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Finite-Mass Helium Atoms. I. The 2 XP State* 
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The 2 lP states of the helium isoelectronic series are investigated via 50-term variational wave functions 
containing two nonlinear parameters. The Hamiltonian, spin-free and nonrelativisitic, is written directly in 
center-of-mass coordinates so that no adiabatic approximation is required. The expectation values of the 
Hamiltonian and of moments of the interparticle separations are reported. Isotope shifts are found and, as 
noted in a preliminary report, are in excellent agreement with experiment. In order to compare the results 
with previous theoretical results, the systems were similarly studied in the infinite-nuclear-mass limit 
(adiabatic approximation). The energies so obtained are the deepest thus far obtained by a direct calculation 
with a variational wave function. The expectation values of the operators were subjected to a differencing 
process to obtain estimates of the perturbation expansion coefficients for them, and the results are in good 
agreement with the directly calculated results of Knight and Scherr. 

I. INTRODUCTION 

TH E theoretical treatment of the P states of the 
two-electron atom has been a subject of interest 

in the quantum mechanics that starts with the pioneer
ing work of Breit1 and continues down to the present, 
e.g., in the work of Pekeris, Schiff, and Lifson.2 These 
investigations have always used an infinite-nuclear-
mass approximation and have attempted to account for 
the actual motion of the nucleus by some perturbation 
technique such as was developed by Hylleraas3 (Ryd-
berg constant correction) and by Hughes and Eckart4 

(first-order mass polarization correction). For many 
purposes, this is an entirely adequate mode of procedure. 
However, occasionally difficulties arise. For example, 
certain isotope shift effects are too small to be handled 
by these techniques in first order.5 Also, there are 
systems where the masses of the particles are more 
nearly equal than in ordinary atoms, for example, in the 
/^-mesonic isotopic hydrogen molecule ion6 p+ii~d+, or 
in the interesting but so far hypothetical7 system of two 
electrons and a positron, e~e+e~. In such systems, the 
above procedures are obviously inappropriate. Success
ful attempts to dispense with the infinite-mass approxi
mations have now been made by a number of investi
gators,8 usually for states of zero angular momentum. 
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Scherr and Machacek9 have made extensive study of 
systems of three Coulombic particles possessing unit 
angular momentum in which the mass dependence was 
rigorously and completely taken into account. Their 
computer programs have been used here to investigate 
in more thorough detail the 2 1P states of the helium 
isoelectronic series. 

Knight and Scherr10,11 have investigated the P states 
of the helium isoelectronic series by a Schrodinger 
perturbation procedure. This procedure, as is well 
known, presents a wave function as an expansion in 
powers of the perturbation expansion parameter—in 
the helium atom case, inverse powers of the nuclear 
charge Z. Thus, 

^ = E z - ^ , . (l) 
Consequently, expectation values of operators are also 
obtained in a power series in Z~l 

dr^m^ (0) - £Z*-*<Q>W' , (2) 

where the value of a depends on the nature of the 
operator Q. The ^ is assumed to be real and to be nor
malized for simplicity. In particular, the expectation 
value of the Hamiltonian is the total energy 

£=z2x;z-"€„ (3) 

I t is possible12,13 to obtain estimates of the leading coeffi
cients in Eqs. (2) and (3) from the results of a series of 
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variational calculations by a procedure referred to as a 
"differencing technique." These estimates have been 
obtained from the results reported here, and the com
parison with the perturbation results of Knight and 
Scherr indicates that their first-order results10 are good; 
no conclusion can be made about their higher order 
results. Both the work of Knight and Scherr and the 
coefficient estimations made here deal with wave func
tions constructed in the infinite-nuclear-mass approxi
mation. For the perturbation approach to be applied in 
the true mass calculation, the systems (i.e., He, Li+, 
Be*-1", etc.) all would be required to have the same 
nuclear masses. In this way, most of the systems studied 
would be just as artificial as the infinite-nuclear-mass 
systems. 

II. PROCEDURE 

The wave function employed by Scherr and Machacek 
has already been briefly described,5 and a more thorough 
report will soon appear.9 Aside from being an eigen-
function of the angular momentum, it is a 50-term 
expansion with an exponential factor containing two 
nonlinear parameters. These nonlinear parameters were 
carefully optimized for the systems with infinite nuclear 
masses. These same nonlinear parameter values were 
then used in the variational calculations for the systems 
with the true nuclear masses.14 (The 50 linear param
eters were, of course, determined each time via the 

T A B L E I. The energies in reduced atomic units . a 

T A B L E I I . Isotope shifts. 

