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The nonlinear interaction of two ultrasonic waves in a homogeneous, isotropic medium is investigated by 
using the first-order time-dependent perturbation theory of quantum mechanics to calculate transition prob
abilities between available phonon states. Excluding collinear interactions, it is shown that there are two 
general types of possible interactions, depending on whether the zeros of the scattered wave displacement 
amplitude do or do not depend on the third-order elastic constants. Using correspondences between phonon 
densities and classical displacement amplitudes, and between generated phonons and Huygens wave sources, 
the theoretical displacement amplitudes for the scattered waves are derived. The amplitudes agree exactly 
with those derived from classical theory and are plotted for various materials and interaction geometries. 

I. INTRODUCTION 

MANY authors1-4 have considered the absorption 
of ultrasonic waves in an ideal crystal as a result 

of the sound quanta interacting, via the anharmonic 
terms of the Hamiltonian, with the lattice vibration 
quanta. With the advent of recent experimental 
techniques, it is now possible to study three-phonon 
interactions in detail. This is done by expeiimentally 
generating two noncollinear beams of ultrasonic 
phonons and, by standard experimental procedures, 
detecting the phonon beam created by the interaction 
of the initial phonon beams.5 In this work the experi
mentalist uses the language of classical waves, whereas 
the theoiist uses the language of quantum mechanics. 
This paper bridges the gap between the two disciplines. 

The first section describes the first-order time-
dependent perturbation theory used to calculate the 
transition probabilities between different phonon states 
in a homogeneous isotropic solid. Although this ap
proach is described elsewhere,1 it is included to make this 
paper self-contained and to correct some minor errors 
which have appeared in the literature. It is then shown 
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that, for isotropic media, there are two general types of 
possible interactions, depending on whether the zeros 
of the scattered wave amplitude do or do not depend on 
the third-order elastic constants. The detailed expres
sions for the scattered wave displacement amplitudes 
are derived using some interesting relationships between 
the quantum and classical theories. The results, ex
pressed in classical terms and agreeing exactly with 
those derived from the classical approach of Jones and 
Kobett,6 are plotted for various interaction geometries 
and for five materials. The theoretical plots are com
pared with experimental results in Paper II.7 

II. GENERAL THEORY 

Following Slonimskii's approach,1 the deformation of 
a solid under stress is described by the components wap 
of the deformation tensor: 

(1) 

(2) 

where ua is the displacement of a point in the xa direc
tion, and the Einsteinian notation is used, i.e., repeated 
indices denote a summation over those indices. The 
deformation tensor defined by Eq. (1) is quite general 
and is even valid for finite deformations. In terms of the 

6 G. L. Jones and D. R. Kobett, J. Acoust. Soc. Am. 35, 5 
(1963). 

7 Fred R. Rollins, Jr., Lyle H. Taylor, and Paul Todd, following 
paper, Phys. Rev. 136, A597 (1964). 
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deformation tensor, the elastic energy density 3C of an 
isotropic solid is written8 as 

+Bwafhv r i+ \Cwa<?, (3) 

where fx is the modulus of rigidity, K is the modulus of 
compression, and A, B, C are the third-order elastic 
constants. For the purposes of this paper, all terms of 
fourth order or higher are assumed to be negligible. 

Defining two new tensors: 

the Hamiltonian density can be written as a sum of two 
Hamiltonian densities: 

3C() = llUa£+ (\K - \ll) Uaa , (5) 

3C' = \Cuaa+ (B + %K-\lx)Ua{?UyyJr (\A +fJt)UapUfiyUya 

~ (\K — \y)UyyVapVpa — fXUapVpyVycc , (6) 

where the symmetry properties of uap and vap have been 
used. Using time-dependent perturbation theory, tfC0 

is the unperturbed Hamiltonian density, and 3C' is the 
perturbation Hamiltonian density which produces 
nonzero probabilities for transitions between available 
phonon states. 

