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A statistical-mechanical theory of evaluating the distribution functions of a many-body system is pre­
sented. The theory is a natural extension of the quantum statistical theory of Lee and Yang for the grand 
partition function and gives a new formalism which is different from that developed recently by Fujita, Isi­
hara, and Montroll. The density matrices are first developed in the Uhlenbeck-de Boer U functions. A dia­
grammatical consideration separates out nonconnected products from connected products of the U functions, 
yielding an expansion formula which is simpler than that reported by de Boer some time ago. Application of 
the resulting expression to free bosons and fermions is made. Then the distribution functions are developed in 
the binary kernel introduced by Yang and Lee. This expansion is used for the evaluation of the pair distribu­
tion function of a hard-sphere Bose gas at the lowest temperature. The results improve upon those reported pre­
viously by Lee, Huang, and Yang and others. The normalization and divergence difficulties encountered by 
Fujita and Hirota are removed. Actually, their interpretation of Lee, Huang, and Yang's results in terms of 
the chain diagrams is not satisfactory. Instead the chain diagram results may be compared with the more re­
cent results by Wu. Use of the approximate pseudopotential <f> = Swad (ri—r2) is reflected in insufficiency of the 
chain diagram approximation. Satisfactory and consistent results are obtained when a new set of diagrams is 
taken into consideration. 

1. INTRODUCTION 

THE thermodynamical properties of a many-body 
system may be derived from the partition func­

tion, and there have been published a number of 
quantum-statistical theories for the partition function.1 

However, it is also important to evaluate the density 
matrix itself and its diagonal elements—the distribution 
functions.2 In particular, the pair distribution function 
is most important in deriving thermodynamic functions 
and obtaining information concerning the spatial cor­
relations of particles. Particularly, for a Bose system it 
is recalled that Feynman attributed the peculiar prop­
erties of liquid helium to the energy spectrum via the 
pair distribution function.3 

Recently a quantum-statistical method of evaluating 
the pair distribution function has been presented by 
Fujita, Isihara, and Montroll.4 These authors have 
generalized the theory of Montroll and Ward for the 
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grand partition function of a quantum-mechanical 
system and have applied their general formalism to an 
electron gas. However, their method is based on a 
perturbation expansion in potentials and may not be 
conveniently applied to the cases where the Fourier 
transforms of the interaction potentials do not exist. In 
the present paper, therefore, we aim at developing a new 
theory of the pair distribution function applicable to 
such cases. 

The theory which will be developed in this paper is a 
natural extension of the quantum-statistical theory 
given recently by Yang and Lee for the grand partition 
function.5 In a series of papers, these investigators have 
extended Uhlenbeck and de Boer's U-iunction method 
for quantum gases, and applied their formalism to in­
vestigating a Bose gas at very low temperatures. Since 
such a gas may be considered as a model of liquid helium 
and since the singular hard-sphere potential prohibits 
the usual perturbation methods, its treatment is of con­
siderable theoretical interest.6,7 

For this purpose, Lee, Huang, and Yang introduced 
the pseudopotential and evaluated the ground-state 
wave function. The wave function was then used for the 
evaluation of the ground-state energy and the pair dis­
tribution function. The ground-state energy thus 
evaluated involved a divergence due to the approxima­
tion made in the pseudopotential. Subtracting the 
divergent term, they arrived at the correct ground-state 
energy, which coincided with that obtained by Lee and 
Yang by the binary kernel method. However, it is to 

5 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); 116, 
25 (1959); 117,22 (1960). 

6 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 117, 1128 
(1957). 

7 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957); K. 
Huang, C. N. Yang, and J. Luttinger, ibid. 105, 776 (1957); C. De 
Dominicis and P. C. Martin, ibid. 105, 1417 (1957); T. D. Lee, 
K. Huang, and C. N. Yang, ibid. 106, 1135 (1957). 
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be noted that the same wave function was used in 
deriving the pair distribution function. Thus, one may 
expect a possible improvement upon their distribution 
function. 

More recently, Fujita and Hirota, using Yang and 
Lee's approximate pseudopotential, evaluated the pair 
distribution function of a dilute hard-sphere gas at the 
lowest temperature by summing the chain diagrams.8 

However, their treatment involved two unfortunate 
difficulties; one concerned with the normalization, and 
the other with the divergence in the ground-state energy 
to which their pair distribution function leads. They 
could not resolve these difficulties, as mentioned in their 
paper, but were obliged to remove arbitrarily the un­
desirable term in their resulting expression to make 
their results agree with those reported previously by 
Lee, Huang, and Yang. 

In view of these situations it is desirable to try to 
develop a new theory for the pair distribution function 
of a hard-sphere Bose gas. We shall show in this article 
that the interpretation of Lee, Huang, and Yang's result 
by Fujita and Hirota in terms of the chain diagrams is 
not correct. Actually, the chain diagrams are important 
at large distances, and at small distances a new set of 
diagrams plays a more important role than the chain 
diagrams. This new set of diagrams may be considered 
as a special type of chain diagram. We find it convenient 
to distinguish these diagrams from the chain diagrams 
because their summation corresponds to introducing an 
effective two-particle propagator, while the summation 
over chain diagrams corresponds to an effective inter­
action potential. 

In the next section we shall first express the distribu­
tion functions in a series of U functions. We then express 
the series in the binary kernel introduced by Lee and 
Yang. Finally, we apply the result to a dilute hard-
sphere gas in the ground state. As a result of taking the 
new set of diagrams into consideration the divergence 
and normalization difficulties encountered by Fujita 
and Hirota will be removed. The necessity for consider­
ing such diagrams will be elucidated in the discussion 
section of this article. 

Throughout this paper we shall use units such that 
ft= 1 and 2m= 1, where m is the mass. Also, we shall use 
/3 for 1/kT and z for the absolute activity. 

2. EXPANSION OF THE DISTRIBUTION FUNCTION 

We shall start with the density matrix for an 
iV-particle system: 

<r'"| W V | r * > = £ Mr'N) e x p ( - ^ X w ) ^ * ( r ^ ) , (2.1) 
k 

where r^=(ri,r2,r2,* • *,r^) and 

^ = e x p ( - # M , (2.2) 

8 S. Fujita and R. Hirota, Phys. Rev. 118, 6 (1960). 

3C being the Hamiltonian 

3 C * = - E V ; 2 + £ ^ ; . (2.3) 

The \pk form an orthonormal complete set of functions. 
The suffix a to WN indicates the statistics appropriate 
to the system. Thus, 

( r ^ | WN« | r*> = £ CP(r'N \ WN | r*>. (2.4) 
p 

The sign function CP takes on the value + 1 or — 1 for 
f ermions depending on the even or odd permutations P 
of the particle coordinates, and + 1 for bosons. 

