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From the classical equation of motion, the radiation emitted by an electron in an external magnetic field 
undergoing Coulomb interactions is derived. It is shown that the several spectral components corresponding 
to magnetic and Coulomb force terms cannot be interpreted simply by saying that the total spectrum is com
posed of a cyclotron line superimposed on the continuum from the bremsstrahlung emission in the absence 
of the magnetic field. 

1. INTRODUCTION 

IN previous papers,1-3 we have shown that free elec
trons in the presence of ions and an external mag

netic field emit a continuum with a sharp resonance at 
the cyclotron frequency. I t is suggestive to identify the 
continuum with bremsstrahlung, admitting that its 
spectral features may be somewhat altered by the 
presence of the magnetic field, and to equate the 
resonance emission with the cyclotron line undergoing 
broadening effects by the electron-ion interactions. 

This identification, however, is by no means self-
evident. The quantum-mechanical treatment shows that 
the broad-band continuum and the resonance line both 
arise from the same solution of the wave equation, with 
no apparent distinction in the spectrum. In fact, the 
results suggest that there is no physical basis for the 
separation of the emission into two components. This is 
indeed the case. 

I t was stated in the introduction to Paper I that the 
whole problem of radiation due to Coulomb interactions 
in a magnetic field in principle could be obtained on the 
basis of classical theory, but that a quantum theory 
despite the cumbersome formalism is still easier to 
handle if the main interest is placed on obtaining accu
rate cross sections. Now, where these accurate cross 
sections are available for the whole spectrum, this 
argument is no longer valid, and a classical theory-
appears more adequate as well as simpler. 

We derive in Sec. 2 the radiation spectrum from a 
classical equation of motion retaining appropriate 
damping and field terms as parameters. In this manner, 
we avoid the complications inherent in their explicit 
computations. We then proceed (Sec. 3) to calculate the 
radiated energy, coming back to the equation of motion 
and its representation of the interactions by force terms 
(Sec. 4). In Sec. 5, the initial value contribution is 
calculated. Finally, the results are discussed in Sec. 6. 
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2. SOLUTION OF THE EQUATION OF MOTION 

The classical calculation of the radiation spectrum 
rests on computing the Fourier components of the 
acceleration to which the radiating particle is subjected. 
For this purpose, we have to solve the equation of 
motion which we write for a particle of charge g, mass 
m} and position vector r, in the form 

m—= - r x H + F — vr. 
dt2 c 

(1) 

The phase terms on the right-hand side represent the 
interaction of the particle with a uniform external mag
netic field H, and the results of interactions with 
Coulomb fields which we split into a component F 
perpendicular to the instantaneous direction of motion 
and a term vi parallel to the instantaneous velocity 
vector. 

Making the z axis the direction of the magnetic field, 
we find for the x and y components of the acceleration 

and 

With 

we obtain 

mx= (l/c)qyH—vx+Fx 

my= (—l/c)qxH—vy+Fy. 

p=x+iy, $=Fx+iFy, 

mp= (—i/c)qHp—vpJtr$. 

Equation (5) has the solution 

Jo 
eUT${t)dt, 

where 

and 
tt—io?c+ v/m, uc—qH/mc, 

a=vx(0)+ivy(0) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

is a complex constant depending on the velocity of the 
particle at an initial time t = 0. The acceleration p is 
then obtained by differentiating Eq. (6) with respect 
to T. 
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3. RADIATED ENERGY 

Returning to real variables with 

Ti=otA+yj, (9) 

we have for the radiation emitted between time 0 and T 

I{T) 
2e2 rT 

3c* Jo 
r i ( / ) -rx( /)^ . 

Next, we define the Fourier transform 

r(T) 
/.-f-00 

= (2x)-1 '*/ rw 
J ~oo 

exp(io)T)do), 

and 

r w =(27r) - •1/2 

•+oo 

r(/) exp(—icot)dt, 

(10) 

(11) 

(12) 

where we take t(t) = 0 for all / < 0 , since we are only 
concerned with displacements caused by the force F in 
the interval between initial time 0 and observing time T. 

