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therefore easy to estimate with reasonable accuracy. 
In the case of the lighter elements considered, the errors 
in the computation of the transmission factors may be 
as large as ± 2 5 % . Statistical counting errors and 
systematic errors introduced in the background sub­
traction procedure constitute another 5%. The cumula­
tive standard errors quoted in Table I I I were computed 
in the usual manner assuming that the errors from each 
of the sources listed are statistically independent. They 
range from about ± 2 0 % in the heavy elements to 
± 3 0 % in the lighter ones. The error quoted for the 
silver measurement is smaller because many measure­
ments were made in this case with differing thicknesses. 
In addition, the results obtained using the Cd109 source 
were included in calculating the final COKL value for 
silver. In spite of the large experimental uncertainties, 
the comparison with previous measurements is meaning­
ful since many of the other measurements differ from 
the present results (and from each other) by more than 
the quoted errors. In any event, it is safe to say that 

I. INTRODUCTION 

ALTHOUGH there is considerable evidence of 
discrete atomic states with energies which lie 

within the continuum for single ionization, until very 
recently little attention had been directed to the 
properties of these states. Indeed, their very existence 
often comes as a surprise to those who have been 
schooled in the doctrine that beyond the ionization 
potential all is chaos. The persistence of such highly 
energetic states for periods of as much as a microsecond 
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some of the error estimates on previous measurements 
may have been optimistic. Furthermore, there is also 
little question that more accurate measurements of 
fluorescence yields would be desirable. 

The behavior of O)KL as a function of Z is in good 
accord with theoretical expectations.9 The magnitude 
of 03KL should decrease slowly as a function of Z. In this 
region of the periodic table the change in WKL as a func­
tion of Z is considerably smaller than in the region 
considered in Ref. 1. This is not surprising, because the 
change in quantum energy of the L x rays as a function 
of Z is smaller in this region than for higher values of Z. 
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invariably can be traced to the selection rules for 
autoionization, that is, the selection rules for the 
internal conversion process whereby an electron is shed 
from the atom. Our own interest in these states has 
grown from an initial conjecture that they may be 
involved in the formation of the diatomic ions HeA+ 

and NeXe+ . Thus, Munson et al.1 have reported appear­
ance potentials for these ions which lie above the lowest 
ionization potential of A and Xe, but below the lowest 
excited states of He and Ne, respectively. While it is 
certainly possible that the helium and neon negative 

1 M. S. B. Munson, J. L. Franklin, and F. H. Field, J. Phys. 
Chem. 67, 1 (1963). 
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This study is devoted to the theory and calculation of cross sections for the electron-impact excitation of 
doubly-excited states in helium which are stable to autoionization. The cross sections are found to exhibit 
sharp peaks just above the threshold energies for excitation and to decrease rapidly with further increase 
of energy. The maximum value of the Bom-Oppenheimer cross section for excitation of the (2p)2 3Pg state is 
about 6X10~4 (aQ)2 and occurs at approximately 11 eV above threshold. The cross sections for excitation of 
the 2p3p lPg, 2p3d Wu, and 2p3d lDu states are all less than 35 b. The cross section for the (2p)2 zPg state has 
been calculated according to the Born-Oppenheimer, distorted-wave, and two-state strong-coupling approxi­
mations. In all of these cases the maximum amplitude of the scattered beam occurs at right angles to the di­
rection of the incident electrons. The cross sections of the potential-and-exchange-distortion method (DEW) 
and of the complete two-state strong-coupling approximation are virtually identical. The Born-Oppenheimer 
approximation produces remarkably similar results. Rigorous upper bounds to the energies of the 2p3p xPg, 
2p3d ZDU, and 2p3d ^ s t a t e s of helium are reported. Finally, the cross sections are calculated in Born-
Oppenheimer approximation for electron-impact excitation of the (ls)2(2p)2 3Pg and (ls)22p3p zPg states of 
beryllium. The peak values of these cross sections are 12 (a0)

2 and 2 (a0)
2, respectively. 
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ionic states found recently by Schulz2 and Simpson 
and Fano3 could be responsible for these reactions, 
discrete states imbedded within the continua of A+ 

and Xe + still remain likely candidates. These states can 
be produced experimentally by an impacting electron 
which either succeeds in exciting two atomic electrons 
simultaneously or in bringing forth a single atomic 
electron from an inner shell. I t is our purpose here to 
investigate the electron impact cross section for the 
former of these two processes. 

In helium all the doubly-excited states lie above the 
lowest ionization potential of the atom. If one of these 
is strongly coupled with neighboring levels in the 
continuum, the quasidiscrete state then will exhibit 
instability in the sense that one of the electrons can be 
spontaneously ejected from the atom. This internal 
conversion process is called autoionization. Selection 
rules follow immediately from the formula for the 
probability of autoionization, which in first-order pertur­
bation theory is given by P = (2ir/h)\ V\2, where 
V ^ f f dtidr^t {^/n%)ypf. Here \j/i denotes the wave 
function for the quasidiscrete state, and \f/ / a continuum 
state of the same energy. If V is not to vanish, the two 
states must have the same parity and / values, and in 
the case of L-S coupling they must have the same L 
and S values. When these selection rules are applied 
to helium it is found that among the states which 
autoionize are those with the term symbols Sg, Pu, Dg, 
Fu, e.g., all states with s orbitals. 

Doubly-excited atoms4 and/or molecules are in­
trinsically interesting because of their highly energetic 
states. They undoubtedly share or even exceed the 
enormous reactivity of the singly-excited species. 
Consequently their importance as initiators of reactions 
involved in radiation chemistry and in the chemistry 
of high-temperature gases should be considerable. 

Despite the fact that states of this sort are common to 
many atomic and molecular species, our attention here 
will be devoted almost exclusively to those states of 
helium which are stable to autoionization. Thus, we 
wish to avoid in this initial investigation the com­
plexities of the many-electron atom and to gain experi­
ence concerning the dependence of the calculated cross 
sections upon the choice of scattering theory. With this 
in mind three scattering calculations have been per­
formed. In the order of their increasing complexity and 
presumed accuracy these are the approximations of 
Born-Oppenheimer, of the distorted-wave method, and 
of the two-state method with strong coupling. 

To calculate cross sections for electronic impact 
excitation of helium from the ground state, (Is)21Sg, 

2 G. J. Schulz, Phys. Rev. Letters 10, 104 (1963). 
3 J. A. Simpson and U. Fano, Phys. Rev. Letters 11, 158 (1963). 
4 During the past year and a half, a strong interest in the proper­

ties of doubly-excited states has been revived. A critical survey 
of the literature from 1928 to December 1963, appears in the thesis 
of one of the authors [P. M. Becker, University of Minnesota, 
March, 1964 (unpublished)]. Another summary was presented 
recently by E, Hol^ien, Phys. Norvegica 1, 56 (1961). 

to one of its doubly-excited configurations, we shall 
make use of the nonrelativistic Schrodinger equation 
and neglect the effects of spin-orbit coupling. Further­
more, the system wave function will be approximated 
by a linear combination of terms involving the initial 
and final states of the target atom. The coefficients in 
this expansion are to be identified as the wave func­
tions for the scattering electron. We then invoke the 
Hulthen variational principle and Hartree-Fock trial 
functions5 in order to generate a set of approximate 
"moment" equations for the radial component wave 
functions of the scattering electron. By solving these 
equations subject to suitable boundary conditions one 
then obtains the phase shifts and cross sections of this 
two-state Hartree-Fock approximation. Because of the 
truncated nature of the two-state wave function it is 
imperative that the trial function be explicitly anti-
symmetrized in the three electrons.6 In this theory no 
allowance is made for the effects of polarization, i.e., 
for those contributions to the system wave function 
which are commonly estimated by the method of 
perturbed stationary states.7 

Calculations based upon this "complete two-state" 
theory are probably about the best that can be done at 
the present time. However, other estimates of the cross 
sections are obtained by introducing the additional 
approximations which lead to the simpler distorted 
wave and Born theories. Since we intend to perform 
calculations of cross sections for atomic and molecular 
species other than helium, it is highly desirable to 
determine whether these less involved and less expensive 
techniques lead to reliable results. In what follows we 
first consider the relatively uncomplicated Born 
approximation, and then proceed to a systematic 
development of the two-state theory from which the 
distorted-wave approximation develops as a special 
case. 