The reduced distribution function for the n particles 
of coordinates xn in this system is given by 

1 1 f 
gNin) = ^ N | WN I rN)drn+ldYn+2 ...dTNj 

(N-n)\ZNJ 
(2.5) 

where ZN, the partition function, is 

ZN=— l(tN\exp(-p3CN)\rN)dtN. (2.6) 
Nl J 

In treating many-body systems, it is convenient to 
use the distribution functions defined in the grand 
canonical ensemble 

1 
g(»)(r») = - £ gN™z»ZN 

S N>n 

l zN r 
= - E \{tN\wN«\tN)dxn+v-dtN, 

E N>n(N—n)\ J 
(2.7) 

where S is the grand partition function 

H = E s j r Z , . (2.8) 

Following de Boer9 and Lee and Yang,2 we introduce 
the U functions by 

( r i ' | ^ 1
a | r i>=(r 1 ' | ^ i " | r 1 ) ; 

< r i V | W2* | rx,r2) = (r/1 US | ri><r,' | Ui« | r,> 
•+<riW|tf,«|n,r,>; (2.9) 

and define the cluster integrals by 

bi=— (TUTv:-MUia\Ti,i2,-'-,ri)dil. (2.10) 

Then, the grand partition function may be expanded 
in a cluster series: 

l n S = F E M . (2.11) 
i 

9 J. de Boer, Rept. Progr. Phys. 12, 305 (1948). 
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Correspondingly, the one-body distribution function may be developed in a series of U functions as follows: 

1 oo ZN f 
gM(ti) = - £ •— / drr • -dxN(xhxh- • -,xN\WN

a\xhx2,--,xN) 

1 oo zN N ( / Y - l ) ! r 

(A-/)! r r r 
X——— (I) exp £ x'isty"1 / (r s | U8«\ rs)drs 

<j> exp Y.x'isl)-1 J (r8\U8
a\r*)dr 

S 2iri J L « 

2iri 

dx 

dx 

dx2dxr • -dri(rhr2y- • - ,xi\ Uia\ r i , r v • -,ii) 

i=i (I-1)! 

x-z i (l-l)\ 

(xhx2y- • ',ri\Uia\rhr2y" - 7Xi)dx2- • - ^ . (2.12) 

Here in the second line the combinatorial factor corresponds to choosing /—1 particles out of A— 1 particles, ex­
cluding the first particle with the coordinates ri. The factor (A—/)! is due to the combinatorial factor of sub-
grouping (N—l) particles into mi groups of I particles subject to 

Ylmi=N-l. (2.13) 
This factor is 

(N-DiZU——— • 

Here the weight factors I I l/[wj!][7!]m* have been automatically included in the above equation in the expansion 
of the exponential function. Thus the last expression (2.12) is obtained by simply using the expansion (2.11) for 
the grand partition function. 

The pair distribution function may be expressed in a similar cluster series by remembering that the products 
of Ui functions which appear in the expansion of WN" can be classified into two groups: 

(i) products which involve ri and r2 in separate U functions; 
(ii) those in which ri and r2 appear in the same U functions. 

The first group has a common structure of the following type: 

(ri,r3, • • •, | Ui | ri,r8, • • • )(r2,r4, • • • | Um | r2,r4, • • •) 
X{sum of products of U functions corresponding to the remaining (N—l—m) particles}. 

The integrations over the U functions which do not involve 1 or 2 are the same as in Eq. (2.10). Introducing a 
necessary combinatorial factor, we thus have 

( A - 2 ) ! ( A - / - 1 ) ! f 
_ _ / ( r i r 3 , - • • | Ui\ rhrh- • -)dxy • -du 
(l-l)\(N-l-l)\ (m-l)\(N-l-m)lJ 

(N-l-m)l 
-dx. 

exp X; x'isl)-1 / (xs\Us\ xs)dxs 

r {N-i-m)\ r L J 
X / (r2,r4,- • • | Um\ r2,r4,- • -)dxA- • -dxm (b — 

J 2iri J xN-i-m+i 

Therefore, multiplying this by zN/S(N— 2)l = zlzmzN~l~m/'E(N— 2)1 and summing over all A values starting 
with A = 2 , we obtain 

1 zl f zm f 
- Z / (ri,r8,- • • \Ui\xhxs,' • -)dxy • -dxiY, / O ^ i V • • \Um\x2,xh- • -)dw • -dtm 

exp £ xs(sI)"1 (xs\Us\ xs)dx* 

X-—. <f — — " J L ^-=g ( 1 ) ( r i )g ( 1 ) ( r 2 ) . (2.14) 
2iri J x—z 
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The terms belonging to the second group have the form 

(ri,r2>- • • | Ui\ri,t2,m • ^ X s u m of products of U functions which do not involve either rx or r2. 

The necessary combinatorial factor and the contribution are 

exp E x'isl)"1 / <rs| U9\f)dr 
(N-2)l 1 £ L J J f 

(l-2)l(N-l)\ liriJ xN~1^ J 

Multiplying this by zN/'E(N—2)!, and performing the summation over N, we end up with 

zl 

E 
* = 2 ( / - 2 ) 

=E-
2 {l-2)\ 

1 zl r 1 £ dx r r n 
~ E / (ti^n,- -,ri\Ui\rur2,- • >^fidr*- • -dti— (b exp E ^(^O""1 / (rs\Us\x

s)dts 

2M(/-2)!J 2wiJ x-z Is J J 

zl r 
/ < r i , r v •• ,r z |Z7z|r i , r2,--- ,rz>rfr8-- -dr z . (2.15) 

-2)\J 

Therefore, combining (2.14) and (2.15) we arrive at the formula 

g(2)(ri,r2) = Z — ^ — J{r 1 ; r 2 ) - • . > r i | U,\iUTtr •-,tl)dx3- • •^+g«>(r 1 )g<»(r 2 ) . (2.16) 

This coincides with the cluster expansion obtained by Fujita, Isihara, and Montroll in terms of the propagators. 
I t is remarked that these authors expanded the pair distribution function in ascending powers of the potentials. 
We have not expanded the U functions yet, but later shall develop U in the binary kernel introduced by Lee and 
Yang. 

Our graphical considerations enabled us to separate out in Eq. (2.16) those configurations of particles which are 
not correlated. In this respect, i t is more convenient than the expansion reported by de Boer.9 

3. MOMENTUM-SPACE REPRESENTATION 

The pair distribution function may be conveniently represented in momentum space. For this purpose we use 
the transformation matrix 

<ki ,k v • 'M*u**,' • - , r , )= (1/G"») e x p ( - * E k . - r . ) . (3.1) 
s 

Its inverse is 
< r i , r v • - ^ I k ^ k v • . ,k,>=(l/8 ' /*) exp (*£ k . T . ) , (3.2) 

where 12 represents the volume of the system. We write the matrix element of Uf in r space as follows: 

1 
( r / , r 2 V • - , r / | U^\rhr2r • -,r,> = - E <ki',k2',- • - ,k / | c V ^ k , , - • .,k,> exp(f E k / . r / - i E k . - r . ) . (^) 

O'k'.k 

Thus, by putting r / = ri, r2 ' = r2, • • •, and integrating over r3, r4, • • •, r j we get 

1 
g ( 2 W 2 ) E e x p p C k i ' - k O . ^ + i C k j ' - k j J - r J E <ki,,ka

,,k8,• • -,k,| Ui«\kuk%fo • -,kz>. (3.4) 
0 2 ki 'k2 , ,k ik 2 k8---ki 

For the sake of simplicity, we shall define the momentum-space pair correlation matrix 7V(ki',k2'; ki,k2) by 

zl 

^ ( k i ' , k a
/ ; k 1 , k , ) = E - : E ( k / ^ k a r - ^ k z l ^ l k ^ k a , - . - , ^ ) . (3.5) 

l~2 ( / — 2)\k2~-ki 

Then, using Eq. (2.16) g(2)(ri,r2) can be expressed in a more compact form as follows: 