Differentiating Eq. (11) with respect to T and in
serting the resulting expression into Eq. (10), we obtain 

I(T) 
2e2 r2 

3c3 in 
dt(2ic)' •1/2 da)(2' 

/

+oo 

da' 
-00 

Xco2exp(zW)o/2 

Xexpiiu'fiixoX^+yuy^+Ioil^, (13) 

where the contribution IQ(T) is due to the first term in 
Eq. (6) which is independent of <£ and will be discussed 
separately in Sec. 5. Making use of the Fourier trans
form of the 5 function,4 

expp(co+co /)^]^ :=i5(co+w /), (14) 

we can simplify Eq. (13), which transforms in the limit 
T-^oo to 

7 ( r - > o o ) = 
2e2 

3cz 

X 
/

+ 0 O 

-00 

^{xuX-u+yuy^do+IoiT). (15) 

We now express the Fourier components of x and y in 
terms of co and F which is achieved with the aid of Eqs. 
(4) and (5). After some manipulations and introducing 
the complex conjugates 

(16) yJ=y-
4 Equation (14) in this form is, strictly speaking, incorrect, since 

the principal part contribution has been left out. This contribution 
is only then of importance if there are singularities in {xwXa> 
+3yy«0 for w-fa/?^0. Examination of xwxU' and y»y«*, however, 
shows that this is not the case as long as time intervals much 
longer than the reciprocal of the collision frequency v from Eq. (1) 
are considered. 

of Xo, and yW} we have 

* w = i F S i „ [ a - - 1 + Q ^ r 1 ] + i * F y i W [ Q L r i _ f t r i ] (17) 

and 

y«= -itF«f„[Q_-1-ar1]+i^y..Ca--1+af"1]. (18) 
Here, Fx,a and FytU are the Fourier transforms of the 
x and y components of F, defined in the same manner as 
rw in Eqs. (11) and (12), 

12±= — mco2±wcococ+iva). (19) 

The radiated energy is now readily obtained in terms 
of v and F : 

j ( r - » o o ) = I r 
- I dw{F,F* 
2Jo 

}-N+h(T), 
m2 

where 

j \r= [ ( w _ W c ) 2 + ^ / m 2 ] - i + ^ C 0 + C 0 c ) 2 + ^ / w 2 - ] - i 9 

and 
{F,F*} s ZFx,„FXt0}*+FytC0Fy,„*-]. 

(20) 

(20a) 

(20b) 

The starred quantities refer as before to the complex 
conjugates. Terms linear in F, and terms of the form 
FXtaFy,a,*, etc., were neglected on the grounds that they 
cancel out in the average if the scattering ions that are 
responsible for the Coulomb fields represented by F are 
located at random. The randomness of ion location 
(and, for that matter, of all plasma correlations, dis
persive effects, etc.) was one of the basic assumptions 
in the previous papers I - I I I . A similar argument inci
dentally was brought forth by Scheuer5 in his treatment 
of bremsstrahlung. 

Equation (20) describes the total amount of energy 
radiated by the electron in the presence of Coulomb 
scatterers and an external magnetic field. I t thus 
corresponds to the expressions derived in I - I I I . For 
instance, if properly normalized to unit time, Eq. (20) 
becomes equivalent to Eq. (21) of paper I I I . 

4. SEPARATION INTO MAGNETIC AND 
COULOMB CONTRIBUTIONS 

Let us now turn back to Eq. (10) and treat the same 
problem once more, but making use of the force com
ponents introduced by Eq. (1): 

2e2 1 rT [ q q 
( / r ) = / dt — f X H — rXH 

3cd 2 J o IMC mc 

2[coc )r — 
\ ml m 

1 1 
+-F(0--F(0+2( 

mm 
•F(0 

m/ 
»2 

+—i-i\+h(T). (21) 

6 P. A. G. Scheuer, Monthly Notices Roy. Astron. Soc. 120, 231 
(1960). 
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The first term can be reduced by the methods of the 
last section to the expression 

2e21 f °° co 2 

71(7 ,->oo) = / da{F,F*}—N(w). (22) 
3cz2Jo m2 

If v/m<^ccc, only frequencies co~coc contribute signifi
cantly to the integral in (22) and the bracket containing 
terms such as 

F xt±a~F x,±wc\ Fy,±co~Fy,±we (23) 

can be taken outside of the integral. Then, 

2e21 coc
2 C 

/i(r->oo) = ~{F,F*} / N(a>)do3, (24) 
3c* 2 m2 J 

which is of the form of a collision-broadened spectral 
line. 