Isotope 

He 3 

He 4 

Li6 

Li7 

Be9 

B10 

B11 

C12 

C13 

N14 

N 1 5 

6
5

5
 

JT19 

Ne20 

Ne21 

Ne22 

(m/M)XW 

1.8192 
1.3706 

0.9126 
0.7821 

0.6089 

0.5480 
0.4984 

0.4573 
0.4220 

0.3919 
0.36585 

0.3431 
0.3228 
0.3049 

0.2888 
0.2745 
0.2614 
0.2495 

E(tme mass) 

- 2.12383358 
- 2.12383565-

- 4.99332659 
- 4.99332987 

- 9.11073181 

-14 .4772178 
-14 .4772236 

-21.0932455+ 
-21 .0932520 
-28 .9590082 
-28 .9590152 

- 3 8 . 0 7 4 6 0 5 5 -
-38 .0746130 
-38 .0746196 

-48 .4401009 

-60 .0555039 
-60 .0555120 
-60 .0555194 

£ (infinite mass) 

- 2.12384195+ 

- 4.99334951 

- 9.11076965-

-14 .4772810 

-21 .0933298 

-28 .9591137 

-38 .0747323 

-48 .4402412 

- 6 0 . 0 5 5 6 7 3 5 -

a Reduced atomic energy units are in units of M ^ - 2 . Let m be the mass 
of the electron and M be the mass of the nucleus, then the reduced mass, 
fx=mM/(M+m). For the infinite-mass systems ju =w, and the rydberg is 
the familiar infinite-mass rydberg. 

14 At first, i t might seem more reasonable to optimize for the 
real, physical systems, and use the thus obtained values for the 
artificial, infinite-nuclear-mass systems. However, the infinite-
nuclear-mass systems serve as a sort of surveyor 's bench mark on 
which everyone can base his work for comparison. Aside from 
being independent of future improvement of the experimental 
mass determinations, the choice of the infinite-mass systems also 
begs the issue of which nuclear isotope to consider. 

System Rydbergs Shift (cm"1)* 

He 3 

He4 

Li6 

Li7 

B10 

B i i 

C12 

C13 

N14 

N 1 6 

Q17 

O16 

O18 

Ne21 

Ne20 

Ne22 

00 

109717.345 
109722.267 

109727.295 
109728.723 

109731.296 
109731.840 

109732.291 
109732.678 

109733.009 
109733.294 

109733.767 
109733.544 

109733.963 

109734.441 
109734.297 

109734.571 

109737.309 

1.673=b0.005 

2.127±0.006 

3.41 ±0.05 

3.82 ±0.06 

4.08 ±0.06 

4.36 ±0.07 
8.19 ±0.07 

4.66 ±0.08 
8.90 ±0.08 

a The error estimate is based on the assumption that the pertinent entries 
in Table I and the rydbergs listed in this table may each be in error by so 
much as one unit in its last recorded digit. 

ordinary secular equation procedure.) The reliability 
of retaining the infinite mass nonlinear parameter 
values was checked for all the true mass calculations by 
varying the nonlinear parameters slightly.15 The value 
of the lowest energy found for each value of Z is dis
played in Table I for both the infinite-mass calculations 
and for the more common or stable isotopes of the 
atoms with nuclear charges from Z= 2 to 10. Scherr and 
Machacek found9 for the three-body systems they 
studied (two particles identical) that when the charges 
were all equal in magnitude no stable symmetric state 
(*P) existed for any mass ratio. Thus, H~ has no stable 
IP state. The isotope shift effect5 data as well as the 
appropriate Rydberg values used in their evaluation 
are also entered in Table II. 

The differencing technique to recover the perturba
tion expansion coefficients implicit in the expectation 

TABLE III . The en in atomic units. 

Recovered herea Knight and Scherr 

2 
3 
4 
5 
6 

-0.157023 
0.02606 
0.0061 

-O.OO61 
-0.006 

-0.15702123b 

0.02612431b 

0.00604561° 
-0.00442904° 
-0.00477658c 

a The Z—2 value not included in the analysis. The last digit reported is 
to be regarded as unreliable. 

b Data from Ref. 10. 
c Data from Ref. 11, not to be regarded as definitive values. 