£(2)(ri,r2) = - E N(W,W; k1?k2) expp(k 1 ' -k 1 ) . r 1 +f(k2 , -k2) . r2]+CgCi)]2 . (3.6) 
1 2 2 k 1

/
I k 2

/ , k 1 , k 2 
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The pair distribution function may be denned in an 
infinite volume, and correspondingly, the summation 
over the k's may be replaced by integration. In the case 
where the system is homogeneous, g(2)(ri,r2) depends 
only on the relative distance [ r2— ri | . Also (1/Q)E& —» 
(l/8w*)J*. Thus, performing the integration over the 
total momentum, we arrive at a single expression 

g«)( | r 2 - r 1 | ) = ( 8 x r 2 / ^ q 

Xexp[2*q.(r 1 - r 1 )Mq)+[j< 1 )?, (3.7) 
where 

q = i [ ( k i - k 2 ) - ( k 1
/ - k 2

/ ) ] . (3.8) 

The function N(q) appearing in the integrand of 
Eq. (3.7) may be evaluated by a diagram method. 
For this purpose we return to the original function 
i\^(ki/,k2

/; ki,k2). This involves arguments which are not 
necessary in the evaluation of g(2)( | r2— rx |) . Use of the 
conservation laws removes them. 

The matrix element (r1
/,r2

/, • • • ,r/ | Uf | ri,r2, • • • ,r?) 
may be expanded in a series of products of lower order 
U functions. The expansion may be obtained by con­
sidering all possible subgrouping of I integers and con­
sidering all permutations of the integers thus sub-
grouped. However, no term in the series shall be split 
into terms corresponding to completely separate number 
groups. For instance, in the case of U28, the term 
(rir | Z72 ] ri)(r2

/1 t/i ] r2) should be excluded. Thus, we 
have 

(r/,r2
/1 Uf | n,r2) = ± <r/1 U, | r2)<r2' | Ux | n> 

+ (r/,r2
/1 U21 ri,r2)±(r2

/,ri/1 U2 | ri,r2>, 

where + and — signs in the first and the last terms 
correspond to bosons and fermions, respectively. As in 
this example, we have in the right-hand side of such an 
expansion those terms which correspond to all the even 
and odd permutations. Thus, if an I integer is parti­
tioned so that mt groups of t integers appear in accord­
ance with the relation 

we will have in the right-hand side of the expansion a 
group of terms 

E Cp(ri,r2, - • • ,r/1 Ut | rl7r2, • • • ,rf) 
p 

= <r1
,,r2/, • • - , ! / I ^ ' l r ^ , •••,!!>. (3.9) 

Here Tt
s represents the total of the left-hand side. Thus, 

if the expansion is expressed in the most general way, 
we have 

(ri',r2', • • • ,r/1 Uis | ri,r2, • • • ,rj> 
= E«rc , |r1 ' |rA><ri> / |r1-|rB>---} 

X{<r0
/
JrA / | r2 ' | rif,rF>"-}. ' (3.10) 

In this expression, the first curly bracket involves 
products of lYs, the second curly bracket involves the 
products of IY's, and so on. Ti is identical with Uis: 

<k'|tfi'|k>«<k'|IV|k> 
= <V\Ui\i) 
= dkk, exp(-/3&2). (3.11) 

Correspondingly, in k space we expect the following 
expansion: 

(ki,,k2
,,...,k,,|^'|ki,k2,-.-,fc> 

=E«kc,|r1-|kii><ki>,|r1-|kB>---} 
x{<V,V|r2

s |k^,kF)---}. (3.12) 

In Eqs. (3.10) and (3.11), the coordinates of the terms 
in different brackets must be correlated with each other. 
For instance k# might coincide with kB and kz/ with k^. 

The terms appearing in the right-hand side of Eq. 
(3.12) may be represented by diagrams similar to those 
introduced by Lee and Yang. The general rules of such 
a graphical representation, which is suitable to the 
evaluation of A^(2), are as follows: 

(1) Each n vertex represents Tn of a matrix element 
such as: 

<kB/, kg/, • • • ,kBn
f | IV | kAl,kA2, • • • ,kiB> • 

(2) The coordinates k ^ in a ket are represented by 
incoming lines of momenta k^, while those in a bra are 
represented by outgoing lines of momenta k#/. 

(3) All the k/ are connected to k*. The number of 
loops going out of each vertex will represent the 
order of T. 

(4) A factor z is assigned to each internal line. 
(5) A factor S~l is introduced, where S represents the 

total number of permutations that leave a graph topo-
logically unchanged. 

(6) A contracted graph generated by T8 represents 
the sum of all the graphs generated by various orders 
of Ts. We represent the contracted graphs by dotted 
graphs. For example, a single dotted circle represents 

which is illustrated in Fig. 1. The contracted diagram 
generated by T2 is illustrated in Fig. 2. 

(7) A factor m(k4-) is assigned to the ith internal line 
of a contracted graph, where k ^ k i or k2 and 

z 

In applying the rules a few remarks may be helpful. 
First, it is noted that 

<ri , |^i' |ri> = X-«exp[ - ( r i - r 1
, )V^] ; ,„ 4„N 

E tfnt=l, <k/|r1|fc>+<k/|r1|ky><k/|r1|k<)+. 
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X is the thermal de Broglie wavelength. In momentum 
space, (k/|Z7i|ki) is given by Eq. (3.11). It is repre­
sented by a straight line kik/ of a single vertex repre­
senting Ti. 

For the next simplest case of l~ 2, we have 

) 

<kx',k2' I Ut> | k1;k2) = <k2' | U, | kxXkx' | Ux | k2> 
+<k1 ',k2 ' |iv|k1,k2>. (3.14) FIG. 2. A contracted graph (dotted circle) generated by r2 . 

Accordingly, we have the two diagrams such as 
illustrated in Fig. 3. Here Fig. 3(a) represents the first 
term and Fig. 3(b) the second term of Eq. (3.14). These 
diagrams reduce to toron-type diagrams introduced by 
Montroll and Ward [Figs. 3(a'), 3(b')] if the end points 
of the straight lines are connected. The series appearing 
in the right-hand side of Eq. (3.12) may then be re­
arranged in accordance with the number of toron loops. 
In particular, Ui involves a term which consists of 
/ IYs. It may be represented by I-toron diagrams since 
all the IYs must be connected with each other through 
their arguments. 

For free fermions we need only to use 

z 
m(k) = 

l+sexp(-0&2) 
(4.4) 

and a minus sign for the second term in Eq. (4.3). 
Equation (4.3) is in agreement with the expression 

derived by Fujita, Isihara, and Montroll by summing 
toron diagrams.10 The labor of evaluation is more or less 
the same. 

It may be interesting to check the normalization of 
Eq. (4.3). Upon integrating over rx and r2 we find 

. (2) (ri,ra)dri<*r2= W 2 + E e~^k"m\k). 

