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Group-Theoretical Consideration of Landau Level Broadening in Crystals 
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A group-theoretical classification of the energy levels for a Bloch electron in a magnetic field is given. The 
fact is used that the magnetic translation group is a subgroup of the symmetry group for a free electron in a 
magnetic field, and it is shown that the broadening of the Landau levels in crystals is a general feature that 
follows from symmetry considerations. An explicit formula for the broadening in the case of cubic symmetry 
has been derived. 

I. INTRODUCTION 

THE broadening of the Landau levels in a periodic 
crystal potential has been treated by many 

authors.1 In the present paper this problem is considered 
from a group-theoretical point of view. For a free 
electron in a constant magnetic field there exists a set 
of operators which commute with the Hamiltonian2: 

e x p { iH A ) , a } ' (1) 

where p=—ih(d/dr), A=^|TJXr], e is the magnitude 
of the electronic charge and a is an arbitrary vector. The 
infinitesimal operators in Eq. (1) were identified2 with 
the coordinates for the center of the Landau orbits. 
Since the energy does not depend on the center of the 
orbit, there is an infinitely high degeneracy of the 
energy levels for a free electron in a constant magnetic 
field. In addition, when a periodic electric potential is 
introduced, operators again exist which commute with 
the Hamiltonian3'4 

exp{-(p--A)-Rn}, (2) 

where 
R»=wiai+W2a2+«3a3 (3) 

is a Bravais lattice vector and ai, a2, &z are vectors of a 
unit cell. In previous papers5 a magnetic translation 
group (M.T.G.) was defined which commutes with the 
Hamiltonian for a Bloch electron in a magnetic field. 
Although a detailed description of the energy levels and 
the eigenstates according to the irreducible representa
tions of the M.T.G. was already given before,4,5 we 
nevertheless repeat it in this paper by using a somewhat 
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different construction which shows clearly how the 
Landau levels get broadened. 

The relation between the operators defined in Eq. (1) 
and those denned in Eq. (2) is the same as between 
arbitrary translations for a free electron and discrete 
translations by R^ for a Bloch electron. 

In order to find the Landau level broadening caused 
by the periodic potential of the lattice, we here use the 
fact that the operators [Eq. (2)J for a Bloch electron in 
a magnetic field form a subgroup of the operators 
[Eq. (1)] for a free electron in a magnetic field.6 The 
usual procedure of comparing the irreducible representa
tions of a group (the symmetry of the original problem) 
with the irreducible representations of its subgroup (the 
symmetry of the problem after the perturbing potential 
is introduced) allows one to find the splitting of the 
energy levels which is caused by the perturbation. (In 
our case the periodic potential of the lattice leads to the 
lowering of the symmetry.) 

In Sec. II we present the classification of the energy 
levels for a Bloch electron in a magnetic field by using 
the irreducible representations of the magnetic trans
lation group6 (M.T.G.). In Sec. I l l we construct 
symmetry adapted functions for the irreducible repre
sentations of the M.T.G. from the eigenfunctions for a 
free electron in a magnetic field and calculate the 
broadening of the Landau levels. 

II. CLASSIFICATION OF ENERGY LEVELS 

Let us start7 with a short description of the subgroups 
of the magnetic translation group.5 We are interested 
here in commutative subgroups for the classification of 
the energy levels by means of the eigenvalues of the 
elements of these subgroups. The operators of the 
M.T.G. are defined as follows5: 

r(Rn|Ri,- • ^R0 = expj-f P--AYR W 1 

r *(Ri,..-,R<)-| _ 
Xexp 2m , (4) 

L hc/e J 
6 The operators defined in Eqs. (1) and (2) do not form a group 

because a phase factor appears when products are formed. In Ref. 
5 operators are defined which do form a closed set and therefore a 
group, called the magnetic translation group. 

7 Part of the results of this section were obtained elsewhere: 
See Refs. 3, 4, 5, and E. I. Blount, Phys. Rev. 126, 1636 (1962). 
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where <£(Ri,- • • ,Ri) is the magnetic flux through the 
polygon enclosed by the vectors Ri, • • •, R*, — Rn. We 
distinguish between the following cases: 

(1) H does not lie in a lattice plane. The invariant 
commutative subgroups of the M.T.G. are given by the 
elements 

r(w»a»-|Ri,- • *,Ry), for i=l, 2, or 3 , (5) 

where m takes all integer values. 
(2) H lies in a lattice plane, say, in the plane given 

by the unit cell vectors ai and a3. In addition to the 
invariant commutative subgroups defined by Eq. (5), 
the M.T.G. has the following invariant commutative 
subgroups: 

r Oiai+#3a31 Ri, • • • ,R»), (6) 

where n± and n% assume all integer values. 
(3) H lies in a direction of a lattice vector, say, a3 (the 

unit cell vector a3 can always be chosen in a direction of 
any lattice vector). In this case there are two possi
bilities : 

H a i X a 2 n 
(a) ^ — where n and N are integers. 

hc/e N 

In addition to the subgroup defined by Eq. (6) there is 
another invariant commutative subgroup of the M.T. G.: 

r 0 2 a 2 + ^ 3 a 3 | R i , - • -,Ry) (7) 

for all integer values of n2 and n$. 