As a further simplification, quite apart from the 
approximations involved in the scattering theory, it 
will be assumed that the wave functions of the target 
helium atom can be represented adequately by products 
of hydrogenic orbitals. 

II. BORN-OPPENHEIMER APPROXIMATION 

In this approximation it is assumed that the initial 
plane-wave character of the wave function for the 
incident electron is preserved throughout the collision 
process. Since detailed descriptions8 abound in the 

5 T.-Y. Wu and T. Ohmura, Quantum Theory of Scattering 
(Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1962), Chap. 
1, p. 57, and Chap 3, p. 197. 

6 M. J. Seaton, in Atomic and Molecular Processes, edited by 
D. R. Bates (Academic Press Inc., New York, 1962), Chap. 11, 
p. 374. 

7 P. G. Burke and H. M, Schey, Phys. Rev, 126, 163 (1962); 
A. Temkin and E. Sullivan, ibid. 129, 1250 (1963). 

8 With the inclusion of exchange the Born approximation is 
commonly referred to as the Born-Oppenheimer approximation 
(BO). This is not to be confused with the Born-Oppenheimer 
separation of electronic and nuclear motions. 
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literature, we shall dwell here only on the novelties 
which are specific to the calculations of cross sections 
for doubly-excited states. 

In the Born-Oppenheimer (BO) approximation the 
differential cross sections for exciting singlet and triplet 
states of helium are given by9,10 

7(0,0) = ( * / * O ) E * I / A » ( ^ ) - / « ( ^ ) I 2 , (1) 

and 

respectively. Here 

fdm= (—) J I [dr1dr*lT«r<k-t1'm*(12)(4/rs-2/ri, 

-2 / r 2 8 )«*o . r^ 0 ( 1 2 ) , (2) 
and 

Xfm*(12)(H-E)e***Vo(23), 

are the direct and exchange contributions to the scatter­
ing amplitude, and the subscripts m refer to the various 
components of a degenerate atomic state. In atomic 
units the Hamiltonian is given by 

ff=,-.Vi2-V22-V8*-4/rx-4/r2 

- 4 / r 3 + 2/r i2+ 2/V13+ 2/V23, 

and the total energy by E=€Q-\-ko2=em+k2, where €0 
and 6m refer to the atomic energy eigenvalues for the 
ground and excited states. Here k0 and k are the 
propagation vectors for the incident and the ejected 
electrons. As a matter of consistency we shall use for €0 

and em values calculated from our approximate atomic 
wave functions rather than the more accurate values 
which are available. In Appendix A we discuss the 
explicit forms for the wave functions and the energies 
calculated from them. 

The lowest five states which are not subject to 
autoionization are (2p)2ZPg, 2p3p1Pg and zPg, and 
2p3dlDu and 3Z>M. Of these one anticipates that the 
first will have the largest cross section, since it is the 
lowest of the doubly-excited states which is stable to 
autoionization. We do not calculate the cross section 
for the 2p3p zPg state because of the considerable 
algebraic complexity engendered by the requirement 
that its wave function be made orthogonal to that of 
the {2p)2ZPg state. Excitation of the lDu state is 
optically allowed by the two-electron selection rules 
of Goudsmit and Gropper.11 I t is therefore of interest 
to compare the magnitude of the electron impact cross 
section for this state with those for the forbidden 
transitions to Pg states. 

9 H. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc. (London) 
A258, 147 (1960). 

10 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), 2nd ed., Chap. 9, p. 244. 

11 S. Goudsmit and L. Gropper, Phys. Rev. 38, 225 (1931). 

The differential cross sections for the four excitations 
we have considered are given by 

I(0,<t>;*Pg)==(6k/ko)\fi(d,<t>-,*P9)\
2, 

/ ( ^ ; 1 P , ) = ( 2 * / * o ) | / i ( ^ ; 1 P . ) | 2 , 

7(0,0; *DU) = (6*/*o)(I fi(fi,4>; ZDU) \ 2+ | /2(0,0) | 2 ) , (3) 

7(0,0; Wu) = (2*/*o)(I / i f t * ; lDu) 12+ |/2(0,0) 12), 

where 

/ i(0,0; *Pg) = - (N/6) ( a W ^ V M sinfcr*, 

/ i(0,0; U\) = - (2^/243) ( 2 o W 5 5 ) 1 / 2 

X ( / i / 4 - / 3 / 2 ) s i n 0 < r - ^ , 

/1 (0,0; ZDU) = (4AT/243) ( o W S 7 ^ ) 1 ' 2 

X (0.6/i/e cos0 - JhJ2)i sinde~2^, (4) 

/ i(0,0; Wu)=(4N/243)(c?&y*S7/6y*2 

X (0.6/i/c cos0+ / 5 / 2 ) i sin0<r*'*, 

M6,4>)= (4AV243)(a^37557/6) 
X(0.6/ i /6sin^)f sin^e-2**. 

Formulas for the functions /»are presented in Appendix 
B. The values chosen for the screening constants a, fi, y, 
and 5 and the defining formula for the normalization 
factor N are given in Appendix A. 

The configurations of the doubly-excited states which 
are stable to autoionization do not contain s orbitals 
and so the direct scattering amplitude fdm given by (2) 
is zero. Of all the terms in the operator (H—E) only 
(—2/r2z) provides a nonzero contribution to fm. There 
is no contribution to the scattering amplitude from the 
degenerate component of the atomic state with m==0. 
Equal contributions to the cross section arise from 
components with m values which are equal in magnitude 
but opposite in sign. 

The differential cross sections for the P states vary 
with the direction of the scattered electron as sin20. 
The cross sections for the D states vary nearly in the 
same fashion, having sin20 as a factor. In Fig. 1 the 
differential cross sections for the D states are plotted 
for several energy values. The values for the total cross 
section a—fdfyfdB sin07(0,0), which were obtained by 
a simple analytical integration, are presented in Fig. 2. 
I t will be noted that curves (a) and (b) in Fig. 2 refer 
to Born cross sections calculated with two different 
choices for the ground-state wave function. For curve 
(a) we have used a two-screening-constant approxi­
mation with different orbitals for different spins; curve 
(b) refers to a ground-state function constructed of 
two orbitals with common screening constants. A more 
detailed discussion of these atomic wave functions is 
given in Appendix A. A comparison of these results 
clearly illustrates that the calculated cross sections are 
quite independent of which of these two functions one 
uses. 

The cross sections for the states other than (2^>)2 zPg 

are so small that their peak values may be measured 
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2p 3d ^u j 

2p 3d 3DU 1 

FIG. 1. Differential cross sections in Born-Oppenheimer approxi­
mation for the 2p3d1Du and 2p3dsDu states of helium at two 
different energies. The cross sections are plotted as functions of 
the scattering angle. 

conveniently in barns. The past experience of other 
investigators has been that for impacting energies near 
threshold the cross sections predicted by the BO theory 
are invariably much too large. Therefore we assume 
that the BO calculations provide upper limits for these 
unlikely processes and consider them no further. 

The sin20 dependence of the differential cross section 
is so remarkable that it seems worthwhile to repeat here 
the qualitative explanation of this phenomenon which 
we reported earlier.12 One can strongly contend that 
the incident electron must be captured into the p 
orbital which is oriented parallel to the initial direc­
tion of approach k0. Therefore, in the final (2p)2 zPg 

state, the other bound electron must lie in one of the p 
orbitals oriented perpendicular to k0. From the preferen­
tial direction of ejection of the third electron it then 
can be argued that the intermediate complex, a helium 
negative ion, is composed of a singly-occupied p orbital 
oriented along k0 and a doubly-occupied p orbital 
perpendicular to this direction. 

This unusual angular dependence is also predicted 
by the two-state theory presented in the following 
section. Consistent with this is the proof by Fano13 

that there is no forward scattering for an atomic state 
with even parity and odd L. 