FIG. 1. A contracted graph (dotted circle) generated by IY 

4. FREE PARTICLE 

We shall now compute N0 for a system of noninter-
acting bosons applying the above rules. In this special 
case, all U\ for l>2 vanish. Thus, corresponding to 
Fig. 4 we have 

iVo=5k2,kl5kl,k2{22 e x p ( - ^ 1
2 - ^ 2

2 ) + 2 3 exp(-^! 2 ) 
Xexp(-2/3&2

2)+33 exp(-2^!2) exp(-/^2
2)+ • • •} 

= <WkAi'k2 exp(-^ 1
2 -^ 2

2 )w(k 1 )w(k 2 ) , (4.1) 

where 

w(k) = , (4.2) 
l-zexp(~i3k2) 

By substituting Eq. (4.1) into Eq. (S.6)y we get 

1 
go(2)(ri,r2) = — E exp(-^1

2-^2
2)m(k1)w(k2) 

122 ki,k2 

X e x p f i k r ^ - r O - i f e . ^ - r O J + Cgo^]2 

Using the grand ensemble relations, 

(N) = Y,fn(k)erfihi, 

(4.5) 

k k 

we end up with 

go ( 2 ) ( r i , r 2 )^ r 2 - (N(N~ 1)). (4.6) / « 

5. THE BINARY KERNEL 

Further reduction of Eq. (2.16) may be achieved by 
expanding Ui in powers of the interaction potential, 
since the operator WN defined by Eq. (2.2) may be 

FIG. 3. Diagrams for CM. 

--n2Jr 

(a) 

-£exp(-/3&2)w(k) 
0 k 

X exp[—ik* (r2— rx)] 

•CO 
, (43) (a1) 

where we have identified g0
(1) as the number density n. 

We have derived the above formula for free bosons. 

10 S. Fujita, A. Isihara, and E. W. Montroll, Ref. 4. See also, 
F. London, J. Chem. Phys. 11, 203 (1943) and G. Placzek, Proc. 2nd 
Berkeley Symp. Math. Stat, and Prob. 581, 1950 (unpublished). 
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ko kj ko k; k; 

• k 

k, k2 k, k2 k, k2 

FIG. 4. Diagrams for a free-particle system. 

expanded in the following well-known perturbation 
series: 

WN(P) = WNo(p)+ [ WN°(p-p')(-*N)WN°(P'W 
Jo 

+ / # ' / d|8"WV(j8-|8')(-*tf) 

x ^ ° ( / 3 / - n ( - ^ ) M n + - • •, (5.1) 

where it is assumed that the potential $N = Yl<l>i3 is 
finite and the series converges. Also 

WV(0)=IIwO3;i); 

wd3;i) = exp(f3Vi2). 

(5.2) 

The right-hand side of Eq. (5.1) may be represented 
by diagrams. For this purpose, w(fi—f$'\i) shall be 
represented by a vertical line segment W of length t3—/3f, 
the position of V corresponding to an interaction, say 
— (t>(\r/—r/\), which takes place at an intermediate 
temperature /3' and is represented by a horizontal line 
at /3'. The horizontal lines in a diagram are placed such 
that the lower lines represent the interaction potentials 
which appear further to the right in the perturbation 
series. Then WN(J3) is represented by connected and un­
connected diagrams. On the other hand, Ui is expressed 
only in terms of connected diagrams of / particles. 

The diagrams for the operator WN or Ui are simpler 
than those introduced by Montroll and Ward for the 
propagators. This is because no complication due to 
statistics comes in here. However, when one tries to 
evaluate the matrix element of WN or Ui, toron-type 
diagrams may be introduced in accordance with the 
symmetry of the function operated by WN or UI. 

The general structure of our diagram representation 
is simple, and no elaborate discussion seems to be 
necessary. Instead, it seems advisable to add comments 
on the binary kernel11 B(f$) and the corresponding 
diagrams. 

Lee and Yang introduced the binary kernel by 

B(0; 1,2)= -ct>12 exp( - /3# 2 ) , (5.3) 

11 A. J. F. Siegert and E. Teramoto, Phys. Rev. 110,1232 (1958); 
T. D. Lee and C. N. Yang, ibid. 113, 1165 (1959). 

where B is related to U2 by the differential equation 

B(0; l,2) = (dU2/dp)-(V1*+V2*)U2(l3). (5.4) 

The binary kernel is determined by two particles and 
is dependent only implicitly on the potential function. 
I t may, therefore, be used even for the cases where the 
potential is divergent. 

We shall represent the binary kernel as in Fig. 5. 
In terms of the binary kernel the first few Ui are 

expressed as follows: 

U*= f dp'w(p-/3';l)w(p-p';2)B(p';l,2); 
Jo 

Uz •f«f 
Jo Jo 

&'w(0-p"; l)w(fi-p'; 2)wG8-/3'; 3) 

XSOJ'-fl"; 2,3)508"; l,2M/3"; 3) 

+ [ d& I dfi"w(p-p'; 1M/3-/3'; 2M/3-/3"; 3) 
Jo Jo 

XB(p-p"; 1,2 W ; 2,3)W(0"; 1 )+ • • • . (5.5) 

The corresponding diagrams are given in Fig. 6. 

The binary kernel for hard spheres has been evaluated 
by Lee and Yang. In the next section we shall use the 
expansion of B in the hard-sphere diameter a: 

B=B1+B2+'"; 

Bx= - a7 r~ 2 5(k 1 +k 2 -k 1
/ ~k 2

/ ) exp[-0(*i 2+A» 2 ) ] ; 

^2-7r-5%25(k+k2-k1
/-k2

/)exp[-/3(^1
2+^22)] 

.(20)i/2|ki-k2| 

X |ki - f e l l 
Jo 

dxexp(x2)-(2l3)-1/2 

Xexp[2/3(k1-k2)
2]"|. (5.6) 

6. CHAIN-DIAGRAM APPROXIMATION 

In this section we shall evaluate the pair distribution 
function for a dilute Bose gas at absolute zero tempera­
ture in the chain-diagram approximation. The chain 
diagrams are obtained by connecting 1 and 2 by a linear 
array of the other particles linked together by binary 
kernels as shown in Fig. 7. The calculations may be 
made for a Boltzmann gas because at absolute zero the 

f 2' l' 2' 2' I* 2' 

' " " - I X I - I T n - F h FlG'5^neelbinary 
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I 2 I' 2 f 2 

FIG. 6. Diagrams 
representing £/2 and 
Us in terms of the 
binary kernel. 
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This expression may be simplified by remembering 
that by definition g(2) is a function only of relative 
coordinates if the system is homogeneous. Thus, we 
introduce the relative momenta and the center-of-
gravity momenta as follows: 

k=i(kx-k2), k ' - M V - V ) ; 
K=kx+k2, K'=k/+k2 ' . 

(6.8) 

2 3 1 2 3 

result can also be used for a Bose gas. 
We start with 

Using Eq. (6.8) in Eq. (6.7) and integrating over K and 
K', we obtain 

/ 2 x \ 3 

U2(p) = dp'w(0-p';l)w(p-p';2)B(pf;l,2). (6.1) 
Jo 

In coordinate representation, this matrix element is 
[see Fig. 7(a)] 

<r/,r2 ' | Utf) | r!,r2>= f dp f dudi^n^-p) | r«) 

X <r2'1 w(p-p') | r6)<ra,r61 5( r ' ) | n r 2 ) , (6.2) 

where 

<r'| w{fi) | r ) = (87T3)-1 fdk e x p [ i k - ( r - r ' ) - - 0 * 2 ] . (6.3) 

The transformation to momentum-space representa­
tion is achieved by using 

/2TT\6/2 fp 

< k ' | t f 2 | k > = - ( — J air~2 dp 

Xexp{-2£(£ ' 2 -2 /3 ' (£ 2 -£ / 2 )} . (6.9) 

Further simplification may be achieved by intro­
ducing the next transformation of variables: 

q=4(k-k'); 
Q = k+k'. 