H-a iXa 2 n 
(b) —— for integer n and N. 

hc/e N 

The invariant commutative subgroup of the M.T.G. is 
given by the following elements 

r(7isiai+toa2+w3a31 Ri, — ,R<), (8) 

where S\s2~ N (or N/2 for even n) and l±, l2 and nz take 
all integer values. (We assume that n and N have no 
common factor.) In our consideration of the Landau 
level broadening, we use the case (3b) because, in this 
case, it is easy to construct the irreducible representa
tions of the M.T.G. However, we shall see that the 
broadening is a general feature for a Bloch electron in a 
magnetic field. 

Let us consider the case (3b) of the M.T.G. in more 
detail. The latter can be written by means of its sub
group F consisting of the elements [Eq. (8)] as follows: 

L r ( ^ a i + ^ a 2 U i a i + i 2 a 2 ) F . (9) 
n = 0 , 1, •••,51 — 1 
J2=0, 1, • • •, 52—1 

The summation in Eq. (9) is a direct one. Since F is a 
commutative group we can easily find its representa
tions. They differ slightly for odd and even n, but in 

both cases they are described by wave vectors k : 

^{r (^ ia i+ / 2 . y 2 a 2 +^ 3 a 3 |R i , - • -,R,-)} 

f *(Ri,-'--,R<)l 

Xexpj — h l 2 n \ exp{ik'RN} • • • , (10) 

where RN= taai+/2s2a2+n3a3, the first phase factor is 
given in Eq. (4) and 

Ki K2 
k=tm—+m2—fm3K3, 0<mh m2, md<l (10a) 

Si S2 

where Ki, K2, K3 are unit cell vectors of the reciprocal 
lattice. All the representations of F are obtained when 
the wave vector k varies in the first magnetic Brillouin 
zone which is defined by the vectors Ki/si, K2/s2, and 
K3.

4 This Brillouin zone is smaller than the usual one for 
the same Bravais lattice by a factor of N because the 
commutative magnetic translation group F is con
structed on the translations siai, s2a2, and a3 as on unit 
vectors. Since the group F commutes with the Hamil-
tonian, the energy levels and the states for a Bloch 
electron in a magnetic field can be labeled by the vectors 
k [Eq. (10a)]. The description is thus similar to the one 
for an electron in a periodic potential alone. The only 
difference is that the unit cell vectors for the commu
tative translations are larger and the Brillouin zone is 
therefore smaller. As a consequence of the definition of 
k the energy will be periodic in k with periods Ki/si, 
K2/s2, K3. The vector k varies continuously and the 
energy as a function of k, E(k), will exhibit a band 
structure. For a full description of the energy spectrum, 
we have to use the whole M.T.G. In order to see the 
effect of the other symmetry elements, let us take a 
similarity transformation: 

r~1(^iai+^a21 iiai+^2a2) 
X r(/iSiai+/2,y2a2+^3a31 toai+toa2+^3a3) 

X r (i iai+**2a21 i iai+i2a2) 
= r(feiai+/2^2a2+^3a31 ZiSiai+ taa2+^3a3) 

Xexp{2-7ri( — li$1i2+l2S2ii)n/N}. (11) 

By applying both sides of Eq. (11) to an eigenvector 
| wi,w2,w3) of the elements of F, we find that5 

r (hai+i2si21 iiai+i2a2) \ mhm2,m^) —> 

I i2 ii \ 
mx , m2-\— , mz > (12) 

I s2 si ' 

is again an eigenvector of the elements of F but corre
sponding to the eigenvalues m\— (^2/^2), m2-\- (ii/si), m%. 
The element in Eq. (12) will thus transform a wave 
function \1/ 

mi,m2,m% into \pmv— (*2/s2),w2+(i*i/si) ,mz' This again 
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is similar to the case of an electron in a periodic po
tential. In the latter case the rotations or reflections 
(denoted by a) of the space group transform the k 
vector from one point in the Brillouin zone into another: 
k—^ak. For the description of the representations of 
space groups it suffices to take vectors only in a part of 
the Brillouin zone. For example, in a cubic symmetry it 
suffices to consider only 1/48 of the Brillouin zone. For 
the M.T.G. we have to take, according to relation (12), 
only \/N of the magnetic Brillouin zone and by means 
of the k vectors in this region we can define all its 
irreducible representations5: 

Z?y/"l .*»^{r(Rn |Rn)} 
= fy.jL.ns exp{ —iri(n2+2j')n1(n/N)} 

Xexp{ik-R n }, (13) 

where j and f take values from 0 to N— 1 and 

k=m1(K1/N)+m2(K2/N)+mdK^ 

0<mh m2, mz< 1. (14) 

[ In the representation of r (R»|Ri , * * *,R») and addi
tional phase factor 

f * ( R i , - " , R i ) i 
expi 2wi \ , 

I hc/e J 
will appear in Eq. (13). ] As a result of the symmetry 
elements that do not belong to F the energy as a function 
of k, £ (k ) , will be defined in a 1/N2 part of the usual 
Brillouin zone. Denoting by K any vector that is 
obtained in relation (14) by assuming integers for mh 

tn2, and mz, we get 

£ ( k + K ) = £ ( k ) . (15) 