III. TWO-STATE THEORY 

In general, one can expand the wave function for the 
composite system of scattering electron and target 
atom in a complete set of atomic eigenfunctions. The 
basic premise of the two-state theory is that an accurate 

12 P. M. Becker and J. S. Dahler, Phys. Rev. Letters 10, 491 
(1963). 

13 U. Fano, Phys. Rev. 135, B863 (1964). We wish to thank 
J. W. Cooper and Dr. Fano for bringing this to our attention 
prior to publication. 

estimate of this wave function can be obtained by 
limiting the expansion to terms which involve only the 
initial and final states of the atom. Because this 
truncated expansion does not include summation over 
the continuum states of the target, the approximate 
wave function must be antisymmetrized explicitly in 
order that it exhibit the correct asymptotic behavior.6 

The most significant effect of our neglect of spin-orbit 
coupling is that the total spin and orbital angular 
momenta of the three-electron system will be separate 
constants of the motion. Since we are interested 
exclusively in the impact excitation of helium from the 
singlet ground state, the total spin always will be equal 
to | . The spin eigenfunctions for this doublet state, 
denoted by x+(12,3) and x~(12,3),14«15 are, respectively, 
symmetric and antisymmetric to interchange of the 
spin coordinates of electrons Nos. 1 and 2. Therefore, 
these two functions are appropriate for the description 
of composite states involving triplet and singlet states 
of the atom. 

According to the general quantum-mechanical rules 
for the addition of angular momenta the two-state 
wave function in the LSMMS representation may be 
written as16 

$(123) = X{L £ E Cil^U.L^m^m^M^iU) 
eye li' m\r ni2f 

Xrr1F0(ri,l2')Yl2rm2,(3)x'(12,3)+j: £ £ 
Z2 mi «2 

XC{h,h,L;mhmz,M)fml(\2)rz-
xFt{rz,h) 

X (3)x+(12,3)}. (5) 

Here FQ and Ft denote the radial components of the 
wave function for the scattered electron which are 
associated with the initial and final states of the atom, 
respectively. The quantum numbers l\ and w / refer 
to precollisional states of the target atom while h and Wi 
are to be associated with postcollisional states. The 
quantum numbers /2', ra2', h, and m2 provide a similar 
description of the pre- and postcollisional states of the 
scattering electron. We make use of the notation 
**= {^ifii^i)^ OvV) for the vector which gives the 
location of electron i relative to the helium nucleus. 
The spherical harmonics Yim(i)= Yim{fi) and Clebsch-
Gordan coefficients C(h,h,h Jmhm^m^) a r e those de­
fined by Rose.17 Finally, the presence of the permu­
tation operator £cyc in (5) ensures that $(123) will be 
antisymmetric with respect to the interchange of any 
pair of electrons. 

We choose the polar axis to lie parallel to ko, the 

14 Reference 10, p. 233. 
15 H. Massey and B. L. Moiseiwitsch, Proc. Roy. Soc. (London) 

A227, 38 (1954). 
1 6 1 . C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc. 

53, 654 (1957). 
17 M. E. Rose, Elementary Theory of Angular Momentum 

(John Wiley & Sons, Inc., New York, 1957), Chap. 3, 4, App. 1, 3. 
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direction of the incident electron. From the criterion 
of cylindrical symmetry it then follows that m2 is 
zero and so M=mi+fn2=mi+ni2 also vanishes. For 
the zPg excited state with configuration (2p)2 the value 
of h is unity. 

Although the function $(123) given by (5) is not an 
exact solution of the Schrodinger equation, it is suitable 
for use as a trial function in the Hulthen variation 
method. The application of this variation scheme 
provides a set of equations for the "optimal" Hartree-
Fock radial functions FQ and Ft. These equations are the 
same as those which one obtains by the following 
procedure: 

(i) The trial function $(123) is substituted into the 
Schrodinger equation. 

(ii) The resulting expression is premultiplied by one 
of the functions 

Dr(12,3)^o(12)FLO(3)]* 
or 

[X+(12,3)Z™2 C(l, l2, L; - m 2 , m2, 0 ) ^ _ m 2 ( 1 2 ) F W 3 ) ] * . 

(iii) Integrations are performed over all coordinates 
of two electrons and over the angular and spin variables 
of the third. The performance of these operations leads 
to the single pair of coupled integrodifferential equations, 

r d2 2 

\-drz
2 rz

2 
+h2+VM -f 

Jo 

F 0(f 3)+ / dnKoM^Foin) 

E (eV) 

FIG. 2. Total cross sections in Born-Oppenheimer approximation 
for several states of helium. The cross sections are plotted against 
the energy of the incident electron. Curves (a) and (b) are both 
for the (2p)2 3Pff state, the former calculated with a two-screening-
constant ground-state function, the latter with common values 
for the two screening constants. Curves (c), (d), and (e) are for 
the 2p3p lPg, 2p3d 1DU and 2p3d 3Z>« states, respectively. 

To fully characterize the functions FQ and Ft we 
impose the familiar asymptotic boundary conditions, 

/•OO 

= / dn 
J o 

i7oW~^o-1/2[e- •i(kor—Tr/2) -5(on ; o i i y (kor—7rj2) 

Kt0(rhr3)Ft(ri),. (6a) * M ~ ^ - S ( l l l , 0 1 i y < * " » ] , 

] , (7a) 

(7b) 

rd2 2 
+W+Vtt(n) 

Ldrs
2 r3

2 7. Ft(n)- dnKlt{n,n)Ft(n) 

= dnKu{rhn)Fo(n). (6b) 
• / . 

Here F0(r)^FQ(r, K= 1) and Ft(r)=Ft (r,h= 1) are the 
Hartree-Fock radial functions for the partial wave with 
L= 1. I t can be proved that no others contribute to the 
formation of the (2p)2 zPg state. The functions Foo(r) 
and Vtt(r), which give rise to the so-called "direct 
distortions," are scattering potentials associated with 
the charge distributions of the atomic singlet and triplet 
states, respectively. Polarization of these distributions 
by the scattering electron has been neglected in the 
present investigation. The "exchange distortion" terms, 
in which the operators K0o and Ku appear, provide the 
scattering potentials for elastic-exchange events. Finally, 
the kernels Kot and Kto account for the reactive process 
whereby exchange of the incident electron with one 
from the atom is accompanied by a singlet-triplet 
transition of the atomic state. Explicit expressions for 
all of these quantities are given in Appendix C. 

where the coefficients S(h,h,L\lil2,L) are elements of 
the scattering matrix. These coefficients are related to 
the 5-matrix elements in the {hm^hmi) h'wii^Uni'i) 
representation by the formulas, 

S(lhmhl2im2 ;h',mi9ti,tn2). 
= E L I M C(lhh,L; mhm2,M)S(lhl2iL;li\U\L) 

XC(li',h',L;mi',m2'9M). (8) 

The differential cross section for the excitation process 
then can be expressed in the form6 

/ (* ,* )= ( i r /*o 2 )£»i lE- • • E ( 2 / 2
/ + l ) ^ « » ' - W 

X Yhm2{e,4>)T{h,mi,li,m2; 1% ,mi ,h',m2') 

XS(/ / ,1 )5( / 2 , 1 )5(*<0) | 2 , (9) 
where T(a,ar) = h(a9a!) — S(a,a!) denotes an element of 
the T matrix. In the case before us here h' is equal to 
zero and the only nonvanishing elements of the T 
matrix are those for which L=l2=l2—1. Therefore, 
the formula for the excitation cross section reduces to 

/(0,<£) = 7r£(T2E mj I 2w»»2 

X C ( l l l ; » i J « u , 0 ) 5 ( l l l , 0 1 1 ) | * 
= (9 /8W) | .S( l l l ; ( ) l l ) | 2 s in 2 0. (10) 
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In previous applications of the two-state theory it 
invariably has been found that an enormous number of 
partial waves contribute to the cross section. For 
example, in their calculations dealing with electron-
impact excitation of the hydrogen atom, Burke and 
McCarroll18 found it necessary to neglect contributions 
to the scattering process from an infinite number of 
angular momentum quantum numbers. Massey and 
Moiseiwitsch9 had a similar experience in their study 
of singly-excited states of helium. 