(6.10) 

Using Eq. (6.10) in Eq. (6.9) and integrating over Q, 
we arrive at a simple function of q which we may denote 
by Ui(q): 

u% 

<r|k>=(&r3)-1 / 2exp(;k-r) . (6.4) 

The result is 

<k1 ',k2 '|f/2(/3)|k1,k2>= / <k1 '|r1 '><k,'|r. /><r1|k1)<r,|k1> 

X(r1 ' , r2 ' | Ut(p) | r^dn'dTi'dndn. (6.5) 

Introducing Eqs. (6.2) and (6.3) into Eq. (6.5) and 
carrying out the ti and r2 ' integrations, we obtain 

<k1',k,'|i/aC8)|k1,k»> 

= I 0expi-te-mi-Q-m*} 
X<k1 '>k s ' |S08O|k„k,>. (6.6) 

This is an exact result. We now make an attempt at 
evaluating Z72 approximately to order a, replacing B by 
B\ given by Eq. (5.6). The result is 

<ki',k,'| I7iOJ)|k,,k,>= - a x - 2 f dpiQii+U-W-W) 

Jo 

Xexp{-(/3- /3 ' ) (£ 1 ' 2+£ 2 ' 2)- /3 ,(£ 1
2+£2 2)}. (6.7) 

(<?) = - (—) («T"2) f W expJ -i(fi-p')q2 

4 40'2 1 
+-(/3-^')Y-4/3'22+ <f • C6-11) 

P P > 

The right-hand side may be rewritten as follows: 

«*(?) = - ( — ) ( « ^ 2 ) / dp'K(q; p-p')K{q; p>) , (6.12) 

where 

K{qy\x-y\) = VLv{-±\x-y\q2+^\x-yyq*}. (6.13) 

Before attempting to simplify Vi further, we may 
consider the chain diagrams for U4 as shown in Fig. 7(c). 

1 2 1 

Mb M M 
1 -3 4i-4—*. 

|g j9 2 

am 
(a) 

I 2 

( b ) 

b—h 

3 4 2 

(c) 

FIG. 7. First three chain diagrams. 
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Correspondingly we have 

(r1
/,r2/,r3

/,r4
/1 U* | ri,r2,r8,r4> 

= / dfiJ dpJ dpidradrbdicdrd---dri(rs
f\w1(p-p1)\reXu'\w1(p-p1)\rJ}(re,if\B(p1-p2)\ic,id) 

Jo Jo Jo 

X <r2'I v>1(p-h) I Tg){rd,Te | Bfa-fa) | rA,r i)(r,>1( /33) | r2)(rA| Wl(/33) | r4)(r1
/1 w^p-fo) | r„) 

X(r c |w 1 ( f t - f t ) | r6 ) ( r a , r i ) | 5 (^ 3 ) | r 1 , r 3 )+s imi la r te rms . (6.14) 
Here it is assumed that 

0>/3 i>f t> /3 8 . 

The corresponding momentum-space representation is 

<ki ,
>k,',k, ,

>k4 , |y4 |k1,k,,k,,k4) 

= fa I dp, dp3dkcdkdexp{-(p-p1)(k3'
2+ki'

i)}(W,ki'\B(p1-p2)\kc,kd) 
./ 0 . /0 ^ 0 

X e x p { - ( / 3 - £ 2 ) & 2
/ 2 } < ^ 

Xexp{-( /5-^ 3)^i / 2}(ki /
Jk c |5(f t ) |k 1 ,k 3)+similar terms. (6.15) 

Replacing B by $1 and putting k / = k t for all i, we obtain 

(ki',k2',k3,k41 U4 \ ki,k2,k3,k4) 

= (-<»•-*)' / <% / # , / d^ / dWJfc,, e x p { - ( ^ - f t ) ( * 3
2 + W ) } 5 ( k 3 + k 4 - k c - k d ) exp{-(/S1- i8,)(*.2+*<»2)} 

^ 0 ^ 0 - /0 ./ 

Xexp{-( /? - i 3 2 )£ 2 ' 2 }5(k ( *+k 2
/ -k 2 -k 4 ) exp{-( l32--/?3)(£2

2+£4
2)} exp{-/33(£2

2+£4
2)} exp{-(/32-/33)£c

2)} 

Xexp{-( /3-f t )* 1 ' 2}5(^ 1 '+^ ( ; -^ 1 -* 3 ){exp-/3 3 (^ 1
2+^3 2 )}+similar terms. (6.16) 

We integrate the right-hand side over the momenta Removing the condition on the /3's we may rewrite 
of intermediate states and introduce w4 by Eq. (6.19) as 

<k/ )k 2 ' ,k 3 ,k 4 | ?7 4 |k 1 ,k 2 )k 3 ,k 4 )=5(k 1 '+k 2 ' -k 1 -k 2 ) /2TT> 3 rl3 /./Si | k i , k 2 , k 3 , k 4 )=5 (k 1 ' +k 2 ' - k 1 -k 2 ) / 2 7 r \ 7 x \ 
X(k1 ' ,k2 ' )k3)k4 |M4 |k1)k2 ,k3 ,k4). (6.17) «*(!) = {-;)[-)(-***)'I «Pi/ «P*/ «P» 

0 •/ 0 •/ 0 

We then integrate u4 over the momenta k3 and k4. XK(q, \p-fa\)K(q9 \^-^\)K{q, |/3i-/32 |) 
In view of the 8 function we may put 2 q = k i — k / 
= - ( k 2 - k 2

/ ) . Also, we change variables so that XK(q,fa)+similar terms. (6.20) 

k i = | K + k ; ki ' = ki—2q, I t is remarked that there are altogether six similar 
k _ liT- K. k / _ L j _ o„ /A 1 Q̂  chain diagrams for w4. These differ from each other only 
K2-2lV—K, K 2 ~ K 2 + Z q , (0.15; . & . * . •> 

m time ordering. Iherefore, using the Dyson theorem, 
2 q = k i - k i / = - (k2—k2 '), t h e i r total contribution is 

and as in the case of u^ we perform integrations over the /2ir\z fir\z r® r^ f13 

momenta K and k. The result is a simple function of q u4(q) = 2( — J I-J { — aif-^Y / dfii / d/32 J d/32 

which may be expressed as follows: \ P / \ p / Jo Jo Jo 

/27r\3/7r\3 [? r * r * Xif(g, 1/3-/3x1)^, I f t - f t l ) 

^ ) = V 7 ) w ^ ^ " 2 ) A ^ V o *Vo * ' ^ XiC(ft|ft-ft|)Jr(ft|ft|), (6.21) 

XKiq^-^Kiq.h-^Kiq^^-^Kiq,^) w h e r e t h e d o m a i n °/ integration is from 0 to 0. The 
factor 2 is due to the interchange of the particles 3 and 4. 

