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on point-charge calculations of A2° in several of host 
lattices were D for Fe3+ is known. Also, the recent work 
of Lyubimov et al.26 has shown that higher multipole 
terms which have been neglected in the point-charge 
calculation can make sizable contributions to the 
electric field gradients in ionic crystals. 

The g value of 2.0019 is slightly less than the free-
ion value and is in excellent agreement with the value 
2.0020 calculated by Wantanabe.6 The positive sign 
of the cubic crystal-field splitting parameter a=24B4

4 

26 V. N. Lyubimov, Yu. N. Venevtsev and E. Yu. Koiranskaya, 
Kristallografiya 7, 949 (1962) [English transl.: Soviet Phys.— 
Cryst. 7, 768 (1963)]. 

INTRODUCTION 

THE ac impurity hopping conduction has been 
studied, both experimentally and theoretically, 

up to the frequencies of the order of 109 cps.1-4 The 
model used was that of phonon-induced hopping of a 
carrier from the neutral majority impurity center to 
the ionized one. Both Coulomb potential of the nearest 
ionized minority center and the external field were 
taken into account to obtain the energy differences for 
these transitions. 

The purpose of the present work is to study another 
mechanism of hopping, namely, the photon-induced 
transitions and their effect on the absorption of electro­
magnetic radiation in w-type Si and Ge at 0°K. We are 
interested in the wavelength region from 100 to 800 /J, 
and from 500 \x to 2.5 cm in Si and Ge, respectively. In 
these wavelength regions at 0°K other absorption 
mechanisms (lattice vibrations, excitations of neutral 
impurity centers, free carriers) are, in principle, absent. 
The occurrence of absorption induced by carriers 

1 M . Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961). 
2 M. Pollak, Phys. Rev. 133, A564 (1964). 
3 S. Golin, Phys. Rev. 132, 178 (1963). 
4 S. Tanaka and H. Y. Fan, Phys. Rev. 132, 1516 (1963). 

is also in agreement with the theoretical predictions of 
Watanabe6 (remembering that O44 changes sign on 
rotating 45° from the susceptibility axis system to the 
distorted cubic axis system). 
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generated by impact ionization of neutral impurities 
can be also avoided for low intensities of radiation. 

Tanaka and Fan in their paper4 proposed the photon-
induced hopping for explanation of a part of their 
experimental results concerning the ac impurity con­
duction in ^-type Si at wavelengths larger than 3 cm. 
Apart from the fact that we are interested in ^-type 
materials, our approach is unapplicable to their case 
because we consider the electron-phonon interaction 
to be weak. This is not true, however, if the relaxation 
energy of the lattice deformed by interaction with the 
localized carrier is larger than the energy difference ha> 
for transition, which is the case in ^-type Si at wave­
lengths larger than about 2 mm.6,8a 

In the following we shall obtain first the electron 
states in the two-center Hamiltonian in a nondeformed 
crystal lattice with an additional electrostatic field. 
Then we obtain the transition rate for photon-induced 

6 J. Mycielski, Phys. Rev. 125, 1975 (1962). 
5a Note added in proof. Recently the idea of Tanaka and Fan 

was developed by S. Tanaka, M. Kobayashi, E. Hanamura, and 
K. Uchinokura [Phys. Rev. 134, A256 (1964)] in a way similar 
to ours. They do not investigate, however, our case kT<Knco and 
they use several approximations absent in our treatment. They 
compare their results with the experimental data for Si at 9 Gc/sec 
and that seems to be unjustified (see above); 
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hopping, taking into account the weak electron-phonon 
interaction. At last, the formula for the absorption 
coefficient is derived and numerical results are pre­
sented. The range of validity of our results is also 
discussed. 

Unfortunately, as far as we know, no experimental 
data complete enough are available (although the 
infrared transmission of n-Ge at helium temperatures 
was measured up to wavelength of 1.4 mm6), and thus 
our results cannot be compared with experiment at the 
present time. 