An additional complication was encountered in these 
two investigations when the theory was applied to 
nonspherical atomic states. Thus, for each choice of 
the total angular momentum L the Hartree-Fock 
equations coupled the component wave functions 
Fo(r,l2) for several values of l2. The contrast is striking 
when one compares the complexities which faced those 
investigators to the relatively uninvolved situation 
before us here. This remarkable simplicity is a direct 
consequence of the fact that here the only angular 
momentum values involved are L=l2 = l2=l. The 
particularly unusual situation where only the incident 
and final p waves are involved occurs when the atomic 
wave function is approximated by a product of orbital s 
appropriate to a single atomic configuration, e.g., to 
the configuration (2p)2 considered here. Instead, one 
might have chosen to represent the atomic wave 
function by a finite series of product orbitals, each 
pertaining to a different atomic configuration. He then 
would obtain in place of (6) the larger but still finite 
set of equations which characterize partial-wave 
contributions from additional channels. The associated 
elements of the scattering matrix would contribute a 
finite number of additional terms to the partial-wave 
expansion of the cross section. The entire spectrum of 
angular momenta becomes involved only if one were 
to introduce into the atomic wave function terms which 
were explicitly dependent upon the separation of the 
two electrons, e.g., functions of the Hylleraas type. 
From these comments it is clear that the simple struc­
tures of the cross section formula (10) and of the Eqs. 
(6) are due, at least in part, to the crude approximation 
we have used for the atomic wave function. However, 
in the other applications of the two-state theory to 
which we have referred, one finds that a vast number 
of partial waves contribute to the reaction cross section 
even when he uses the very simplest of single-configura­
tion, product-orbital wave functions. 

Numerical Procedure 

The numerical technique we have adopted for solving 
the integrodifferential equations of interest to us here 
is based upon a procedure used previously by Burke 

18 V. M. Burke and R. McCarroll, Proc. Phys. Soc. (London) 
80, 422 (1962). 

et al.19 to solve similar equations which they encountered 
in a study of electronic impact excitation of the 2s and 
2p states of hydrogen. The method employs a Newton 
interpolation formula and is designed for solving equa­
tions of the general form d?Fi/dr2=gi(r,FhF2,- • -,Fn), 
1=1, 2, • • -n. In the case of a single equation, d2F/dr2 

= g(r,F), the solution is constructed according to the 
following prescription, 

F(fi) = JF(ro)+AF ,(fo)+tf(go-g-i)/6, 

F(r2) = F(ro)+2hF'(ro)+k2(2go+4g1)/3, (11) 

F'(ra) = F , ( fo)+A(go+4gi+ f t ) /3 , 

where F' = dF/dr, gi=g\jhF(ri)~], rx=-r0+h, and r2 

= rQ+2h. Thus, if we have available F(fo), Ff(rG), go, 
and g_i, then we can calculate F(ri), gi, F(r2), g2, and 
F'(r2) in that order. Furthermore, we then have enough 
information to make a traverse of the next complete 
interval Ar=2h. The repeated use of this marching 
technique allows us to advance the integration to large 
values of r. 

The integration is begun very near the origin where 
(d2/dr2—2/r2)F=0 is an adequate approximation to 
both Eqs. (6). The solution which remains finite at the 
origin is given by F=br2 where b denotes a constant. 
Therefore, the starting values are J?(0) = 0, F'(0) = 0, 
go=2Z>, F(-ti) = bh2 and g-i=£-h, F(-h)']- In the 
numerical work the asymptotic boundary conditions 
(7) are more naturally expressed in terms of rj\(kr) 
where j \ is the spherical Bessel function of first order. 
Thus, one begins near the origin with some assumed 
real value for the parameter b and proceeds with the 
integration until he reaches the asymptotic region. There 
the solution will be of the form P[_(kr)~l sin(kr+8) 
— cos(£r+5)] with P the peak height of the cosine 
wave and 8 a phase shift characteristic of the scattering 
process. At each point the integration procedure 
provides us with numerical values of F and Fr so that 
the values of the two parameters P and 8 can be calcu­
lated conveniently from the formulas, 

P={F^+lk-1Ff(l+k-2r-2)+F(kr)-^22}1/2 

X[l+(Ar) -* ] - 1 / 2 , (12) 

$m(kr+8)=(F'+r-1F)/kP. 

The remaining tasks are to adapt this integration 
technique to the problems of interest here and to 
establish the relationships between the solution param­
eters P and 8 and the elements of the scattering matrix. 

S-Matrix Elements 

By the strong-coupling approximation we refer to 
the results which are obtained from a complete numerical 
solution of the Eqs. (6). One obtains the distorted-wave 
approximation by discarding from (6a) the term which 

19 P. G. Burke, V. M. Burke, I. C. Percival, and R. McCarroll, 
Proc. Phys, Soc. (London) 80, 413 (1962). 
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contains the operator Kto. We shall distinguish between 
two different versions of the distorted-wave approxi­
mation; the DEW (distortion-plus-exchange) approxi­
mation in which only Kto is set equal to zero and; the 
DW approximation wherein the terms of (6) containing 
Kto, KOQ and Ktt are neglected. 

One can find many examples in the literature where 
the further approximation has been made of discarding 
from the potentials Foo(/) and Vtt(r) the terms which 
arise from the nonspherical characteristics of the excited 
atomic state. In order to obtain some estimate of the 
severity of this approximation we shall perform the DW 
calculations both with and without the nonspherical 
portions of the potentials. 

Strong-Coupling Approximation 

To indicate the method which we have used in this 
case the Eqs. (6) first are rewritten as 

d2 2 1 
+h2+Voo(rz) W^Krs) 

dri ri J 

= f dnl-K^r^F^iri) 

+Kt0(rhr,)FtM(r1)3, (13) 
and 

d2 2 -l 
+k2+Vtt(r,) F^Jfo)" 

dri ri J 

Jo 

The iterative procedure is begun by setting FQ[0] and 
Ft

[0] equal to zero. The resulting homogeneous ordinary 
differential equations for F0

[1] and Ft
[1] are then solved 

by the numerical integration technique which we 
already have described. With these first-improved 
functions one next calculates and stores the exchange 
terms ffdrfc- Kw(rurs)F^ (ri)+Kt0(rhn)FtM ( f l)] 
and / o ^ i C ^ ^ ^ i ^ F . ^ W + i r o K ^ i ^ F o ^ W ] . The 
second step of the iteration is now clearly indicated. 
With n chosen equal to unity in (13) we solve this pair 
of inhomogeneous ordinary differential equations for 
F0

[2] and Ft
m. Further iterations are conducted until 

convergence of the solutions is achieved. For each step 
of this procedure we do, of course, use the same values 
for bo and bt. In principle one could judge convergence 
by comparing successive solutions over the entire 
range of integration. However, it is highly desirable 
to adopt a more convenient measure of convergence. 
Thus, we compare the values of F/n] (r) and F^n+1] (r) 
at a few selected arguments, one being the end of the 
integration range, and when these differences fall within 
a prescribed tolerance say that convergence has been 

achieved. It required about ten such iterations for two 
successive solutions to agree within 0.01%. 

The iterative procedure just described was used to 
construct solutions over the interval from zero to 25a0 in 
increments of 0.12#0. Then beginning at this point we 
changed to a smaller step size of 0.02#0 and continued 
the integration to 200a0. For such large arguments the 
actual solutions are numerically indistinguishable from 
their asymptotic forms and so the parameters 5o, $t, Poy 

and Pt can be accurately determined. Now although 
the exchange terms and the potentials Foo and Vtt 

are quite small near the outer end of the first interval, 
(0,25ao), they are not altogether negligible. Despite 
this fact we have completely neglected the exchange 
terms, FooM> and all but the dominant 0(r~3) portion 
of Vtt(r) in conducting the integration from 25ao to 
200tf0. To check the adequacy of this procedure we 
have continued the iterative solution beyond 25ao to 
35a0 and then at that point adopted the method for 
the asymptotic region. In all cases that we examined 
iterative solutions obtained on the intervals (0,25) and 
(0,35) agreed to within 0.01%. As an added check we 
have retained in a few cases the complete forms of Voo 
and Vu over the final range of integration. The effect 
of this refinement was limited to the seventh decimal 
place of the solution parameters 5 and P and the calcu­
lated cross section. Finally, to determine the influence 
of interval size upon the iterated solutions we have 
performed comparative DW and DEW calculations for 
values of h equal to 0.12#o, 0.08#0, and 0.04a0. The 
cross sections in the three cases differed by less than 1%. 