+similar terms. (6.19) The generalization of the above results of Eqs. (6.12) 
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and (6.21) is not difficult. We end up with the following and if 
chain-diagram contribution to m: fl , 

A * ( * ) = / K(qj\x-y\)t(y)dy, (6.30) 
Jo 

W l = ( / - 2 ) ! ( - a ^ ) « ( - ) ^ 
27T\3 /7T\8 a~2 ) / 2 

then, since \f/(l)—\l/(0) = 1, we have 

X / dpi I dpr- I dPu-iK(q,\p—Pi\) 
ô Jo Jo 

= E A W
2 . (6.31) 

X t f fo | f t - j88 | ) - -- iS:fe | /3 I_1 | ) . (6.22) 

I t is convenient to change the scale of all the time Therefore, we arrive at 
variables by using the variable X{ defined by ,, v 

%i=m- • « J = ( / - 2 ) ! ( - a ^ ) ' - » ( - ) ( - ) /3 ' -1 E Am«. 
\ jS / \ / 3 / m=—oo 

Accordingly, Eq. (6.22) assumes the form (6.32) 

ul=(l-2)l(~aT-%2T/P)%7r/P)w-v/*i31-1 Expressing this result in terms of \=(47r£)1 /2 , the 
•L x x thermal wavelength, we find 

X / dxi I dxr • • / dxi„iK(q, |1 —£i|) <* 
Jo Jo A ^ c ( ^ ) - -32 ( / -2 ) !7 r 3 a - 1 X- 2 E (-2aX-xAw)S (6.33) 

m=»—oo 
X # ( g , | * ! - * , | ) « • ( ? , | x » - * , | ) - • -K{q,xi_r). (6.23) 

. , , , . ,. . where we have added the superscript c to show the 
We may consxder that the func t ion^ is cyclic in x so c h a i n . d i a g r a m c o n t r ibut ion . Therefore, the Fourier 

that the eigenfunctions are eXp(2«W*), m being a plus t r a n s f o r m N { ) o f t h e c o r r e l a t i on function which has 
or minus integer or zero been introduced by Eqs. (3.5) and (3.7) is given by 

Thus, the rath eigenvalue of K is given by 

Am= / / 2T(g, |x—y\wm*{x)ypm(y)dxdy] (6.24) i-2 •» 
Jo Jo 

n a m e l y , = -128x3a22 \ -* £ Am[Am-1+2a2X-1]-1 . (6.34) 
m~—oo 

Aw= / exp ( -g«+g« 2 ) exp(2iritnu)du, (6.25) Substitution of Am from Eq. (6.28) gives 
Jo 

00 

where we have used the abbreviation N (q) = —512w5 az2X~s £ g4[g4+47r%2 \~4] - 1 

W=r—00 

g=4/3g2. (6.26) 
. , u , ' i ™ r. / . ^ , • X[g 4 +47r^X-Y+47r% 2 X- 4 ] - 1 . (6.35) 

Am should be real. Thus, Eq. (6.25) may be rewritten as 
i For a dilute system the activity z may 

A w = J dutcos2irtnu] exp(-gu+gu2). (6.27) hY *o, the value for the noninteracting case 
Jo 

For a dilute system the activity z may be replaced 
noninteracting case: 

Zo=n\K (6.36) 
We are interested in the low-temperature limit of Aw. . 
Taking the limit of g going to infinity we find that I n ^ e l l m l t X 7*°°> w e , m a y fonsider x=z 2ir"m/} a s a 

continuous variable and replace the summation by 
Am-*2g/(g2+47r2w2). (6.28) integration. Thus, 

The multiple integrations in Eq. (6.23) are now /•<» 
performed in terms of the above eigenfunctions and N(q)=—256ir*an2 I q*[qi+x2']~1JLqi+4:Tranq2+x2~]r1dx 
eigenvalues. J-oo 

We first note that if ___ . . ,._ 
2567r%^2r / 7 \~ 1 / 2 1 

r1 r1 r1 " 1""(1+";) ' (6'37) 

/Ti(g; 1 - 0 ) = / (fox / <fav • • / dx^Kiq, l-xj V L V ? ' J 

Jo Jo Jo , 
where 

X % [ * i - s 2 | ) - • •/£(?, l ^ - i - O j ) (6.29) T = 4 T T ^ . (6.38) 
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3' !' 2j4^ ^ Hirota by using the pseudopotential. These authors 

P f " - ^ FIG. 8. Tick-tack-toe diagram. c o m P a r e d their results with those^ obtained by Lee, 
J-—£3 Huang, and Yang. As we shall see in the next section, 
I caution is necessary in such a comparison. 

7. THE TICK-TACK-TOE DIAGRAMS 

Thus, using Eq. (3.7) we obtain I n a d d i t i o n t o t h e c h ain diagrams, another infinite 

«(2) rr\ _ __ 47r-2T-ia^2 set of diagrams plays an important role in the evaluation 
of the pair distribution function. Some of the diagrams 

/

f / ^ \~1 /21 which belong to this category are shown in Fig. 8. These 

dqe2i^\ 1 - 1+— \+n\ (6.39) are the diagrams which involve only one cross in each 
^ # ' column, determined by a pair of neighboring vertical 

The evaluation of the right-hand-side integral has not ^ a n d , i n , e a d l row' determined by the cross itself, 
been achieved. However, for small and large distances t h e c r o f ^ 2 existing always. In view of their appear-
we have ance, these diagrams may be called the tick-tack-toe 

diagrams. These diagrams are in a sense chain diagrams, 
g(2)(r) = n\\ — 2a/r), (r<&rc) but may be named differently because they have never 

= w2(l —(47r5/2a1/2^3/2)~V"4); (ry>rc), (6.40) been considered before, and also because their effective 
w n e r e role is different from that of the chain diagrams, as we 

/i/c wi/9 (n AA\ shall discuss later. rc=(16Tran) 1 /2. (6.41) T4_ . . , , , , .,, . -, T , ' v J I t is convenient to start with a special case. Let us 
These results coincide with those obtained by Fujita and evaluate the matrix element corresponding to Fig. 8: 

{kx^k^^ks^k/11/41 k1,k2,k37k4> 

= (-ar-zy / dfi! / dft / dfodkfdfa exp{-05-f t ) (Aa / 2+*4 / 2 )}«(kd+k4-k2 , -k4 , ) exp{- ( f t - /3 2 ) (W+^4 2 )} 
Jo Jo Jo 

X e x p ( - M 4
2 ) e x p ( - ( / 3 - / 3 2 ) ^ 1 ' 2 ) 5 ( k / + k 2 - k 1 ' - k ( i ) e X p { - ( / 3 2 - f t ) ( ^ 2 + ^ 2 ) } 

X e x p ( - / W ) exp{ - (^ - /3 3 ) ^3 ' 2 }5(k3+k 1 -k 3 ' - k / ) e x p f - f t f o H - V ) } . (7.1) 

Setting k 3 = k3', k 4 = k4', integrating over k/ and k<f, and using the notation w4 for the matrix element thus obtained, 

(k1',k2',k3,k41U* | k1 ,k2 ,k3 ,k4)=S(k1 '+k2 ' -k1-k2)(k1 ' ,k2
, ,k3 '>k41 m | k!,k2,k3,k4), 

we get 

(ki',k2',k3,k4 [ Ui | ki,k2,k3)k4) 