In general, the displacement vector u(r) is the sum of 
the displacement vectors associated with each harmonic 
wave: 

3 

u( r )= £ en(an eik"'r+an* e~ik-'r), (7) 
n=l 

where en is a unit vector in the direction of polarization, 
an is the amplitude of the nth phonon, and kn is the 
propagation vector. I t follows that 

Uap^Uaff + Uaff+Uat?, Va0=Vaff- + Va(?+Vafi*, (8) 

where the superscript refers to the number of the phonon 
state (for typographical convenience the phonon state 
number will appear as a subscript when tensor com
ponent subscripts do not appear). The perturbation 
Hamiltonian density can now be written as9 

O C ' = 2 C u ^ u J u J + (2B+K- f/*) 
X{Uyyhia^U^ + Uyy2Ua^U^+UyyZUa^U^) 

+ (2A + 6jl)Uafi1U0y2Uya
Z+ (K ~ IM> 

X(Uyyhapha(3
S+Uyyha(3ha(lZ + Uyyhapha(32) 

+ 2fx(ua^\y2Vay
d+Ua0

i
v0y1

vay
S+Ua^y1vayS) , (9) 

where all terms containing two or three functions with 
the same superscript have been discarded since they do 
not pertain to three-phonon interactions. 

In quantum theory, the amplitudes of Eq. (7) are the 

8 L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Perga-
mon Press, Inc., New York, 1959). 

9 Several perturbing Hamiltonian densities that appear in the 
literature are in error. 

annihilation and creation operators of the linear har
monic oscillator whose only nonzero matrix elements 
are 

/a*\ r * /^V"+l \ l 
(N±l\[ )\N)= : J K ± - S (10) 

\a / L2mo)\ N / J 

where N is the initial number of phonons, ha is the 
phonon energy, / is the time, and m is the mass of the 
volume of interaction V. To conserve space the large 
parenthesis notation is used where the upper term is 
taken when the upper signs of the equation are used, 
etc. 

The matrix elements of the components ua$ and vap 
are obtained by differentiating the displacement 
components: 

(N±l\uap\N) 

= ̂ ^'t(eakfi+efika)(N±l\(a W > , (11) 
2 \a ) 

<iV±iMA0 

= = F - ^ k - ' ( e a ^ - ^ a ) < i V = b l | f a ) | A 0 - (12) 
2 \a J 

Since e X k = 0 for longitudinal phonons and e-k = 0 for 
transverse phonons, (Ndb\\vap\N) and {N±\\uaa\N} 
vanish, respectively, for longitudinal and transverse 
phonons. 

Assuming that the initial phonons interact for a 
sufficiently long time, the transition probability (the 
rate of occurrence of a process per unit time) P between 
the initial i and final / states is given by10 

P=(2T/h)H%f*5)f(St), Hif*=\(f\H'\i)\*, (13) 

where S% is the energy of the initial state, and £>/(&) is 
the density of final states about Si. The perturbing 
Hamiltonian H' is obtained by integrating the perturb
ing Hamiltonian density over the volume of interaction. 
The integration yields a V factor provided the total 
momentum is consetved and zero otherwise. 

III. GENERAL INTERACTIONS 

From Eq. (11) and the conservation of momentum, 
it is apparent that the first term of Eq. (9) represents 
three collinear longitudinal waves. Although Shiren11 

has observed this interaction, it is geneially forbidden 
if dispersion is present and will not be considered 
further. 

Investigating all possible three-phonon interactions 
satisfying the conservation laws of energy and momen
tum and recalling that the speed ci of the longitudinal 
phonons (L) is always greater than the speed ct of the 

10 J. M. Ziman, Electrons and Phonons (Oxford University 
Press, New York, 1962). 

11 N. S. Shiren, Phys. Rev. Letters 11, 3 (1963). 



U L T R A S O N I C S T U D Y OF T H R E E - P H O N O N I N T E R A C T I O N S . I A 593 

transverse phonons (T), the only nonzero interactions 
are given by 

L++T+T, L<->L+T. (14) 

These interactions will be called the a and ft inter
actions, respectively, with the corresponding matrix 
elements labeled aHi/ and pHi/. (In anisotropic solids, 
Herring12 has shown that the T*->L+T interaction 
also exists and must be considered.) 