ELECTRON STATES IN THE TWO-CENTER 
HAMILTONIAN 

Because of the valley-orbit splitting, the ground state 
of an isolated shallow donor in silicon and germanium 
is a singlet.7 The valley-orbit splitting in silicon7 is 
1.2X10-2 eV, 1.5X10-2 eV, and 2.2X10~2 eV for Sb, P, 
and As donors, respectively. For germanium, we have 
5.7X10-4 eV, 2.9X10-3 eV, and 4.15X10"3 eV for Sb, 
P, and As donors, respectively.8-10 Because of the rather 
large values of this splitting, we can take into account 
in our wavelength regions only the ground singlet state 
of the donor, at least for P and As impurities. The wave 
function of the electron on this state is11 

Here n denotes the number of conduction band minima 
(6 and 4 for Si and Ge, respectively), <£P(r) is the Bloch 
function at the pth. minimum, and Fp(r) is the effective-
mass envelope function for the >̂th minimum. The 
functions Fp(r) can, to a good approximation, be repre­
sented by the functional form 

Fp(r)= (TT^)-1 /2 exp{-l(xp
2+yp

2)/a2+zp
2/b22112}. 

The constant a is the transverse orbit radius while b is 
the longitudinal radius of the orbit. The coordinates 
ocPy yPy zp are taken in a coordinates system in which 
the' z axis is parallel to the axis containing the p\h 
minimum. 

Now we are interested in obtaining the two lowest 
electron states in the two-center Hamiltonian in a 
nondeformed crystal lattice. The total Hamiltonian 
has the form 

H=T+V-e2/era-<?/erb. (1) 

Here V denotes the potential due mainly to the neg­
atively charged acceptor nearest to the donors a and b, 
T denotes the Hamiltonian for an electron in an ideal 

6 A. Hadni, J. Claudel, E. Decamps, X. Gerbaux, and P. 
Strimer, Compt. Rend. 255, 1595 (1962). 

7 D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961). 
8H. Fritzsche, Phys. Rev. 120, 1120 (1960). 
9 D. K. Wilson and G. Feher, Bull. Am. Phys. Soc. 5, 60 (1960); 

G. Weinreich and H. G. White, ibid. 5, 60 (1960). 
10 H. Fritzsche, Phys. Rev. 115, 336 (1959). 
11W. Kohn, in Solid-State Physics, edited by F. Seitz and D. 

Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 257. 

crystal, e is the static dielectric constant and ra and 
tb are 

ra=r—Ra , r&=r—R&, 

where Ra and R& are the positions of the two donor 
ions. Without reducing the generality we can assume 
that 

A=<«(rf l)|7|«(rc)>-<«(r6)|7|w(rfc)>^0. 

Following the variational procedure applied to this 
problem by Miller and Abrahams,12 we obtain the two 
lowest orthonormal states of the Hamiltonian (1) in 
the form 

^a(r) = ca
+u(ra)+cb

+u(rb), (2) 

^b(r) = ca-u(ra)+cb-u(n), (3) 

where ca
± and c^ are 

ca±= s±[ l+ (z^)2+2Sz^y-112, 

Cb±=[l+(3±)2+2Ss±]-1/2. 
Here 

*±= (A/2W)ll±(l+4:WS/A+4:W2/A2y^-

The following abbreviations were used: 

W=WR-§SA+Z, (4) 

WR=L-SJ, 

L=—(u (r«) | e2/era | u (r b)), 

/ = - {u(ta) | e
2/erb\ u(ta)), 

S=(u(ra)\u(rb)), 

Z=<«(ra)|7|«(r6)>-i5C<«(ra)|7|«(ra)> 
+ <«(r6)|7|«i(r6)>]. 

WR is the resonance energy; L, S, and Z will be real 
in our materials at least if both the donor ions have the 
positions in the elementary cells of the crystal. Of 
same course, A and / are also real. 

The function ^a(r) has a larger amplitude near the 
ion a and the function $b(r) near the ion b. The higher 
energy corresponds to the state ^ 0 0 ; the energy differ­
ence between the two states is 

AE= (l-52)-1(A2+4TF2+4TF5A)1/2. (5) 

We shall not assume that Â>> | TF^ | as was done by 
Miller and Abrahams12 in the theory of dc impurity 
hopping conduction. 

Now we shall investigate the photon-induced tran­
sitions between the states fo(r) anc* WO? i-e., hopping 
of the electron from the donor b to the donor a. 

