
S U P E R C O N D U C T I V I T Y I N C u A N D P t W I T H P b A 641 

racy of this number is of course subject to the same re­
strictions as discussed before in the case of platinum. 

In conclusion, it has been shown that the effective 
coherence length of the normal metal should be calcu­
lated from the coefficient of normal electronic specific 
heat and the residual resistivity. If the data are then 
plotted in such a way as to exhibit all the temperature 
dependence in one term, one gets a linear plot of which 
the slope (kr1) is very close to the calculated coherence 
length. Since the electron-electron interaction in both 

A SIMPLE test, to be used in conjunction with a 
standard Rayleigh-Ritz variational method, to 

give some estimate of the accuracy of the trial function 
has recently been suggested by Armstrong.1 He inte­
grates the Schrodinger equation over all space, and 
obtains an expression for the energy 

[dvHf/ [dvf, (1) 

provided the integral in the denominator is non-
vanishing.2 This is compared with the corresponding 
variational expression using the same trial function 

Ev = [dmP*H$ / [dv\$\2, (2) 

and the difference EV—ENV between the two is a rough 
indicator of the quality of \p? The original applications 

1 B. H. Armstrong, Bull. Am. Phys. Soc. 9, 401 (1964), and 
private communication. 

2 If the denominator vanishes, it may be possible to rewrite 
Eq. (1). For example, if ^ has angular momentum different from 
zero, the Schrodinger equation in partial waves can be used to 
reformulate Eq. (1) in unambiguous form. 

3 Certain special choices of \j/ may accidentally give EV=ENV 
without, in fact, corresponding to exact solutions. A notable case, 
observed by the author and Armstrong independently, is the trial 
function exp[—a{r\-\-r2)~] often used for the helium atom [E. 
Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc., 
New York, 1961), pp. 430-436]. These special cases can be 
easily shown not to satisfy the eigenvalue equation. 

Pt and Cu was found to be very close to zero, any more 
accuracy prediction for these metals will have to await 
much more precise film thickness control or measure­
ments at even lower laboratory temperatures. 
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of the method1 were to standard one- and two-particle 
systems, including the ground state of helium. 

It is the purpose of the present note to apply this 
procedure to a many-body system, previously ex­
tensively considered by several authors4-7 from a 
variational point of view. This system is the boson 
hard-sphere gas with7 or without4-6 an additional weak 
attraction or repulsion. 

The variational method is very clearly described by 
Aviles.4 A product trial function 

^(ri-'-r^-II/^-r,-) (3) 
i<3 

is used to approximate the ground-state solution of the 
Hamiltonian 

B= - {¥/2m) £ V,2+E 7 ( r t - r y ) . (4) 

The hard-sphere boundary condition requires that 

jf(r) = 0, for r<rQ, (5) 

while V(r) is the additional weak interaction.7 The 

4 J. B. Aviles, Jr., Ann. Phys. (N.Y.) 5, 251 (1958). 
5 F . Iwamoto, Progr. Theoret. Phys. (Kyoto) 19, 597 (1958). 
6 R. J. Drachman, Phys. Rev. 121, 643 (1961). 
7 R. J. Drachman, Phys. Rev. 131, 1881 (1963). 
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A simple test, recently suggested by Armstrong, is used to estimate the quality of the variational wave 
function first used by Aviles and Iwamoto in treating the ground state of the hard-sphere many-boson sys­
tem. In this special case, Armstrong's method can be simplified by using a result obtained by Lieb in his 
recent work on the ground-state energy of the Bose gas. The wave function was previously used by the author 
to compute a first-order correction to the energy, due to a weak additional interaction outside the hard 
sphere. The errors in this computation are in good agreement with the estimates obtained by Armstrong's 
method. 
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Ey = / <Px\ 
2m 2 

V(x) g(*), (6) 

f(x)=l-x-1er'<*-u, 

= 0, 

X>1 

X<1 

variational energy takes the form4 

" V / - V / - / V 2 / 2m 

f h2 

where x = r/V0, p=iV/fi, and 

g(ti2)Sl2[\t\2d*r * ' ^ / / " l ^ l 2 * i - • •<&* 

is the two-particle correlation function. Using the con­
venient trial function4,5 

(7) 

one can write the correlation function in the low-density 
limit4 as 

g(x)/f(x) = 1 + ( 2 / * ) [ « n « - a r * « ] + (3e/16x) 

X{e~2*x[_(3ex-13/2) ln(iyex)-3ex] 

+e2**(3ex+13/2) E i ( -4ex)} , (8) 

where y is Euler's constant. 
Consider first the pure hard-sphere gas, with 7 = 0 . 