To evaluate the foregoing equations, use rectangular 
Cartesian coordinates, let Ui be a longitudinal wave 
traveling in the %\ direction, let 113 be a transverse wave, 
and define the x% direction to be in the plane of inter
action formed by the three propagation vectors. With 
these restrictions and letting 6n be the polarization 
angle between en and the plane of interaction, the 
matrix elements can be evaluated from the interaction 
geometries of Fig. 1 to give 

aHif
f = J (Q/c?) { cos02 cosflg 

Xl(K+in) + (2B+K+A + 7fx/3) co s (2$+2^ ) ] 
+sin02 smd£(B+K-&)2 cos(<l>+*) 

+ (4+4ju) cos$ c o s ^ ] } , (15) 

BHif' = {Q,/cf) (2B+K+A + 7fx/3) cos03 cos<i> 
X [cos$ sin2^+sin^> cos2^] , (16) 

where 

A8a>ico2Co8/A
ri+1\ /N2+1\ /Nz+1\ 

0 = F 2 \ ( 1 7 ) 

Srn*ci2c tANi /\N2 /\NZ / 

The Nn terms emphasize that the interaction geome
tries of Fig. 1 do not specify which are the initial and 
final phonons. When this specification is made, the 
A^n+1 terms are used for the created phonons and the 
Nn terms for the annihilated phonons. 

I t is apparent from Eq. (16) that the zeros of pHi/ 
depend only on the interaction geometry. In fact, the 
matrix element vanishes whenever the polarization 
vector is perpendicular to the plane of interaction or 
whenever the longitudinal phonons intersect at right 
angles. I t is even more interesting that the zeros of 
cMi/ depend on the material as well as the interaction 

a INTERACTION & INTERACTION 

(a) (b) 

FIG. 1. Phonon vector relationships. 

FIG. 2. Interaction 
geometry. 

geometry. This presents the possibility of determining 
the third-order elastic constants of isotropic solids by 
experimentally determining the geometry that produces 
the zeros of this interaction. This determination would 
be very accurate since it does not depend on any multi
plicative factors such as 12. I t is expected that in aniso
tropic solids the P interaction zeros will also depend on 
the material constants. 

IV. SCATTERED WAVE DISPLACEMENT 
AMPLITUDES 

I t is now convenient to change the above notation for 
labeling the phonon states and their interaction geome
tries. As diagrammed in Fig. 2, let the first- and second-
phonon states represent the experimentally generated 
input phonons interacting at an angle <p. The third-
phonon state then represents the created phonon 
emitted at an angle 7. 

Envisioning a classical elastic wave as being an 
ideally dense homogeneous beam of phonons, the beam 
intensity In is given by 

In = 10ZhcnOinVn , In = \\SZpCn02nXn* (18) 

5 Conyers Herring, Phys. Rev. 95, 954 (1954). 

where cn is the phonon speed, rjn is the phonon density, 
and the 103 factor is the conversion factor from the 
mks to the cgs units used in this paper. The second 
equation is the classical expression where Xn is the 
displacement amplitude. Consequently, the relationship 
between the phonon density and the displacement 
amplitude is 

Hn=(j**«/2K)X*. (19) 

Of all the interactions occurring between the v\x 

phonons and the 772 phonons, only a small number, given 
by the transition probability, will generate v\% phonons. 
Each newly created ^3 phonon may be visualized as the 
center of a Huygens' spherical wave which interacts 
with adjacent Huygens waves to produce a diffraction 
pattern. In other words, diffraction from a small volume 
element, or single aperture, is produced and the appro
priate classical equations can be applied. For example, 
if the scattered beam has a circular cross section of 
diameter d, the classical expression 15.3 cz/o)zd gives the 
angular beam width of the main lobe. We will determine 
the displacement amplitude at the center of the main 
lobe in the far field. 

Integrating the HuygensJ spherical waves over all 
angles, the transition probability per unit time is 
evaluated as 

P = 4 U T V 8 , (20) 
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TABLE I. All possible interactions and related factors. 