TRANSITION RATE 

We assume that the dielectric constant appropriate 
for our wavelength regions is equal to the static di­
electric constant e. We take into account the weak 
interaction of electrons with longitudinal acoustic 
phonons. A single deformation potential constant and a 

12 A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). 
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Debye spectrum of phonons will be assumed. The 
transition rate at 0°K from an arbitrary electron bound 
state b to the electron bound state a with absorption 
of a photon is according to the formalism developed for 
weak electfon-phonon interaction by Lax, Burstein, 
and Gummel13'14 

IF 0 &=(47rVM 2€ 1 / 2 )exp(~ iS) | (a | r |^)n | 2 / ( -coo) . (6) 

We neglect here the processes consisting of simul­
taneous absorption of a photon and emission of pho­
nons ; these will be investigated in another paper. 

We denote by n the unit vector parallel to the electric 
vector of radiation and by 1(a)) the intensity of the 
radiation per unit interval of the angular frequency co. 
At 0°K, 

= /(«')<&', (7) 

where / (a/) is the distribution function for the lattice 
relaxation phonons; for o / > 0 : 

/ (« ' ) = (EiV/16ir»foW) f\(a\exp(ua'Qt/v) |a) 

-(b\exp(io>'&r/v)\b)\2dtt. 

Ei denotes the deformation potential constant, v is the 
sound Velocity and d is the density of the crystal. Q is 
a unit vector parallel to the wave vector of the phonon; 
we perform the integration over all directions of this 
vector. 

coo is given by 

- /ko0= AE+ (Ei2 /16irW) 

J j drr2 fdtiZ | (b | exp (fTQr) | b) \2 

- |<a | exp (* rOr ) | a> |* ] , (8) 

X 

where AE is a positive electronic energy difference 
between the states a and b (in nondeformed crystal 
lattice). The second term in (8) represents the difference 
of the lattice relaxation energies in the two electronic 
states. 

Let us now identify the state a with the state ^a(r) 
and the state b with the state ^&(r). If 

(9) 5 < 0 . 0 3 , 

<a'R/v>3, 

where R=R&—Ra, we obtain 

(10) 

/(«')£= (Efw'/lTfiMd) (A2+ 4SW2) (A2+ 4W2)~l 

XU(w'/v). (11) 
Here 

tf(r)=(4x)- -/l<« (r)\exp(iT&r)\u(r))\2<Kl. 

In the derivation of (11) we neglected, because of (10), 
the expression (u(r)\exp(ia)f&t/v)\u(T— R)) in com­
parison with S(u(i)\exp(io)'flT/v)\u(i)) and the con­
tribution from the oscillating term proportional to 
cos(c/QR/fl). From (7) and (11) we obtain 

0 = (A2+4SW2) (A2+4TF2)-10o 

where by definition 

0o= {E^/l^hvH) I U(r)rdr. 
Jo 

/ (a/) in the form (11) was used here for all o / > 0 
because in view of (9) the contribution to (7) from o>"s 
nonfulfilling (10) is negligible. 

Inserting (2) and (3) into (8) and using (9) we can 
see that the second term in (8) is at most of the order 
of S E L R where EUR is the relaxation energy of the 
lattice deformed by interaction with an electron 
localized on an isolated donor5 

£ L R= (Exyw W) j U(T)THT. 

13 M. Lax and E. Burstein, Phys. Rev. 100, 592 (1955). 
W H, Gummel and M. Lax, Ann. Phys. (N, Y.) 2, 28 (1957). 

As mentioned above, we can use the formalism of Lax, 
Burstein, and Gummel (i.e., treat the electron-phonon 
interaction as a weak one) if the energy of lattice 
relaxation is small compared with the electronic energy 
difference between the two states. Accordingly, we shall 
assume 

AE>2ELn. (12) 

Hence, from (12), (9), and (5) 

a<£*-AE/h, AE9*(A2+W2y\ 

Using (2), (3), and (9) we have 

| (a | r 16)n |2 = (Rn)2 (W+^SA)2 (A2+4TF2)"1. 

Summarizing, under the assumptions (9) and (12) the 
hopping rate is 

Wab= (^2e2/ch2^2) exp [ -£ 0 (A 2 +4SW 2 ) 

X (A 2 +4^ 2 ) - 1 ] (PF+J6 , A) 2 (A 2 +4^ 2 ) - 1 

X (Rn)2/[(A2+4TF2)1/2/^]. (13) 

ABSORPTION COEFFICIENT 

We shall investigate the case of small compensation 

K<0.2. (14) 

Only the donors nearest to the compensating ionized 
acceptors are ionized at 0°K. Let us investigate at the 
moment the electron jumps to an ionized donor situated 
(at the point R0) in the vicinity of a given compen­
sating center. These jumps occur from the neutral 
donors (we denote the position of a neutral donor by 
R»). 