= (-aw-^yf dpj dfof dfoexrt-pih'z+h't+W+M)} expi-foiW+kzt-WZ-h'*)}. (7.2) 
Jo Jo Jo 

We may integrate this over k3 and k4 to obtain 

<ki,,W|«4|ki,ka>=f-^ (-ax~2)3 [ dh ['dp J 'dft ^M-Kh,2+k^)-^^+k^--k^-k^)}. (7.3) 
W Jo Jo Jo 

Changing the domain of integration and summing over all 3! similar diagrams we end up with 

(k / ,k 2
, h 4 [k 1 ,k 2 ) = r - ) (-air*yp[ d$ e x p { - / 3 ( ^ 1

, 2 + ^ / 2 ) - i S / ( ^ i 2 + ^ 2 - ^ i / 2 - ^ 2 / 2 ) } 

= (pj (-aTT-2)8^3 f dx e x p { - ^ ( ^ 1
, 2 + ^ 2 , 2 ) - ^ ( ^ 1

2 + ^ 2 2 - ^ l , 2 - ^ 2 , 2 ) } . (7.4) 
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As in the case of the previous section, one may change tribution function with the tick-tack-toe diagram dis-
the momentum variables twice, and integrate over the tribution function. Thus, to first order in a one arrives at 
total momentum. The resulting function of a single (2), . (2) (2) 
variable is given by £ v) — Sc ~rgt 

= n2-^ (K<fc) (8.1a) 
u.(q) = (2T/mWm-a^)V^(P;q)9 (7.5) _ 

w h e r e = ^ 2 [ 1 - ( 4 T T 5 / V / V / 2 ) V 4J , ( r » c ) (8.1b) 
1 with 

A0(f3;q)= [ dxexp{-8x/3q2(l-8xf3q2)}. (7.6) rc=(167r<m)1/2. 
0 This pair distribution function is nearly constant for 

The generalization of the above calculation for the s m a 1 1 r a n d approaches n2 in proportion to r~4 for large 
case of ui is straightforward. We end up with r f r o m l o w e r v a l u e s -

In Eq. (8.1b), a term which is proportional to 2a/r 
ui(q) = (27r//3)3(7r/^)3^~2)/2(-a7r-2)z-1/3^1Ao(0; q). (7.7) has been omitted because for large distances we have 

In the limit 0 ->oo, 2a/r«2a/rc 

Thus 2a/K<(167raX)1/2 (n2>rc) (8.2) 

w /aW —(2lS(-S{l~2)l\-air-2Y~"B^ (7 9) and the term is n e ^ i b l e ' 
V \ 0 / \pj ' T h e P a i r distribution function thus obtained may be 

compared with the expression obtained by Lee, Huang, 
In terms of the thermal wavelength X, Eq. (7.9) becomes and Yang (LHY) by the method of pseudopotential and 

the result reported recently by Wu.12 

ul(q)=-32^a *X K~2a\ ^q 2. (7.10) According to the calculation of LHY the pair dis-

Therefore, at finite sX"1 one gets for N(q) the following: tribution function is given by 

gLHY(2)W = ^ [ { l + ^ W } 2 + { l + ^ W } 2 

i V ^ ) = - 3 2 7 r 4 a - 1 X - V 2 i : ( - ) z ( 2 ^ X - 1 ) ^ . (7.11) - l - 2 / { G ( r ) + F ( r ) } ] , (8.3) 
l==z where 

f= (8/3w1/2)(na*)1/2. 
The summation begins w i t h / = 3 because the ca se /= 2 J 

has been treated as a chain diagram. Finally, one obtains The functions F(r) and G(r) approach the following 
N(q)=mir*an2q-2/(l+2az\-1). (7.12) f o r m s f o r s m a 1 1 a n d l a r S e ^stances: 

Taking the limit of low temperature and density ** W ~* 1 / 7 r nr°r > (34) 
x . , G(r) —> — l/w2nr0r

2, (r^rQ) 
X—>oo , z\l—>oo , 

inEq. (7.12), we find that N(q) approaches the following: F(r) -> / = (8/3x1/2)(^a3)1/2; ' 

iV(g) = 1287r 4 ^V 2 . (7.13) G(r)->-(a/r)+(8/w1/2)(naz)l/2, ( r« r 0 ) 

Thus, the contribution of the tick-tack-toe diagrams where 
to the pair distribution function is ro= ( 8 T T ^ ) - 1 / 2 = 21/2rc. (8.6) 

128irAan2 r Thus, the limiting forms of £LHY ( 2 ) W are 

gtM(r)-n*= j exp (2zq . r ) / ^q gLHY(2)(0 = » 2 Cl - («A) ] 2 +0(«Ao) ; (K<fo) (8.7a) 

= 2 ^ 2 / r . (7.14) =n2tl+(16a/T*nr^; (r»r0). (8.7b) 

T, . , , T , ,, . . ., i n T ,. The above expression for small distances may be 
I t is to be remarked that in the above calculation we , . , f * J 

have taken into consideration only a special type of the ' 2* 
tick-tack-toe diagrams which has a structure such that z2/r rj u2\ri r2) = 22(27rX4f2)_1 

the vertical lines 1 — 1' and 2—2r are nearest neighbors. 
Only such diagrams give a contribution of order a to the f |~ r2 "1 r (r—a) 
distribution function. x j e x P | ~~ 77J ~~ e x P | ~TT ,, 

Expanding the right-hand side in powers of r and sub-

2 -11 

(r>a). (8.8) 

8. RESULTS AND CONCLUDING REMARKS 

Our final expression for the pair distribution function 
is obtained by combining the chain-diagram pair dis- 12TaiTsun Wu, Phys. Rev. 115, 1390 (1959). 
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stituting z~n\z we arrive at 

gM(r)^n2+z2U2 

= n2ll-a/rj, a<r<rc (8.9) 

in the zero-temperature limit. 
Our pair distribution function at large distances is 

characterized by the term proportional to r~4. Fujita 
and Hirota concluded that the pair distribution function 
gc in the chain-diagram approximation is identical with 
Eq. (8.7b), the result obtained by LHY. However, 
Eq. (8.7b) differs from Eq. (8.1b) not only in magnitude 
but also in sign. Definitely, their interpretation of LHY's 
result in terms of chain diagrams is not correct. 

This conclusion may be confirmed if we compare our 
result with the recent improved result reported by Wu. 
His expression for the pair distribution function at small 
distances is 

r ^o4/ /asn\1/2\ 

^ W = 4l- - ( l6(-) ) 

X 
8 0 \ / a 3 « \ 1 / 2 i - i 

I'-HTXTJ ( r » 0 ) . (8.10a) 

This may be written 

gwW(r) = n*{ 1 + (hr+20/3)a(w*ar 4)~1 

- (47r5/2a1/2^3/2)-V-4} ( r » r 0 ) . (8.10b) 

Here, in the right-hand side the second term is small 
compared to the third term for large distances and may 
be neglected. Thus, gw

(2) reduces to our expression given 
by Eq. (8.1b) which is essentially due to chain diagrams. 

Thus we can say that for large distances the chain-
diagram approximation is good. This is because the 
chain diagrams correspond to collective interaction of 
the particles. 