The equations of the two-state theory have two 
independent solutions which are regular at the origin. 
These can be generated by performing the numerical 
integrations we have just described with two sets of 
constants, (&o(1),£*(1)) and (6o(2)A(2))> which have been 
so chosen that the value of their determinant is non­
zero. As Burke et al.19 have mentioned the choice of a 
nonzero determinant for the b parameters does not 
guarantee that the solutions will be independent for 
large values of r. If the solutions are not sufficiently 
independent at large r then the accuracy of the calcu­
lated cross section will be effected. A check on the 
importance of this effect was made by constructing 
three "independent" solutions and comparing the 
cross sections calculated from all pairs. Generally the 
differences amounted to less than 5%, although there 
were a few calculated cross sections which differed by as 
much as 20%. 

To calculate the cross section for excitation from two 
solutions with parameter sets (5o(1),^(1),P0

(1),Pe(1)) and 
(5o(2),5*(2),Po(2\iY2)) we construct the linear combina­
tions of these solutions which satisfy the radiative 
boundary condition, (7). This is easily accomplished 
by multiplying each equation of the first set with 
ptwe

iB*a\ each of the second set with Pt^e
ih^2\ and 

then subtracting the resulting expressions. The pre-
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scription for normalizations follows directly from a conditions (7). The final result of these manipulations 
comparison of these solutions with the boundary is the formula 

|S(111;011) | 2 = 
(2V^o)CP i

( 1 )P« ( 2 )]2[l-cos2(5/1)-5 (<
2))] 

[P/1>Po (2 )]2+[P (
<2 )i : ,o (1 )]2-2Po<1)Po (2 )P (

a )i ,
(
( 2 )cos(5 («)-5„<1)-S t<

2)+5o (3 )) 
(14) 

The differential cross section then can be calculated 
by inserting this expression into the formula (10). 

Distorted-Wave Approximation 

As we already have mentioned the basic step in this 
approximation is to discard from (6a) the inhomoge-
neous term involving Kto. The resulting homogeneous 
integrodifferential equation, 

rd2 2 i~ 
+£o2+Food's) FoCfs) 

Ldrz
2 ri J 

- - / 
Jo 

^oo(ri,r3)^o(r8)^i, (15a) 

can then be solved independently from the inhomoge-
neous equation, 

rd2 2 -i 
+k2+Vtt(rz) \Ft(rz) 

Ldrf n2 J 

/•CO 

= / dn[_Ktt(n,n)Ft(r1)+Ku{rhn)F«{n)~], (15b) 
Jo 

for the triplet function Ft(rs). To calculate the transition 
probability in this approximation it is only necessary 
to determine Fo and &t, where the latter denotes the 
solution of the homogeneous equation which is obtained 
by neglecting the second term on the right-hand side of 
(15b). Thus, if we subtract the product of Ft with this 
homogeneous equation from the product of 5^ with 
(15b) and then integrate we obtain the formula, 

I dr[Zt{r)Ft"{r)-Pt{r)$t"(r)-} 
Jo 

nco 

drdPKtl(r,p)lFt(p)Zt(r) - ff,(p)P»] 
J 

noo 

drdP5t(P)Kot(r,P)F<>(P). (16) 
J 

The asymptotic boundary condition which we impose 
upon the solution of (15b) is given by 

&i(r)~k-w sin(£r~§7r+5*y8<. (17) 

The other boundary condition is that $t be zero at the 
origin. 

Since Ku is symmetric to the interchange of r and p 
[see Eq. (C5)], the integral containing this distortion 
term vanishes. Next we integrate the first term of (15) 
by parts and insert into that expression the asymptotic 
boundary conditions (7) and (17) and the boundary 
condition at the origin. The performance of these 
manipulations results in the formula 

5(111; 011) = no drdp$t(r)Kot(r,p)Fo(p), (18) 

for the S-matrix element. The differential cross section 
is obtained by inserting this expression into Eq. (10). 

The functions 2F* and Fo which appear in this formula 
must be correctly normalized. The solutions generated 
by our numerical procedure are proportional to the 
arbitrary scale parameters bo and bt. By comparing 
the calculated peak height Pt to the normalization 
factor k~112 in (17) we see that $t will be normalized 
properly if the values of the numerical solution are 
each multiplied by the factor Prlk~112. In the distorted-
wave approximation the asymptotic form of the singlet 
wave function is given by 

F0(r)^-2iko~ll2eiSo sin(&or-§7r+S0). 

Therefore, our numerical solution must be multiplied 
by 2ko~1(2Po~l in order to ensure its proper normalization. 

IV. DISCUSSION OF RESULTS 

The results of our calculations and their implications 
are apparent from the accompanying figures. The curves 
of Fig. 3 permit us to evaluate the dependence of the. 
cross sections in the DW approximation upon the choice 
of atomic ground-state wave functions and upon the 
noncentral portion of the triplet scattering potential. 
Thus, neglect of the noncentral term shifts the excitation 
curve to lower energy and increases its peak height. 
However, the effect upon the cross sections of a rather 
gross alteration in the atomic ground-state wave 
function is seen to be of very little consequence. 

Figure 4 provides a comparison of the cross sections 
calculated from the BO, DW, DEW, and TS (two-
state) approximations. In all cases the calculations were 
performed with the same one-parameter ground-state 
function. These are the most significant of our results 
since they illustrate the relative insensitivity of the 
calculated cross section to the choice of scattering 
theory. I t is reasonable to expect that the predictions of 
the two-state theory are the most reliable. With this 
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FIG. 3. Total cross sections in distorted-wave (DW) approxi­
mation. The cross section for excitation of the (2p)2 3Pg state of 
helium is plotted versus the energy of the incident electron. 
Curves (a) and (b) refer to calculations made with single-param­
eter ground-state wave functions while for (c) and (d) different 
screening constants were assigned to the two atomic electrons. 
For (a) and (c) only the spherical portion of the triplet potential 
Vu was used. Curves (b) and (d) include the nonspherical parts of 
this potential. 

as a standard we see that the DEW approximation 
fares very well, for its predictions are virtually in­
distinguishable from the two-state method. On the 

FIG. 4. Total cross sections for (2p)2 zPg excitation calculated 
from the Born-Oppenheimer, distorted wave, and two-state 
strong-coupling theories. All of the calculations were performed 
using the same one-parameter ground-state wave function for 
helium. The various curves are (a) Born-Oppenheimer; (b) DW 
with spherical triplet potential, Vtr, (c) DW; (d) DEW and; (e) 
two state with strong coupling. 

other hand, the DW approximation would appear to 
lead to a rather gross overestimate of the cross section. 
This is to be expected in the present case where the 
effects of exchange are so important. 

The most unexpected of our results is the close agree­
ment which we find between the two-state and Born-
Oppenheimer cross sections for it is well known that 
BO estimates are usually unreliable9 for exchange 
processes which involve single-electron excitations. How­
ever, there is some previous evidence that the BO theory 
works rather better for (singlet S) —•> (triplet P) transi­
tions than in other cases. Thus, in their study of the 
helium transition, (ls)21S —» (ls)(2p) 3P, Massey and 

FIG. 5. Total cross sections for several states of helium as 
functions of the incident electron energy. This figure provides a 
comparison of the Born-Oppenheimer and the distorted-wave 
theories. The curves are (a) ls2p 3P«, Born-Oppenheimer (see 
Ref. 9); (b) U2p *PU} DEW (see Ref. 9); (c) (2p)2 3Pfl, Born-
Oppenheimer; (d) (2p)23Pgy DEW; (e) 2s2p1Pu, Born-Oppen­
heimer (see Ref. 20); and (f) 2s2p 1PU, Born-Oppenheimer (see 
Ref. 20). 

Moiseiwitsch found that the contribution to the cross 
section from the L= 1 partial wave compensated some­
what for the gross overestimate of the BO theory for 
the L = 0 partial wave. It should be emphasized, how­
ever, that neither of the individual BO partial cross 
sections agreed at all well with the corresponding terms 
of the strong-coupling theory. 

We have included in Fig. 5 the BO and DEW cross 
sections for the electronic impact excitation of the 
ls2p ZPU state of helium,9 as well as the Born approxi­
mation predictions of Massey and Mohr20 for several 
autoionizable levels. Although the reliability of these 
latter results is open to question they have been pre­
sented here for purposes of comparison. 