Because of (14) we can assume that all donors except 
the one nearest to our acceptor are neutral and that 
the potential V is the Coulomb potential of this ionized 
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acceptor. We shall therefore neglect the dipole potentials 
of other. ionized acceptor-ionized donor pairs present 
in the crystal. This assumption will be discussed later. 

If the origin of the spatial coordinates is at the 
acceptor ion, the probability that the donor nearest to 
this ion is in the element of volume dva and that there 
is a neutral donor in the element dvb(Rb>Ra) is equal 
to N2 exp(—4tTNRza/3)dvadvb, N being the concentration 
of donors. 

Multiplying by Wab, integrating over Ra, Rb(Rb>Ra) 
and multiplying by the concentration KN of acceptors 
we obtain the total number of jumps per unit of time 
and volume. Using /(co) in the form of 5 function and 
multiplying by the energy hco of photons we have the 
following formula for the absorption coefficient: 

a= k*KNz fdva e x p ( - 4 x 7 ^ / 3 ) J dvbWab. (15) 
J J Rb>Ra 

Wab is given by the formula (13) where 

i[(A*+4:W2y!2/ti] 

is replaced by 8[co— (A2+4flF)1/2//T|. The assumption 
(12) can now be rewritten as 

hco>2ELn. (16) 

If /50 is not much larger than unit, we can, using (9), 
replace in the exponent in (13) A2+4SW2 by A2. 
Assuming that in the region of the two donors a and b 
the field of the acceptor is homogeneous enough we can 
neglect Z in (4). This assumption will be discussed later. 
It enables us also to put 

AQ=±(e2/e)(l/Ra-l/Rb). 

Now we make the following approximation. We 
replace in formula (15) WR2 and S2 by their values 
(WV)av and (S2)av averaged over all directions of the 
vector R. According to Miller and Abrahams,12 for 
n-type Si and Ge we obtain 

<52)av= (Tl'2/lSn^2)(R/a)^2 exp(-2R/a), 

<WV>.v= (2TTl'2ei/9e2a2n7i
1i2)(R/a)^2 exp(-2R/o). 

Here 

„=(a/6)*-l, 

These formulas are correct, if (9) in the form 

(S2)^2<0.03 (17) 
holds. Using (17), changing the variables in (15) and 
integrating over four of them we obtain finally (R and 
Ra have the same meaning as before) 

a^(327^el'2KNz/?>ch) 

X f RKWR
2U(hW~^WR*U)~112 

J Rico) 

Xexp[-/50(^co2-4(TFi2
2)av)/^V] 

Xl£RAiM-4(WJ)„)y*yR, (18) 

with 

Ra*(l-*RaE/#)~* 

Xexp(-47rA^a3 /3)^ a , (19) 
where 

Rai~ e2/eE+±R- (e*/'ftf+W2, 
R*t=(*R/tE+\E*yi*-\R. 

R(o>) is larger of the two solutions of the equation 

2«WV>.v)1/2=*« 

if these solutions exist, or equals a if these solutions do 
not exist or when the larger of them is smaller than a. 

The assumption (17) was essential for the derivation 
of the formula (18). Therefore, we can use this formula, 
if the contribution from the range of R in which (17) 
is not fulfilled does not play the main role in the 
absorption. 

In formula (18) we neglected the contribution from 
the pairs for which the distance between donors is 
smaller than a. We are in the position to do so because, 
on the one hand, the assumption (17) is not fulfilled 
for such R& and, on the other hand, such pairs do not 
really give any contribution to the absorption. The 
reason for this is that the energy difference between the 
two lowest electron states in the case R<a will be of 
the order of the ionization energy of an isolated donor.15 

Of course we are not interested in the case of such high 
photon energies. 

