ transition, and hence the present 
tight-binding model seems clearly confirmed as an 
accurate quantitative picture of the absorption process. 