The second term reads simply 

2e21 2 f 
/ a ( r - > o o ) = {/?,/?*} / iw. (25) 

3c8 2 w2 J 

This term does not contain any resonance at all and 
thus describes a purely continuous spectrum. I t reduces 
identically to the bremsstrahlung continuum in the 
absence of a magnetic field. 

Obviously, these two contributions do not account for 
the total radiation emitted by the plasma. In fact, the 
third term 

/•(r->oo) 
3c3 2 Jo m* 

2coc (o)—coc) — 2 [y/mf 

Jco—{F,F*} 
M.2 

X t ZO)c{0)-

(w-(co—o)c)
2+(v/m)2 

2o?c (co+coc)+2 (v/m)2' 

(cc+ccc)
2+(v/m)2 . 

(26) 

shows again a resonance for co^coc. So does the fourth 
term, 

7 4 ( r - . o o ) = / &>-{F,F*} - A(o)), (27) 
3c3 2 J o w2 \ w / 

which, if combined with (26), would merely reduce the 
insignificant terms 2{v/m)2 in the numerator by half. 

Obviously, it must be true that 

j(T)=i0(r)+£/4(r). (28) 

This identity is easily verified with the aid of Eq. (20). 

5. CONTRIBUTION FROM THE INITIAL VELOCITY 

Before we discuss these findings, we have to write out 
the contribution IQ(T) that originates from the first 

term of Eq. (6), i.e., from 

po= — (iooc+v/m)pQ, p0==aexp{— (icoc+p/m)T} . (29) 

The radiated energy is found to be 

2e*l 
/0(r->oo)= 

3c3 2 
-W+v2/m2) 

X M*J**-»0+y»°V-»0}', (30) 

where the Fourier components #w°, etc., are defined with 
the aid of Eq. (4) replacing p by p0. 

Following the procedures of last section, we may write 

2e21 

3cz2 
1*00 

X{[^(0)]2+[^(0)]2} N(a)d», (31) 

where N is given again by Eq. (20a). 

6. DISCUSSION 

Let us first glance at IQ. The term does not depend on 
F, i.e., the part of Coulomb interactions that inflict 
changes on the instantaneous direction of velocity, nor 
directly on v. Instead, it depends on the initial velocity. 
7o is in form and origin the "cyclotron line" derived on 
the basis of the simple-minded Lorentz theory.6 For a 
term to term comparison, it is necessary to remember 
that our "intensities" are not normalized to unit time, 
that the collisions referred to inRef. 6 are elastic [(hence, 
the proportionality to coc

2 instead of (COC
2+J>2/W2)], and 

that consequently our initial velocity vo remains un
changed and is identical with " the" velocity of the 
particle. 

Our present assumption of random location of the 
scatterers is, in principle, built into the Lorentz-type 
theory as well, however, in the mathematical form of a 
randomness of phase changes and a randomness of 
times between collisions.7 

The crucial point, however, is a comparison between 
Jo and any one of the other resonance terms, in particu
lar, 11. Whereas I0 stays finite even in the limit T—-»oo y 

since 

N(co)doo = irni/v, (32) 

11 diverges for T—><*>. This can be most easily seen by 
considering Eq. (20) and evoking ParsevaPs theorem.8 

\F*}do)^ I F-F<ft~<F%v7\ (33) 
Jo 

poo 

/ {P>1 
Jo 

6 L. Oster, Phys. Rev. 116, 474 (1959), Eq. (14). 
7 Cf. The detailed discussion by L. Oster, Phys. Rev. 119, 1444 

(I960), Sees. 7 and 9. 
8 E. T. Whittaker and G. N. Watson, A Course in Modem Analy

sis (Cambridge University Press, New York, 1952), p. 182. 
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Hence, in the limit of a long observation time, the terms 
from Eq. (20) will dominate as expected. 