We shall now discuss the assumption used before 
that the field of the acceptor is homogeneous so that 
we can neglect Z in (4). This, as well as the whole 
procedure of obtaining the two-center electronic states, 
cannot be justified in the case of jumps "through" the 
acceptor (Z is then of the order of WR). One can show 
that in (19) the values of Ra close to Rai corresponds 
to such jumps. Because (WR2)&V decreases rapidly with 
increasing R, the main contribution to the absorption 
is given by R's not far from R(co). For such R's the value 
of Rai is not higher than about %R(w). Therefore, if the 
function Ra* exp(—4:7rNRa

z/3) has the maximum at 
Ra>%R(a)) we can suppose that the contribution from 
the jumps "through" the acceptor can be neglected. 
There from the restriction 

N<S/TTR*(O>). (20) 

Now we show that for the most important region of R's, 
i.e., these not far from R(co), the main contribution is 
given by Ra< (TTN)~~IIZ, (TN)~1IZ being the position of 
the maximum of the function Ra

A exp(—4zwNRa
z/3)-

Under the condition (20) we have Rai<(TN)-lls. If 
also RatS (irN)~-llz, our supposition is obviously true. 
Therefore, we shall study the case Ra2^>(TN)~~1/s. 

Using the facts that, on the one hand, we are inter­
ested in the case of photon energies much smaller than 
the ionization energy of the donor and, on the other 

15 D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. 
Roy. Soc. London A246, 215 (1953). 
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FIG. 1. The dependence of ehco/e2R(ca) [see assumption (21)] 
on the wavelength of radiation for w-Si and »-Ge. 

hand, <WV)av~<S2>av(e
2/eR)2 and (S2) av is small, one 

can prove that &coe£(co)/e2«l. This yields, if R^R(o)) 
and E^fiw, eERa2/e2<^l. Since in our integrations 
E^^co, we can see that in the case Ra2^>(TN)~llz the 
derivative of the integrand in (19) is negative at the 
point Ra2> Thus again the main contribution is given 
by Ra< (nN)-1*. 

Using now (14) and (20) we obtain that Ra's and R's 
giving the main contribution to the absorption fulfill 
even in the case of K close to 0.2 the inequalities 
Ra<i/2(KNyi* and R<\/{KN)V\ Thus we can say 
that the hopping takes place predominantly between 
the donors within the volume including one acceptor. 
Jumps across two such volumes are less frequent. 

The first assumption used in deriving the formula for 
absorption coefficient was that we can neglect the 
dipole potentials of ionized acceptor-ionized donor 
pairs. The dipole fields cancel themselves partially; 
moreover dipoles have various positions and orien­
tations with respect to the two-donor pair. Let us now 
take on the same straight line one two-donor and one 
ionized acceptor-ionized donor pair, the distance be­
tween these pairs being (KN)~llz (about the mean 
distance between acceptors). Let the distance between 
the two donors be R(o)) and the dipole moment of the 
ionized acceptor-ionized donor pair be equal to the 
mean value of the dipole moment of such pairs in the 
crystal. If even in this situation the difference of the 
dipole potential between the two donors is smaller than 
fko, i.e., if 

K<£<tio)/e>R(a>)]N~*l*, (21) 

we are in the position to neglect the dipole potentials 
in the derivation of a. 

TABLE I. Values of the material constants. 

Material e 

w-Si 11.7 
w-Ge 16.0 

a 
(A) v 0o 

22.1 4.2 0.43 
70.8 18.8 0.059 

-ELE, 
(eV) 

8.0X10"4 

2.5X10"5 

Summarizing, our formula for the absorption co­
efficient is valid, if the assumptions (16), (20), (14), 
and (21) are fulfilled and the main contribution to (18) 
is given by Rys> fulfilling (17). The assumption T=0oK 
should be interpreted as kT<^fko. fio) must be much 
smaller than the ionization energy of a donor and the 
intensity of radiation must be small enough to avoid 
the "saturation effect," i.e., a serious change of electron 
states occupation. 

NUMERICAL RESULTS 

In the Table I we give the values of the material 
constants used by us. The values of /30 and ELR were 
taken from the paper by Myszkowski and Gomulka.16 

In Fig. 1 we give the dependence of the expression 
6fe/e2i?(co) from the assumption (21) on the wavelength 
X of radiation for both materials. One can see that, for 
example, if N is 1018 cm-3 and 3X1016 cm~3 in Si and 
Ge, respectively, then for \<700 \x in Si and X<3 mm 
in Ge the maximal value of K fulfilling our assumptions 

to* 

10* 

SitN-20*IO*cm3 

SiN~a2*IO'rc/n-* 

'si,N*ZO*IO'rcnf3 

1 

/ 

V 

Ge,N=$0*IO*cnr3 

Ge,N*l9*IO*cm-$ 

Gefl*6X>xtOl5ari-3 

A (cm) 

FIG. 2. The dependence of the absorption coefficient per unit 
compensation on the wavelength of radiation for w-Si and w-Ge 
at various concentrations of donors. 