15 For the choice of nonlinear parameters ZafiJ, four additional 
points [#,&(1±A)] and [#(1±A),&] were computed, where the 
A's were some value between 0.001 and 0.00025; except for the 
He and Li+ systems, of the five points computed the central 
set, i.e., the values [a,b~], was the deepest also in the true mass 
calculations. 



A 682 M A C H A C E K , SANDERS, A N D S C H E R R 

TABLE IV. Recovery of (Q)0 and (Q)i. 

Operator 

Recovered8, (Q)0 
Exact (Q)o 
Recovered21 (il)i 
Knight and Scherrb (12)i 
Relative error of the 

recovered (fi)o 
Relative error0 of the 

recovered (12)i 

u'1 

0.25986 
0.259869-•• 

-0.31419 
-0.314042 
-0.000042 

0.00047d 

u 

5.107 
5.1082-•• 
5.661 
5.5945 

-0.00026 

0.0118 

u* 

31.76 
31.890..-
71.84 
67.939 

- 0.0040 

0.057 

r - i 

0.62503 
0.625 

-0.13069 
-0.129932 

0.000042 

0.0058 

r 

3.250-
3.25 
2.721 
2.6939 

-0.00011 

0.0102 

r* 

16.44 
16.5 
34.29 
32.339 

-0.0038 

0.060 

* The Z =2 and 3 values are not included in the analysis. In general the last two digits are shaky. 
b Truncated (i.e., not rounded) from the data of Table III of Ref. 10. 
0 That is, under the assumption that the Knight and Scherr results are the correct values. 
d Cf. footnote 19. 

values was first applied to E2(Z), defined by 

E2(Z) = E(Z) + (5/8)Z2- (1705/6561)Z, 

for Z from 3 to 10 inclusive. The root-mean-square 
(rms) error estimates for the first few coefficients re
covered were judged to be as good as could be expected, 
and no further refinements were tried. The results are 
shown in Table III. The differencing technique was also 
applied directly to the total expectation values of the 
moments of the interparticle ordinates. 

III. DISCUSSION 

A. Nonlinear Parameters 

Variation of nonlinear parameters is a vexatious 
procedure, not only because of its time consuming 
nature, but also because of the nature of the energy 
surfaces that are developed. Multiple minima abound, 
and relatively sudden variations, particularly near a 
minimum, occur. The task in the present instance was 
somewhat simplified because of the features common to 
all the surfaces studied. However, as systems of higher 
and higher Z were studied, the smooth trend of be
havior of the parameters was interrupted due to the 
growth of former secondary minima to the status of 
true minima. In fact it is possible that the absolute 
minimum for one or another of the atoms has actually 
been missed, but it is felt that the energies reported 
here, if they are indeed not the absolute minima them
selves, could not differ from the absolute minima by so 
much as 5 in the eighth significant figure. Since the 
reported energies probably differ from the exact eigen
value in the sixth or seventh decimal place, this is 
satisfactory minimization. 

B. Comparison with Pekeris, Schiff, 
and Lifson 

Pekeris, Schiff, and Lifson2 employed a 220-term 
variational wave function in a study of the 2P and 3P 
states of the helium atom. Their energy result16 for the 

16 Pekeris, Schiff, and Lifson also present "extrapolated" 
results which should be very accurate. These are, for the 2 lP 
state, -2.1238429 a.u., and for the 3 IP state, -2.05514605 a.u. 

(infinite mass) helium 2XP state is —2.1238414 a.u. 
(atomic units). The deeper energy of the 50-term wave 
function is to be attributed entirely to the fact that 
Pekeris, Schiff, and Lifson preselected their nonlinear 
parameters. I t was not possible to use their parameter 
values in the 50-term wave function, as they lie in a 
region of parameter space inaccessible to the computer 
program as written. The extrapolation for infinite Z of 
the optimized parameters found for the 50-term wave 
functions is not clearcut because of the facts noted in 
Part A of this section; they extrapolate approximately 
to 1.005Z and 0.64Z, and the Pekeris, Schiff, and Lifson 
values to Z and 0.5Z, correspondingly. As those authors 
point out, the latter value, 0.5Z, is necessary to ensure 
correct behavior at large distances. 

An observation that may have bearing on the con
struction of excited state wave functions concerns the 
quantitative inferiority of the 3 lP level obtained 
in this note compared to the 220-term value. This 
latter is —2.0551375 a.u., and the 50-term value is 
-2.0537433 a.u. 