Case 
No. Interaction cos<p tan7 

r(«i)-f r ( w a ) -» £(coi+o>2) c2 
(1 — c2)(a2-\-l) a sirup 

2a 

1 (l-c2)OH-l) 
II L(c0l)~> L((d2)-\-T(a)l — Cx)2) 

c2 2ac2 

I I I L((A>I)-\-T(Q>2)—» L(o)iJrca2) c— 

IV ZW-^rCwjO+ZCwi-oj) c + 

V Z(coi)~> r(ctJ2) + r ( w i —CO2) 

0 (1 -C 2 ) 

a(l-c2) 

2c 

c 2ac 

sin^2 sin^3 
- { ( £ + # - f M ) c 2 ( l - K ) 2 cos*> 

l-f-#cos<p ct
z(l-ha)2 

+ (2ii+iA)[a+(l+a2) cos<p-f-a cosV]} 

COS02 COS03I 

4~ 
7A 

w2 LA 3 / 
— a s in 9? cos03 sin2<p/ V/x 

2c? \ 3 1 —fl COS^J 

# sin<p coŝ 2 sin^> / 7/A 
/ 2B+A +K-\— )|>H-c(2-f 2a+a2) cosrf 

—a$iri(p cosfo sin^> / 7/A 
1 2B+A+K+— )[-a+c(2~2a+a2)cosy>] 

c—acos<p ctci2(l-~a)2\ 3 / 

-asiricp sin^2 sin#3 

c—acoscp ct
s(l-\-a) 

COS02 COS03 

•C(5+Js:-fM)(ccos^-a) 

+ (2ju+\A) (c—a cos<p) cos<p2 

ct
s(l~a2) 

(2B+K+A+~\(cco$<r--a)2 

~(B+»+iA)(l -a)2] 

where r is the distance from the point of observation to 
the origin of the rjz phonons and 773 is evaluated at r. In 
other words, 

X<? = hP/27rr2pa>zCs. (21) 

The density of final states can be found in the usual 
manner to be13 

£>,= Va>z2/27r*hcz* (22) 

where the conservation of energy has been used. Con
sequently Eqs. (13) and (21) give 

X3
2= (Va1/21^tiphcl')\(r,lV-l,i,tV1l\B'\viV,vtVfi)\t, 

(23) 

where appropriate values for Nh N$, Nz are used and 
it is assumed that 

V*Vy>l. (24) 

Evaluating the matrix elements in Eq. (23), the 
displacement amplitude of the scattered beam can be 
written as 

X3= X^VAWail+a^/STrpctCi, (25) 

FIG. 3. Interaction case I (0i=02 = 9O°) for five solids. 

where a=W2/W1 and c—ct/ci. The value of A is a function 
of the particular interaction and is listed in Table I for 
the five possible cases arising from the interactions 

13 Leonard I. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1955). 
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TABLE II. Elastic constants and ct/ci for five materials. 

Material 

REX-535 Nickel-
Steela 

Copperb 

Armco iron0 

Polystyrene0 

Pyrexc 

M 
1010 dyn/cm2 

78.00 
46.00 
82.00 

1.381 
27.50 

X 
1010 dyn/cm2 

90.90 
131.0 
110.0 

2.889 
13.53 

c = ct/ci 

0.562 
0.454 
0.547 
0.495 
0.633 

K 
1010 dyn/cm2 

142.9 
161.7 
164.7 

3.810 
31.86 

A 
1010 dyn/cm2 

- 730 
-1590 

1100 
- 10 

420 

B 
1010 dyn/cm2 

- 225 
170 

-1580 
- 8.3 
- 118 

« See Ref. 15. 
h See Ref. 16. 
« See Ref. 14. 

depicted in (14). The factors determining the inter
action geometries (see Fig. 2) are also included in 
Table I. Cases I and V are a interactions and cases II , 
I I I , and IV aie 0 interactions. (Note that cases I I , IV, 
and V could be utilized to make an ultrasonic amplifier.) 
I t can be shown that for case I, Eq. (25) is completely 
symmetric in co.i and o>2, i.e., for this case the scattered 
wave displacement amplitude is independent of the 
labeling of the two input waves. I t can also be shown 
from Eq. (25) that case V is just the reverse interaction 
of case I and that cases I I , I I I , and IV are all reverse 
interactions of each other. This is as it should be. 

Jones and Kobett6 investigate this same problem by 
using the classical wave approach and applying the 
Fourier transform method for solving the inhomogen-
eous vector wave equation. However, the following 
term, in their notation, 

- (^-fM+^)C(Ao-k 1)(fc 1-k 2)Bo±(Bo-k 2)(k 1-k 2)Ao], 
(26) 

where Ao and Bo are the input wave displacement ampli
tudes, was inadvertently omitted from their I* vector. 
Including this term and calculating the scattered wave 
displacement amplitudes from their results, Eq. (25) is 
again obtained. This is most gratifying. 