16 A. Myszkowski and S. G6mulka, Phys. Rev. 134, A1102 
(1964). 
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is 0.2 [given by the assumption (14)]. For \=800 /x 
and X=2.5 cm the maximal value of K is 0.16 and 
0.014 in Si and Ge, respectively. 

The numerical computations of the ratio a/K given 
by the formula (18) were performed for the concen­
trations of donors 2.0X1017, 6.2X1017, 2.0X1018 cm"-3 

in Si and 6.0X1016, 1.9X1016, 6.0X1016 cm"3 in Ge. At 
the two lower concentrations in each material we are 
interested in tiw smaller than one-fourth of the ioni­
zation energy of a donor. We shall thus avoid the 
influence of the excited states of donors. At highest 
concentrations we are in the "intermediate region" of 
the impurity conduction. Apart from the problem of the 
conduction mechanism in this region the ground states 
of donors do not form yet the impurity band and our 
results should be valid if fuo is smaller than, say, one 
half of the concentration-dependent activation energy 
€2 of conduction. We take e2 about 8X10-3 eV in Si 
(rather arbitrarily) and about 2X10-3 eV in Ge.17 At 
still higher concentrations the ground states of donors 
form the impurity band and our model cannot be used. 
The long-wavelength limitations in our computations 
were given by the assumption (16) except of the highest 

17 H. Fritzsche, Phys. Chem. Solids 6, 69 (1958). 

I. INTRODUCTION 

THE thermal behavior of the widths and positions 
of sharp optical transitions of (3d) ions in solids 

has recently been actively investigated by a number of 
authors1^10 and successfully interpreted in terms of 

f This work was supported by the National Aeronautics and 
Space Administration, under Grant NsG 331. 

* National Science Foundation Predoctoral Fellow 1963-64. 
1 K. S. Gibson, Phys. Rev. 8, 38 (1916). 
2 H. K. Paetzold, Z. Physik 129, 129 (1951). 
3 A. L. Schawlow, in Advances of Quantum Electronics, edited by 

J. R. Singer (Columbia University Press, New York, 1962), p. 50; 
Proceedings of the Third International Conference on Quantum 
Electronics, 1963 (to be published). 

concentration in Ge where the restriction (20) is 
stronger. 

In the Fig. 2 we give the computed ratio a/K as a 
function of the wavelength of radiation for the men­
tioned concentrations of donors in Si and Ge. The 
maximal values of the absorption coefficient in our 
ranges of wavelength, concentration, and compensation 
are 190 cm"1 in Si (iV=2.0Xl018 cm"3, X = 0.2, X=310 
/i) and 50 cm"1 in Ge (iV=6.0X1016 cm"3, £=0.2 , 
X=1.3X10-1cm). 

At wavelengths larger than about 500 \x and 3X10"1 

cm in Si and Ge, respectively, the assumption (17) is 
fulfilled in the whole range of integration over R in (18). 
For X smaller than about 450 /z in Si and 2.5 X10 -1 cm 
in Ge the contribution from R's nonfulfilling (17) is 
about one-half of the total absorption coefficient. Thus, 
for such wavelengths, our results are rather semi­
quantitative. 
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Phonon-ion interactions have recently been shown to satisfactorily explain the temperature dependence of 
widths and positions of the R lines of some 3d ions in crystals. These interactions give rise to phonon re­
laxation processes and are investigated here as the mechanisms responsible for the widths and positions of 
sharp optical transitions in (4/) ions, in particular LaF3 :Pr3+. The widths of transitions originating or termi­
nating in the metastable 3Po state and involving the zlh, 3#e, 3^2, and *Ft states of Pr3f in LaF3 have been in­
vestigated as a function of temperature and are found to be both qualitatively and quantitatively explain­
able in terms of lifetime broadening of the interacting states via nonradiative processes. Temperature-
dependent shifts have also been measured for the above four groups of transitions and are shown to be in 
qualitative agreement with theoretical predictions. Additional features of the LaFajPr3"*" spectrum, including 
several unreported weak transitions and vibrational sidebands, are also reported. 