20 H. S. W. Massey and C. B. O. Mohr, Proc. Cambridge Phil. 
Soc. 31, 604 (1935). 
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The results of our calculations have encouraged us 
greatly, since there are clear indications that the 
uncomplicated Born-Oppenheimer theory may emerge 
as a reliable method for calculating the cross sections 
for excitation of anomalous states—provided that the 
product form is a good approximation for the excited-
state wave functions. A complete verification of this 
conjecture requires that a few more special cases be 
examined, the most obvious candidates being the 
alkaline earths Be, Mg, Ca, etc. Provided that one 
neglects the effects of excitation upon the core electrons 
of these atoms, the theory presented here can be applied 
almost without change to processes such as the transi­
tion from Be (ls)2(2s)21Sg to Be (ls)2(2p)2*Pg or 
Be (ls)2(2p)(3p) sPg. Furthermore, anomalous states 
of the alkaline earths are of intrinsic interest, since there 
is ample spectroscopic evidence for their existence, and 
since it has been assumed in the past that these states 
could not be excited by impact of a single electron.21 

Born-Oppenheimer cross sections for the two beryllium 
excitation processes mentioned above are given in 
Appendix E. 
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APPENDIX A: ATOMIC WAVE FUNCTIONS 
AND ENERGIES 

To calculate cross sections from the formulas given 
in the preceding sections it is first necessary to make 
explicit choices for the atomic wave functions and to 
determine the associated energy eigenvalues. We have 
constructed approximate atomic wave functions from 
properly symmetrized products of hydrogenic orbitals. 
The values for the screening constants were chosen to 
minimize the energy. These calculations were performed 
for the states (Is)2 ̂  (2p)2 *Pg, 2p3p xPff, 2p3d lDu, 
and 2p3d zDUf each of which is the least energetic of its 
symmetry type. Therefore, the energy eigenvalues 
calculated from the trial functions are necessarily 
upper bounds to the exact values. 

The wave function for the ground state is given by 

^o==Ar[^ioo(a,l)^ioo(ft2)+iA1oo(«,2)iA1oo(/3,l)], 

;V-2 = 2J 1+f" /^ioo(a,r¥ioo(|8,r)l } , (Al) 

which, in the special case of a—P, reduces to ^ioo(a,l) 
X*ioo(fc2). 

21 G. Herzberg, Atomic Spectra and Atomic Structure (Dover 
Publications, Inc., New York, 1944), Chap. 4, p. 165. 

The approximate wave functions which we have 
used for the other states are 

(2py »P,: +m= 23, C(l, 1, 1; v, m- v, m) 
X*Hr(T,l)fcl.—»(Y,2) , (A2) 

2p3p ip„: ^ m = 2 - ^ E , C(l, 1, 1; v, m- v, m) 
X[^2u(yA)hi,m-^,2)+hUi,2)hi,m-,(8A)l, (A3) 

2p3d iZ>„: ^m = 2-1'2 Z- C(l, 2, 2; v, m-v, m) 
XC^21„(%l)</ ' 3 2, m - , (5 ,2)+^l„(T,2)^2,m-, (5 ) l ) ] , (A4) 

2p3d *Dn: *„== 2-1'2 £ , C(l, 2, 2; v, m- v, m) 
XC^I,(T,1¥S«.—,(8,2)-^ar(T,2)^M .«-,(8,1)], (A5) 

where the atomic orbitals are given by 

^nlm(r) = Rnl(r)Yim(f). 

Here the symbols a, /?, 7, and 8 denote screening 
constants and the Rni are hydrogenic radial functions, 

RlQ(a,r)^2a*l2e-ar, 

R2i(y,r)=(y*/24:yi2re-yri2, 

- M M ) = (855/19683)1% (6-5r)e-w, 

R3i(S,r)= (857/98415>V~8^. 

The expectation value for the energy of the 2p3p 1Pg 

state is given by 

£ = ! r ( Y - 4 ) + i « ( f i - 4 ) + i i + i a + / 8 , 

where 

J i= (45/27){f- (b/y)2+(l6b2/2±3y2D2)llS(l+2y/D 
+2y2/D2+y*/D*) - (65/Z>) (2+6y/D+Sy2/D2 

+5y*/Dz)+ (y2/D2) (3+12y/D+20y2/D2 

+ 157VZ)3)]}, 

h= (10247555/2187D9)(-126+3785/D-28952/^2), 
h= (1310727555/2187JD

12) 

X[2(372-f52)-7S(37-f5)](7-5). 

Here D=y+%b. For the 2p3dlDu and 2p3dzDu states 

-E=ir(7-4)+*«(«-4)+/i=b/2, 

where the + and — signs are to be associated with the 

TABLE I. Energy eigenvalues for several states of helium. 

Energy 

State 

(nyiSo 
(uyiSo 
(2py*pg 
2p3p lPg 
2p3d Wu 
2p3d*Du 

Screening 
constants 

2.18316, 1.18854 
1.6875 
1.67188 
1.84592, 1.73328 
1.96419, 1.19537 
1.99226, 1.05763 

(Ry) 

-5.75132 
-5.69531 
-1.39758 
-1.14195 
-1.12328 
-1.11655 

(eV above 
true ground) 

0.77 
1.53 

59.98 
63.46 
63.71 
63.80 
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TABLE II. Energy eigenvalues predicted for the (2p)2 SP0 state. 

Method 

One-parameter hydrogenic 
orbital 

Two-parameter hydrogenica 

Self-consistent fieldb 

Hydrogenic orbitals with" 
slight corrections 

Extended Fock methodd 

Correlation* 
Correlation * 
Configuration interactions 
"Experimental"11 

Energy 

(Ry) 

-1.39758 

-1.3976 
-1.4018 
-1.4074 

-1.4082 
-1.4109 

-1.42021 

(eV above 
true ground) 

59.98 

59.98 
59.93 
59.85 

59.84 
59.80 
59.73 
59.68 
59.67 

* T.-Y. Wu and S. T. Ma, Phys. Rev. 48, 917 (1935). 
b W. S. Wilson, Phys. Rev. 48, 536 (1935). 
« T.-Y. Wu and S. T. Shen, Chinese J. Phys. 5, 150 (1944). 
d K. K. Eringis, P. Sh. Fridberg, and V. K. Shugurov, Opt. i Spektro-

skopiya 11, 297 (1961) [English transl.: Opt. Spectry. (USSR) 11, 161 
(1961)]. 

• T.-Y. Wu, Phys. Rev. 66, 291 (1944). 
« M. J. S. Dewar and A. L. Chung, J. Chem. Phys. 39, 1741 (1963). 
« E. Hol0ien, J. Chem. Phys. 29, 676 (1958). 
h This value is obtained from the sum of the energies of the ls2p 3FM 

state and the 320.38 A emission line. See W. C. Martin, J. Res. Natl. Bur. 
Std. A64, 19 (1960). 

singlet and triplet states, respectively, and where 

7i= (5/45){ 1 0 - | 5 2 / T 2 + (6456/7297
2Z>4) 

X[3+l2y/D+20y2/D2+15y*/Dz^} , 
/2=-114847557/3645Z)11. 

The values for the screening constants and the energy 
eigenvalues for these states are presented in Table I. 

Table II provides a summary of the several calcu­
lations for the (2p)2 zPg state which have appeared in 
the literature. 

APPENDIX B: THE / FUNCTIONS OF THE 
BORN-OPPENHEIMER APPROXIMATION 

The functions Ji which appear in the formulas (4) 
for the Born-Oppenheimer scattering amplitudes are 
given by 

/ I = 4 Y * O ( W + 1 T V , 

J,= 168ko2(ko2+m~A, 
J2 = 3[(B-5/7(a/k; (B/ife) + a~5/7(P/k, a / * ) ] , 
J^3{B-bl(6-5d/B)J7(a/k,B/k)+8B-1J8(a/k,B/k)~] 

+A-*t(6-Sd/A)J?(p/k,A/k) 
+8A-lJsWk,A/k)^}, 

Je = 5ZB-7Ma/k,B/k)+A-Ud(i3/k,A/k)l, 

where 
A=a+&, B = j3+15, a = a+§7, <B = /3+|7, 

and 

J7(a,B)= -8o;[ctn-1a-ctn-1(a+^)] 

+ SB[aS+B(a+B)2S2-B2(a+B)S*2, 
Js(a,B) = B*k-1£-3S'+ (3B-a)S,f+B(B+a)S"f~], 

*/9(a,^)=-72a(l+a
2)Cctn-1a-ctn-1(«+^)] 

+h(goS-glS'+g,S"-g*S'"+g*S""), 
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and 

S= [(<*+£)*+1]"1, 

S' = dS/d(a+B), 

go=U4taB(l+o?), 

g1=72aB2(l+a2)+12B\ 

g2=MaB*(l+a2) + 12BS(B-a), 

gz==6aB4(l+a2)+Bb(l+3a2-12aB-9B2), 

gi=aB*(l+a2)+B«(l+3a2+3aB+B2). 