Using Eqs. (6) and (8), one finds the minimum energy 
per particle [for e 2 =a/3 , a = 87rpfo3] to be6 

Ev/N= 4xpr0(ft2/2w)[l+Sa1 /2/3\3"+fa m a + • • • ] . (9) 

Lieb8 has used Eq. (1) in another context in formu­
lating a new method for the analysis of many-boson 
systems. For our purposes here, the important expres­
sion is his Eq. (3.7), which gives the result for the hard-
sphere gas 

1NV h2 

= 4irpr<r 

where 
N 

d 

2mLdx 
'3(x) (10) 

g(ti2) = tt2 / yfrdti- - -dxN I I \pdtv • • drN 

and is the appropriate two-body correlation function 
to use with the nonvariational Eq. (1). 

We note that, due to the product form of \f/, g is 
quite similar to g, and a similar analysis yields 

g(x) = f(x)(l+(l/x){e~^-expl-~x(e2+a/2y^2}) -
(11) 

There is, however, no term corresponding to the com­
plicated expression in braces in Eq. (8), due to the 

linearity in \p of g. This term has been shown6 to be re­
sponsible for the logarithmic term in Eq. (9). 

One easily evaluates Eq. (10), inserting the value 
e2=a/3 which minimizes Ev, and finds 

ENV/N^4:wpr0(h
2/2m)ll+ (fa)1/2] . (12) 

Defining A=[mEv—ENv']N~1, one obtains 

A=47rP fo(^/2w){C(5v2~3 v
/5)/3v /6> 1 / 2+falna} (13) 

as the difference between the variational and non­
variational energies. Expressed in percentage, the 
errors are a0 term-exact; a112 term-5%; alna term-100%. 

One may therefore conclude that the part of \[/ which 
yields the first term is exact, that yielding the second 
term is fairly good, while the third part is very poor, 

' in spite of fairly good agreement between the exact and 
variational logarithmic terms in the energy.9 

If one now uses \j/ as an approximate solution of the 
pure hard-sphere ground state problem, one can add a 
perturbation: 

7 = 0 , x<\, 

F = - F o , Kx<b, 

7=0, x>b. 

This is exactly the situation considered previously by 
the author.7 The first-order energy shift obtained is 

(V)v/N= -^pn{fi2/2m)b[\+ ( 4 / v 3 V 2 + a lna] , (14) 

where d = mro2Vo(b — iy/3h2. This is to be compared 
with the exact result9 

(V)/N= -4xpr0(&2 /2w)5[l+ (16v2/37r)a1/2 

+ 4 ( | - ^ / 7 r > l n a ] . (15) 

Defining A /=[<F>7-<7)] iV- 1 , one obtains 

A' = - 47rpr0 (h
2/2m)8l ( 4 T T V 3 - 16sl2)all2 

+ (12v3"-137r)a:lna]/3x (16) 

as the error in the first-order perturbation energy due 
to errors in the variational trial function \p. Again, the 
a0 term error vanishes, the a112 error is about 4%, while 
the error in the logarithmic term is about 70%. Thus, 
A' is clearly well correlated with A as expected, and 
hence the present calculation gives another indication 
of the usefulness of Armstrong's method.1 

«E. H. Lieb, Phys. Rev. 130, 2518 (1963). 

9 In Ref. (6), where the logarithmic term in Ev was derived, it 
was noted that T. T. Wu [Phys. Rev. 115, 1390 (1959)] had re­
quired three-particle correlations in the wave function to derive 
the exact coefficient f—V3/71-. Since no such terms are contained 
in the present \£, it is not surprising that Eq. (12) indicates a large 
error. Once again, one sees that excellence of a variational energy 
calculation tells very little about the accuracy of a trial function. 
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