C. Recovery of Perturbation Energy 
Coefficients 

The Scherr and Silverman analysis13 of the Pekeris 
extrapolated results17 for the ground-state energy 
values of the helium isoelectronic series later received 
an unexpected substantiation via a comparison with 
directly computed higher order coefficients. Seven 
decimal places of e2 and six of €3 were shown to have 
been obtained correctly by their differencing procedure. 
The 64, €5, and €6 values had disagreements in the sixth, 
fifth, and fifth decimal places, respectively. If analogous 
results can be expected for the recovered e» of the present 
note, then the €5 and €6 values are to be expected to be 
shaky in the third decimal place. Thus, only a qualita
tive agreement is established between the two sets of 
data in Table III. 

D. Recovery of the (Q)n 

Since the (fi)o values for all the operators considered 
are known, these were removed from the data before 

17 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115,1216 (1959). 
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instituting the differencing analysis. However, as a 
check, and as a means of getting the "feel" of the data, 
the raw data were also analyzed. As a general result, the 
best agreement with the exact (S2)0 and with the (O)i of 
Knight and Scherr was obtained when the Z equals 2 
and 3 results were not included18 in the differencing 
process, and the tabulated results are accordingly based 
on the Z equals 4 through 10 values only. The results 
are shown in Table IV (recovery of {12)o and (0)i) and 
Table V (recovery of the higher coefficients after 
removal of the exact(12)o). In the tables, r is the electron-
nucleus separation and u is the electron-electron separa
tion. It is comforting to note that in every case but 
one,19 after removal of the exact (12)o, the recovered 
(12) i are in closer agreement with the (12) i values of 
Knight and Scherr than the (12) i entries of Table IV. 
The associated rms deviations either remained essen
tially the same or improved slightly. 

The variational procedure tinkers most effectively 
with an approximate wave function in the "energy" 
region of configuration space, that is, at interparticle 
distances of the order of 1 a.u. These distances are more 

TABLE V. Recovery4 of the (Q)n. 

a 
r-1 

r 
r* 
u-1 

u 
u* 

<&>(> 

5/8 
13/4 
33/2 

1705/6561 
67031/13122 

1883081/59049 

<0>i 

- 0.13032 
2.714 

32.96 
- 0.31434 

5.633 
69.2 

<a>2 

0.0047 
2.300 

37.3 
0.0829 
4.41 
75.2 

a The Z —2 and Z =3 values were not included in the analysis of the data. 
In general the last two digits are shaky. 

18 The result is to be expected occasionally and is a consequence 
of the nature of the differencing technique. If time permits it is 
planned to return to this problem. 

19 The somewhat anomalous results obtained with {u~l)i are 
presumably referrable to the fact that (&~"1)i = 2e2. 

important for evaluating operators of the form r - 1 than, 
say, r2. These latter depend more sensitively on the 
description at larger separations. This consideration ac
counts easily for the much superior recovery of pertur
bation coefficients from the {u~~l) and (r~l) data than 
from the other (12). This superiority may be seen at a 
glance from the relative error entries in Table IV. These 
same data also show that the ease of recovery from the 
(u) is about the same as from the (r), and from the (u2) 
about the same as from the (r2). 

E. Isotope Shifts 

The isotope shifts for Z equals 2 and 3 calculated in 
this note have already been discussed elsewhere.5,9 The 
results for the isoelectronic series, presented in Table 
II, can be roughly fitted to an expression whose leading 
terms are 

shiftfcm-1) = 4.37X V&Pmirl(\- l.S5Z~l+ • • •) , 

where fx is the magnitude of the difference of the recipro
cal masses of the two nuclei involved and m is the elec
tronic mass. If the shift is calculated from a simple, 
properly symmetrized, product wave function of the 
type considered by Hughes and Eckart,4 but using the 
Pekeris et al? prescription for the orbital exponents, 
then the result is 

shift (cm"1) = 4.45 X l&2?tnfT1(l-2.21Z-1+ • • •). 

Similar calculations have been started for the ZP 
states of the helium isoelectronic series. 

ACKNOWLEDGMENTS 

The authors derive great pleasure in being able to 
acknowledge the splendid cooperation of The University 
of Texas Computation Center and the generous amounts 
of computing time made available to them on the CDC 
1604. 