APPENDIX C: OPERATORS FROM THE 
HARTREE-FOCK EQUATIONS 

The operators Foo and Ko0 for the incident channel 
are given by 

Foo 0) = 4iYV-1{ (l+ar)e~2ar+ (l+/3r)e-~
2^ 

+64a*P*(a+(3)-«i2+ («+£>>-<«+* >'} , (CI) 

and (for the special choice of screening constants a = /3), 

Km{rhr2) = (8/3)rfrir2(f</f>a)la6r«(n+r.). (C2) 

The function (r</V>2)i2 is equal to ri/r2
2 when r\<ri 

and to r2/r? when r{>r2. 
The triplet-state potential Vn is given by, 

/ 3 1 1 \ 
Vtt{r)^^r~le-^[ \+-yr+-y2r2-] yh*)-T(r), (C3) 

\ 4 4 24 / 
where 

T{rzy •dr£Ril(ri)R2i(r2)J(r<
2/r>

i)ls 

- 0 0 /.00 

= I rWri / ri 
Jo Jo 

= 2y-2rd-
z\6-e-^(6+6yrz+3yW+y3rz

z 

-y%4+-y5rA~] 
4 24 / J 4 

(C4) 

denotes the contribution which is due to the non-
spherical part of the atomic wave function. The triplet 
exchange operator may be expressed in the form, 

1 
Kuin^^-y^We-^^^^-KE+yil+h) 

24 

+2(i-7)(fri+^-i)]-ew-ow 
+ (l/r>)u+K'<V'>%> (C5) 

with 

Q(r) = 7 -y- 3 [6 - e-yr(6+6yr+2y2r2+lyh*)1. (C6) 

Finally, the exchange-interaction operators Kot and 
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Kto are defined by 

Kot(rhr2)= - I < o ( ^ / i ) = - 7 W ( a W 3 ) 1 / V i V r ^ 1 / 2 
X {(B-^~ar2[8 - e~®r* (8+8(Br2+4(BV2

2+ (BV2
3)] 

+ a - ^ - ^ 2 [ 8 " e - ^ ( 8 + 8 a f 2 + 4 a w + a v 2
3 ) ] } (C7) 

with a = o ; + j 7 and (& = P+%y. 

APPENDIX D: DIRECT EXCITATION PROCESSES 

It already has been established that the Born direct 
scattering amplitude fdm vanishes for the excitation of 
doubly-excited states which are stable to autoionization. 
Here we shall prove that the contribution to the exci­
tation process from direct scattering vanishes in the 
two-state theory as well and that this result is true for a 
large class of atomic trial functions. 

Previously we have developed the two-state theory 
only for excitation of the (2p)2 zPg state, and conse­
quently the only reactive terms which appeared in (6) 
were those involving the exchange-interaction operators 
Kot and Kto. To study the excitation of singlet states we 
replace the trial function (5) with 

*(123) = EcycWo(12)FLO(3)r3-
1Fo(r3,L)x-(12,3) 

+ £ v L « , " C(ih h"9L; -m", m", 0)*-»t"(l2) 
XFZ2^2„(3)r3-1Fs(r3,/2

,0x~(12,3)} (Dl) 

and then construct the integrodifferential equations 
for the Hartree-Fock functions FQ and Fs according to 
the prescription given in Sec. III. When this is done 
one discovers that the excitation will occur only if 
coupling terms such as 

Cf=Y,m2C(lhl2,L; -m2,m2y0) 

xf f fdndiJW-nfiU) Yl2m*(3) 

X (H-E^oi^YUSyr'Foir^L) (D2) 

are different from zero. 
We can approximate the ground-state wave function 

very accurately with the linear combination of 5-state 
configurations, 

^ 0 ( 1 2 ) = £ • • • £ anelcndldRnele(l)Rndld(Z) 
rtclc'mcndld'md 

XC(lcldfi; mc,mdfi)Ylcmc(i)Yldmd(2). (D3) 

Similarly, the wave function for the excited state can 
be written as the superposition of h configurations, 

^m(12) = 2Z* * '1L bnaianbibRnaia(i)Rnbib(2) 
nalanblbv 

XC(la, h, h; v, m-v, m)YlaV(l)Ylb,m^v(2), (D4) 

each of which has the same parity. The sets of quantum 
numbers nalama specify the states of orbital electrons 
and the functions Rni(r) are characteristic of the elec­

tronic radial distributions. Finally, the values of the 
scalar coefficients anin>v and bnin'v (which could be 
determined by a variation method) are indicative of the 
relative importances of the various configurations to the 
wave functions for the states in question. 

In terms of these mixed-configuration approximations 
for the atomic wave functions the direct-excitation 
term C/ may be written as 

Cf= Z ' - ' Z bnalanbib*ancicndid dnrx21 dr2r2
2 

nanbncndlalbhld JQ JQ 

XRnala*(l)Rnblb*(2)Rncle(l)Rndld(2) 

X[Coo-2 (C 1 2 +Ci 3 +C 2 3 ) ] , (D5) 
where 

Coo=Gnanb-..id(rhr2,rz)d(lhO)d(h,L) 
Xd(la,h)*(h,lc)B(!c,h) , (D6) 

C 1 2={(- l )^^[(2/a+l) / (2^ c+l)] 1 / 2 

XE/>o(r<zA>w)i2C(/,/a,^; 0,0,0)2} 
Xd(hfi)d(l2yL)d(la}lb)dQc,ld), (D7) 

and where 

Cya = { [(2/2+1)/ (2h+1) (2L+l)]1/^ V'>ll+1)/» 
XC(h,h,L; Ofl,0)C(h,h,la; 0,0,0)} 

XB(l/,lc)B(fM, (D8) 

for 7 = 1, 2. Here h'^h and l2—la- The precise func­
tional form of Gnanb:.id(f 1/2/3) is of no consequence 
to us here. 

Now if a doubly-excited state is to be stable to 
autoionization, its symmetry must differ from that of 
every adjacent continuum state. However, there exist 
continuum states with all values of the orbital and spin 
angular momentum. Consequently the parities of stable 
doubly-excited states must be different from those of 
all continuum states with similar energies and with 
identical values of the spin and orbital angular mo­
mentum. If the energy of the anomalous state exceeds 
the value of 65.23 eV, which is required for production 
of the He+ (2p) ionic specie, this criterion can not be 
satisfied. The reason is that beyond this limit there are 
continuum states with both even and odd parity for 
every value of the angular momentum. For energies 
beneath this threshold the parity of a stable doubly-
excited state with angular momentum h must differ 
from the parities of all continuum states with wave 
functions of the form, 

V^1Wl(12) = 2-1/2[i?10(l)(Rkil(2) Foo(l) Yhm(2) 
+i2io(2)(Rki1(l)Foo(2)Filwl(l)]. 

Here (RkZj(̂ ) denotes the radial portion of the wave 
function for an unbound electron with a force-free 
propagation vector k. 

In order that a doubly-excited state with the wave 
function given by (D4) be stable to autoionization 
the parities (— l)la+l^ and (—l)*1 must be different, 
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i.e., la+h+h must be an odd integer. However, from 
(D6)-(D8) it follows that each of the functions Coo, Ci2, 
C13, and C23 will vanish unless this same integer la+h-\~h 
is even. The basis for this conclusion is immediately 
obvious in the cases of Coo and C12; with Cn and C23 it 
follows from the fact that C(li,fa,h; 0,0,0) equals zero 
unless h+h+h is even. These observations establish 
that direct scattering does not contribute to impact 
excitation of stable, doubly-excited singlet states. 