V. NUMERICAL RESULTS 

There are only five isotropic materials for which 
the third-order elastic constants have been pub
lished.14-16 The difficulties encountered in these meas
urements can be appreciated by the large experimental 
errors—on the order of 100% for some of the constants.. 
The available third-order elastic constants and other 
pertinent data are tabulated in Table II. 

Using the data in Table II , the value of | X31 as given 
by Eq. (25) can be calculated as a function of the inter
action angle <p. The only unknown is the value of the 
volume of interaction V. We will use, as an approxi
mation, the volume common to two completely inter
secting cylinders, each of diameter I, i.e., 

F=f/3csc<£>. (27) 

Only the absolute value of Eq. (25) should be calcu
lated since the sign has been ignored in the deriva
tion and since only X£ is pertinent to experimental 
measurements. 

Figure 3 is a plot, for the five materials listed in 
Table II, of |X 3 | versus <p for case I with 61=d2=90o. 
In order to present all of the calculations in a readable 
manner without circuitous explanations, the values of 
|X 3 | are given in arbitrary units and each curve has 
been arbitrarily shifted in the vertical direction. In 
other words, only the shapes of the curves are accurately 
retained. This is also true for Figs. 4 and 5. The actual 
values of the displacement amplitudes for all inter
actions in iron, copper, polystyrene, Pyrex, and nickel-
steel, are available from the authors. 

Case I is an a interaction and it is quite apparent in 
Fig. 3 that the zeros of the displacement amplitude do 
indeed depend on the material constants. I t is interest
ing that the curves for polystyrene and iron do not have 

14 D. S. Hughes and J. L. Kelly, Phys. Rev. 92, 1145 (1953). 
15 D. I. Crecraft, Nature 195, 1193 (1962). 
16 A. Seeger and O. Buck, Z. Naturforsch. 15a, 1056 (1960). FIG. 4. Interaction case II (03 = 0°) for three solids. 
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FIG. 5. Five interaction cases for iron: (A) case I (61=62 = 0°); 
(B) case III (02 = O°); (C) case IV (02 = 0°); (D) case V 
(02=0Z = 90°); (E) case V (02=03 = 0°). 

zeros but do exhibit minimums. However, zeros may 
exist for a different choice of polarization angles. The 
end points of each curve essentially represent the angu
lar relationship at which the conservation laws of energy 
and momentum can no longer be satisfied. These points 
can be easily found from Table I and the requirement 
that |cos<p| < 1 . 

Figure 4 is a plot, for iron, polystyrene, and steel, of 
case I I with 03= 0°. This case is a 0 interaction and, of 
course, the zeros of the curves are independent of the 
material. Caution must be exercised in interpreting 
these curves since the approximation in Eq. (27) 

dominates each cuive shape near interaction angles of 0 
and 180°. 

Figure 5 is a plot for iron of the displacement 
amplitude curves for several additional interaction 
cases. All of these figures illustrate the strong de
pendence of the scattered wave displacement amplitude 
on the properties of the solid and on the interaction 
geometry. 

VI. SUMMARY 

The nonlinear interaction of two elastic waves in a 
homogeneous, isotropic solid has been investigated by 
using the fhst-order time-dependent perturbation 
theory of quantum mechanics to calculate transition 
probabilities between available phonon states. Exclud
ing collinear interactions, it has been shown that there 
are two general types of possible interactions, depending 
on whether the zeros of the scattered wave displacement 
amplitude do or do not depend on the third-order elastic 
constants. The former type could be used to evaluate 
the third-order elastic constants. A relationship be
tween phonon density and displacement amplitude was 
then derived. Using the concept that newly created 
phonons are sources of Huygens waves, the exact 
scattered wave displacement amplitudes were then 
derived for all possible interactions. The resultant dis
placement amplitudes agiee exactly with those derived 
from the classical approach of applying the Fourier 
transform method for solving the inhomogeneous vector 
wave equation, The predicted displacement amplitudes 
were then plotted for various mateiials and interaction 
geometries. The results will be compared to experi
mental measurements in paper II.7 
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