Because of this situation, the gc
(2) may be used to 

evaluate the phonon spectrum. As a matter of fact, if 
we use gc

(2)(r) in the Feynman-Bijl13 relation for the 
phonon spectrum: 

Ek-E^k2/S{k), 
we end up with 

S(k) = 1+n-1 fgew(r)e*-rdr 

(8.11) 

= k(k*+16iran)~1/2, (*5*0) (8.12) 

which is in agreement with the result obtained by Lee, 
Huang, and Yang. 

In other words, we can say that the elementary excita­
tion spectrum in a Bose gas is phonon-like for small 
values of k. Thus, the pair distribution function which 

13 R. P. Feynman, Progress in Low Temperature Physics, edited 
by C. Gorter (North-Holland Publishing Company, Amsterdam, 
1955), Vol. 1, Chap. II, p. 36; A. Bijl, Physica 7, 869 (1940); R. P. 
Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956). 

yields the excitation spectrum should correspond to 
large distances. On the other hand, it is not hard to see 
that the tick-tack-toe diagrams contribute to the pair 
distribution function only at small distances. 

Compared to Eq. (8.7a), our resulting expression for 
the pair distribution function for small distances is 
characterized by lack of a term proportional to 1/r, and 
is almost constant to first order in a. 

This is because the tick-tack-toe diagrams cancel 
exactly the 1/r term in g(2)(r) which the chain diagrams 
give, as can be seen from Eqs. (7.14) and Eq. (6.40). The 
1/r singularity causes, actually, the divergence in the 
ground-state energy and is not desirable. What follows 
is further discussion of this point. 

The first approximate hard-sphere potential is 

^==87ra5(fi-r2). (8.13) 

In contrast, the correct pseudopotential is given by 

4> = &ira8(ri-r2)(d/dr)r, (8.14) 

and includes the operator (d/dr)r. As has been pointed 
out elsewhere, this operator plays the role of removing 
the 1/r singularity in the ground-state energy. As a 
matter of fact, according to Lee, Huang, and Yang, if 
we use the correct pseudopotential the ground-state 
energy in the second-order perturbation is convergent. 
Namely, we have 

/4*a\N(N-l) fdr d 
E0

{2)=-S7ra[ )— / —B(r)—{rF(r)} 
\ 12 / 2 J 12 dr 

-2 .37(a /12 1 / 3 ) (4^ iV) . 

Here, since 

(8.15) 

expik • r 

k^0 k2 

1 2 / 1 2.37 

4 T T V 12 1/3/ ' 
(8.16) 

we see that E0
(2) —> 0 for 12 —»GO . 

On the other hand, use of Eq. (8.13) leads to 

E0 = 4rarN-j: {Po2+p2-p(p2+2P0
2)1/2}, (8.17) 

where 
Po2 = STan. (8.18) 

This is, however, divergent. As has been discussed by 
Lee and Yang, in order to obtain the correct convergent 
energy it is necessary to add to Eq. (8.17) the term 

MPoW). (8.19) 

The same ground-state energy may be derived by 
using the pair distribution functions. If, however, we 
use only chain diagrams, the resulting pair distribution 
function gc

(2) will give rise to a divergence in the ground-
state energy. Since the pair distribution function has a 
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physical meaning of its own, this indicates that gc
{2) 

may not be considered the correct distribution function 
and that improvements upon the chain-diagram ap­
proximation are necessary. 

This is indeed achieved by taking the tick-tack-toe 
diagrams into consideration as we have done in the 
previoussection.lt is not hard to obtain the tick-tack-toe 
diagram contribution to the ground-state energy. We 
end up with 

£ f 4 E A 4 / 2 ^ . (8.20) 

This is exactly what we needed to add to EG of Eq. (8.1) 
to remove the divergence. Thus, if we use the correct 
distribution function we get 

E = 4iratf- i £ {Po2+p2-p(p2+2PQ
2y/2-~P,\/2p2} 

= 4TanN{l+(m/l5T1/2)(a*n)1/2}, (8.21) 

which is the result first obtained by Lee and Yang by 
the binary-kernel method. 

It is remarked that the divergence in the ground-state 
energy is due to the appearance of a term proportional 

THE existence of multiple-quantum transitions in 
optically pumped lasers and splitting of the laser 

line due to the modulation of the wave function at an 
angular frequency determined by the rate of pumping 
was shown theoretically by the author in "Quantum 
Mechanical Effects in Stimulated Optical Emission,"1'2 

hereinafter called "QMESOE I." 
The theory set forth in that article showed that the 

splitting would become manifest at threshold when 
there are a large number of transitions occurring be­
tween the pump band and metastable level along with 
a high pump rate. Since the splitting is dependent upon 

* Present address: Physics Department, University of British 
Columbia, Vancouver, British Columbia, Canada. 

l R . C. Williams, Phys. Rev. 126, 1011 (1962). 
2 R. C. Williams, Appl. Opt. Suppl. 1, 63 (1962), reprinted from 

Phys. Rev. 126, 1011 (1962). 

to 1/r at short distances. Thus, the correct pair dis­
tribution function should not contain 1/r, in conformity 
with our result. 

Summarizing, we may describe the situation as 
follows: the operator (d/dr)r in the pseudopotential 
requires taking diagrams other than chain diagrams 
into consideration. 

The above observation justifies our result at least for 
both small and large distances. The behavior of g(2)(r) 
for the intermediate range requires a numerical evalua­
tion. However, it is interesting to observe that g(2)(r) is 
less than n2 at large .distances. Thus, in a certain inter­
mediate range the g(2)(V) curve might possibly come 
out above the n2 line. 

Note added in proof. The authors thank Professor 
Garcia-Colin for informing them of the following im­
portant articles: L. Colin and J. Peretti, Compt. Rend. 
248,1625 (1959); J. Math. Phys. 1, 97 (1960); L. Colin, 
ibid. 1, 87 (1960). The discussions of these articles will 
be given in a later article. 

the pump rate, it increases directly with the magnitude 
of the electric intensity of the pump field. In addition to 
this, it was also shown that at high pump powers most 
of the emitted power would be due to two-photon 
transitions. 

It was not shown in that article if such splittings and 
multiple photon transitions would occur if both the 
source and the pump were broad bands instead of being 
monochromatic lines. Since the source in QMESOE I 
was chosen to be a coherent monochromatic source, it is 
not evident that incoherent broad-band sources pump­
ing broad-pump bands will produce the same effect as 
coherent monochromatic sources pumping narrow-
pump bands. 

This question will be examined in this paper and it 
will be shown that indeed certain classes of incoherent 
broad-band sources pumping broad-pump bands do 
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The existence of multiple-quantum transitions in optically pumped lasers, along with splitting of the laser 
line due to the modulation of the wave function at an angular frequency determined by the rate of pumping, 
is demonstrated for a certain class of incoherent broad-band sources pumping large pump bands in crystals. 
The source consists of a large number of stationary elements emitting wave fields continuously at various 
arbitrary frequencies and arbitrary phases. The distribution of frequencies and phases among the various ele­
ments is random. The pump band belongs to the class found in laser crystals of the ionic type. The analysis 
shows that such sources pumping such bands act like narrow-line sources pumping narrow lines. The effective 
linewidth is directly related to the pump rate. 
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