APPENDIX E: BORN-OPPENHEIMER CROSS 
SECTIONS FOR TWO LOW-LYING 

STATES OF BERYLLIUM 

We have mentioned at the close of Sec. IV that there 
is available a considerable amount of spectroscopic 
information concerning the anomalous states of beryl­
lium. The least energetic of these, a zPg state with the 
configuration (ls)2(2p)2, is located well below the first 
ionization potential. The next of the zPg states has the 
configuration (ls)22p3p and an energy roughly 1.7 eV 
above the ionization potential. Since Herzberg21 has 
reported that the observed emission line for the transi­
tion (\s)2(2p)2ZPg-> (\s)22s2pzPu is quite intense, 
there must exist some very effective process for produc­
ing atoms in this anomalous zPg state. Herzberg 
concluded that this excitation process was not the 
result of the collision of a single electron but that it 
proceeded "through the spzP state by two successive 
electron collisions." To us this explanation seems un­
likely since the radiative lifetimes of the postulated 
intermediate states are probably no greater than 10~7 

sec. Furthermore, the results presented below indicate 
that the single-shot mechanism for production of 
anomalous states is very efficient—so much so that it 
almost certainly overshadows the Herzberg mechanism 
in importance. 

We have assumed that configuration interaction can 
be neglected in constructing approximate product-
orbital wave functions for the various states of beryl­
lium. The basic orthonormal hydrogenic orbitals which 
we have used are 

^ l s ( r ) - 2 a ^ - - F 0 0 ( r ) , 

with 

u2s(t)^ ( ^ /2 ) 1 / 2 ( l - ^ /2 )6~^ / 2 F 0 o( r ) , 

A - 2(2^ 3 ) 1 / 2 («- /3) (a+/3/2)-*, 

iv^ci-x2)-1/2, 
and 

*2i,(r) = (y*/Uyi*r<rvi*Yu(t), 

i M r ) = (8y5/3»yi2r(6-yr)e~^zYlv(r). 
In accordance with the suggestions of Morse, Young, 
and Haurwitz22 and of Duncanson and Coulson,23 we 

22 P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev. 
48, 1948 (1935). 

23 W. E. Duncanson and C. A. Coulson, Proc. Roy. Soc. Edin­
burgh A62, 37 (1944). 

have chosen a—3.7, 13=2.0 and 7=1.75 . Variation 
calculations we performed for the 2p3p1Pg state of 
helium indicated that the screening constants for the 
two electrons were very nearly equal. This provides 
some justification for our present use of the same screen­
ing constant 7 for the \p<nv and \pziv orbitals. With these 
wave functions the energies for the ground state and 
for the lower lying of the two excited states are 
-29.1575 and -28.6431 Ry, respectively. The differ­
ence of 0.5144 Ry or 7.1 eV agrees fairly well with the 
experimental value of 7.3 eV. For the energy of the 
(ls)22p3p zPg state we have adopted the experimental 
value of 0.808 Ry or 11.0 eV above ground. This state 
is imbedded within the first ionization continuum of the 
beryllium atom. 

The scattering amplitudes of the Born-Oppenheimer 
approximation are given by 

= — £ „ C(l , 1, 1; v, m-v, m) / / / dridr2drze-ik'T* 

X^2i ,*( l¥2i w l - / (2) (2A 2 3 )^ k o^ 2 s (2)^ 2 8 (3) , (El) 

and 

fm(6^)2p3p) 
2-1/2 - , , 

= HvC(l,l,l;v,<m-v,m) / / driJr2dr3<r ik 'r3 

X [ ^ i , * ( l ) ^ i « - , * ( 2 ) - ^ * ( 2 ) ^ 8 i ^ * < l ) ] 

X (2A2 3)^ko-^2 s(2)^2 s(3). (E2) 

Just as in the case of helium the components with m = 0 
vanish and | /11 = | f-i | . Therefore, the differential cross 
sections are related to the scattering" amplitudes by the 
formula /(0,0) = 3(2fc/*<01 MM) 12-

The task of performing the multiple integrals is 
tedious but straightforward. The results are 

M9J; {2pf) 

= 22V2£o76((W+72/4)-3 

X J drji (kr)Gi (r) J sinfc'*, (E3) 

and 

M6,4>;2p3p) 

= 21/2(8/81)7V5W { 6 ( W - 7 V 9 ) ( W + 7 V 9 ) - 4 

X f ^ ' i ( ^ ) G i W + ( W + i 7 2 ) - 3 

Jo 

X / drj\(kr)G2(r) t sinfle**, (E4) 

file:///pziv
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where 

Gi(r) - [(l-r)^-'*~Xa3/V«''][^-5{8--e--5^8+8^r+4^V2+^V3)} 
-£~ 6{40~e~^(40+40£r+20£V 2+6W (E5) 

and 
G 2 ( r ) ^ 3 [ ( l _ f ) ^ _ x a 5 / 2 e - « ^ 

- D-*{ 280- e~Dr (280+ 280Z>+ 140W+44W+9Z)V l+Z>V5)} 
+Z^7{240-^-^)'(240+240Z)r+120Z)V+38Z>3f3+8Z)V4+Z)V5)} 
+\a^2C~5{ 24 - <r ̂  (24+ 24CV +12CV+4CV+CV)} 

- X^2C-6{40- <rCr(40+40Cr+ 20CV+ 6CV+CV)} ] . (E6) 

In these formulas, A =a+Jy , J5= 1+f y, C = a + | y , and 
Z ) = l + | y . The screening parameter /3 does not appear 
since it has been replaced everywhere by its numerical 
value 2. Although the integrals involving the spherical 
Bessel functions ji(x) and the functions G\{%) and G2(x) 
can be performed analytically, the resulting expressions 
are extremely complicated. In fact, we found it less 
difficult to directly program these integrals for numerical 
integration than to program the very involved alge­
braic expressions which are obtained from analytical 
integration. 

The calculated values for the total cross sections, 

/•27T /»7T 

a = d4>\ dd sii tf/(0,0) = (16irk/ko) | / I Q T T , 0 ) | 2 , 
Jo Jo 

are illustrated in Fig. 6. The most striking features of 
these results are, of course, the enormous magnitudes of 

FIG. 6. Born-Oppenheimer cross sections for impact excitation 
of two states of beryllium. The total cross sections are given as 
functions of the incident electron energy. Curves (a) and (b) refer 
to the (ls)2(2p)2 and the (ls)22p3p 3Pa states, respectively. 

the cross sections. Thus, according to the BO approxi­
mation, the probability of producing a doubly-excited 
state is comparable to that of causing an ordinary single-
electron excitation. The great disparity in size between 
the cross sections for helium and beryllium is due to the 
strong overlap of the 2s and 2p orbitals in beryllium and 
to the most negligible overlap of the Is and 2p orbitals in 
helium. From a comparison of curves (a) and (c) of 
Fig. 3 one sees that a similar disparity, amounting again 
to approximately three orders of magnitude, separates 
the magnitudes of the cross sections for excitation of the 
(2p)2 and 2p3p sPg states of helium. Just as with helium 
the cross sections for excitation of the zPg states exhibit 
their maxima when the electron is scattered at right 
angles to the direction of the incident beam. Due to the 
high probability of this process the anomalous sin20 
scattering pattern should be relatively easy to observe 
for beryllium. Furthermore, as in the case of helium the 
polarized radiation arising from subsequent dipole 
emission24 should provide a useful diagnostic tool. 

The adequacy of the BO approximation to account for 
the double-excitation cross sections of beryllium must be 
verified by the performance of DEW and/or TS calcula­
tions of the sort which we have presented here for 
helium. It is possible that the BO cross sections may be 
in error by as much as an order of magnitude. However, 
even if this turns out to be the case one still could 
classify electron-impact production of doubly-excited 
beryllium as a rather efficient process. The BO calcula­
tions presented in this appendix constitute little more 
than an exploratory investigation. A more comprehen­
sive study of the doubly-excited states of beryllium and 
of other alkaline earths is in progress and will be reported 
in a future communication. 

2 4 1 . C. Percival and M. J. Seaton, Phil. Trans. Roy. Soc. 
London A251, 113 (1958). 