These resonance terms represent the magnetic force 
alone (Zi), the Coulomb components parallel to the 
instantaneous velocity (74) and the hybrid force of both 
types of Coulomb interactions and the magnetic field 
(73). That they are proportional to FF* is, at first, 
surprising until one realizes that the force terms are 
proportional to f, the instantaneous speed, which in 
turn depends on F. Each of the terms adds a contribu
tion to the resonance amplitude, and together they 
dominate at the resonance frequency over 12. On the 
other hand, outside of that resonance, all four of the 
terms are essentially of equal weight. Clearly then, all 
four together represent the bremsstrahlung" continuum 
outside of the line. 

Letting the magnetic field go to 0 eliminates only I\ 
(and, of course, part of 70).

9 The relative magnitudes of 
the nonvanishing terms become 

h/(h+h)^W(v/m)^>l (34) 

for most frequencies. Equation (34) can be interpreted 
by noting that the radiation produced by Coulomb 
interactions alone is originating predominantly in de
flections from the electron path, and only to a minor 
degree in linear accelerations. This fact is well known in 
the theory of bremsstrahlung.10 From this point of view, 
among all the Coulomb-induced terms, I\ and 12 will be 
dominant. This leads to another interesting observation: 
If we had neglected the damping term proper from the 
very beginning (v —» 0), we would have encountered a 
singularity at the resonance frequency, but no signifi
cant error further out. This type of approach is very 
common in kinetic theory, where Vlasov's equation is 
used instead of the complete Boltzmann equation.11 

The preceding discussion makes it clear that the 
radiation emitted by electrons under the combined 
action of Coulomb scattering and external magnetic 
fields cannot be simply expressed as the sum of brems
strahlung in the absence of a magnetic field (12) and 
cyclotron line emission (Ji). 

The relative importance of the interference terms (73 

and 74) is illustrated in Fig. 1. We have plotted the ratio 
R of bremsstrahlung in the absence of a magnetic field 
(I2) to the difference between total radiation and 
cyclotron line emission proper (Ji), 

R=V (h+h+h). (35) 
9 The corresponding limit would have been illegitimate in 

Refs. 6 and 7 due to the restrictions to the neighborhood of the 
resonance. 

10 L. Oster, Rev. Mod. Phys. 33, 525 (1961). 
11 See, for instance, J. Dawson, and C. Oberman, Phys. Fluids 5, 

517 (1962). 

FIG. 1. Ratio of 
field-free bremsstrah
lung intensity to that 
of total radiation 
minus cyclotron line 
contribution, as a 
function of fre
quency in units of 
the cyclotron fre
quency. 

Sl-U)/Wc-

Neglecting for simplicity the damping terms (v —•» 0, 
J4—>0), and introducing the parameter 

O = co/a (36) 

i.e., the frequency in units of the cyclotron frequency, 
we have 

(0+1 ft-lp1 

R=2\ + [ . (37) 
1 0 - 1 8 + 1 

Equation (37) holds except very close to the resonance 
co —> coc, 12 —> 1 where it predicts a zero that is physically 
unreasonable. Inspection of the complete solution with 
finite v reveals that 

R* > (v2/w2coc
2) [co—coj-1, co * (38) 

i.e., R goes to infinity at the resonance. The combination 
of Eqs. (37) and (38) is plotted in Fig. 1. 

The ratio R shows a rather interesting and to some 
extent unexpected behavior; for frequencies below the 
resonance, the ratio is negative, that, is, the cyclotron 
term proper I\ is larger than the total radiation emitted. 
It was already mentioned above that in the low-
frequency limit, the interference terms have the greatest 
influence on the result. For frequencies above the 
resonance, the ratio approaches + 1 . Physically, this 
behavior mirrors the fact that at high frequencies, the 
emission is only insignificantly affected by the presence 
of a magnetic field, and that the total radiation is thus 
practically equal to the bremsstrahlung term. At the 
resonance, finally, R goes to infinity, i.e., the total 
radiation equals the contribution from the resonance 
term proper, the "bremsstrahlung term" 72 is canceled 
by the two interference terms. 
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