Let us compare the result in Eq. (15) with the 
symmetry of the energy for an electron in a periodic 
potential. In the latter case the energy obeys the con
dition [Eq. (15)] for vectors of the usual Brillouin zone 
and also an additional relation which follows from the 
point symmetry of the space group: 

£ (ak) = £ ( k ) , (16) 

where a is a rotation or a reflection. The relation [Eq. 
(16)] for the magnetic case is expressed by the fact that 
the magnetic Brillouin zone is split into N equal parts 
and hence the energy variation need be considered only 
in one of these parts. From the representations [Eq. 
(13)] it follows that the degeneracy of the energy levels 
is N-iold. 

III. LANDAU LEVEL BROADENING 

Having described the energy levels for a Bloch elec
tron in a magnetic field and the representations of the 
magnetic translation group, we can now solve the 
following problem: What happens to the Landau levels 
for an electron in a constant magnetic field when a weak 

periodic potential is turned on? We know the exact 
solutions for an electron in a constant magnetic field 
and we choose these in one of the representations given 
in Ref. 2. Let us denote the operators p— (e/c)A by iz 
and require the eigenfunctions of the Hamiltonian 

(V+(e/c)Ay/2m (17) 

to be eigenfunctions of TX too. By choosing a gauge 
A = | [ H X r ] and by directing the z axis of the coordi
nate system in the direction of the magnetic field, we 
have2 

[ ixy i 1 
\f/ntb(xyz) = An expj \-ibx-\—pzz \ 

I 2X2 h \ 

f l / y - A W ] /y-\2b\ 

H-2hr)H—)• (18) 

Here fib are the eigenvalues of TX, X= (ftc/eH)112 is the 
radius of the cyclotron orbit and A n is a normalization 
constant. The functions (18) obey the following 
equations: 

expj ~irxax Wn,b= exp{ibax}\l/n,b, 

(19) 

e x p j -TTydy \^n,b = ^n, b-ay/\2 , 

where ax and ay are any translations in x and y direc
tions. According to the interpretation given in Ref. 2 the 
operators wx and wy are connected with the y and x 
coordinates of the center of the cyclotron orbit. Equa
tions (19) show that the energy does not depend on the 
continuous variable b, because a state with any eigen
value of the operator wx can be obtained from the state 
$n,b by applying operators exp{ (i/fi)Tryay) that com
mute with the Hamiltonian (17). The energy is thus 
infinitely degenerate. By turning on a periodic potential 
the Hamiltonian of the problem will be 

(V+(e/c)Ay/2m+V(r). (20) 

The symmetry of the Hamiltonian (20) is lower than 
for the free electron in a magnetic field and we have to 
expect that the degeneracy of the energy levels will be 
partly removed. The operators that commute with (20) 
are given by Eqs. (19), but now ax and ay are compo
nents of lattice vectors. The magnetic translation group 
is thus a subgroup of the symmetry group for a free elec
tron in a magnetic field. The operators exp{(i/ft)Ty(Rn) y) 
will no longer give us a state with any eigenvalue of wx 

from the state \pn,b', we obtain, instead, a discrete set of 
states that belong to the same energy. The infinite 
continuous set of functions (18) will split into an infinite 
number of discrete sets, each one leading, in general, to 
a different energy. Sets that are created from states 
with very close eigenvalues b will presumably have 
close energies. The Landau levels will thus be broadened. 

fy.jL.ns
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A more detailed description of the broadening can be 
given for the case (3b) of the M.T.G. For simplicity we 
take a cubic crystal with the z axis along one of the 
principal axes of the crystal. In order to get the splitting, 
in the lowest order of perturbation theory, of the 
Landau levels which are described by the eigenfunctions 
(18), we have to use these eigenfunctions to construct 
symmetry adapted functions for the representations 
(13) of the M.T.G. Let us treat the simple case when 
n— 1, and ignore the z dependence of the wave function 
which is of no interest in this treatment. The usual con
struction of symmetry adapted functions4'5 leads to 
the following result (apart from a normalization con
stant) : 

f 2lr 1 ^ n , jk (xy) = exp | im2j \ 2 r (inNa2 \ mNa2) 
[ N J m 

Xexp{ — 2Trim2m}\f/n>(27r/a)(mi~j)/N, (21) 

where \J/n>b is the function denned in (18) for 2=0, j 
takes values from 0 to N~ 1, r is a vector with com
ponents (x,y), and 

k^m1(K1/N)+m2(K2/N)7 0<mhm2<l. (22) 

The functions (21) correspond to the classification of the 
energy levels for a Bloch electron in a magnetic field 
that is given in Sec. I I . Two consequences follow from 
the above construction of the symmetry adapted func
tions (21): First, the Landau levels become Af-fold 
degenerate instead of being of infinite degeneracy. 
Secondly, the Landau levels are broadened because of 
the dependence of the energy on the vector k. This 
dependence may be calculated by taking matrix ele
ments of the periodic potential V(r) in (20) between 
states (21), which are the correct functions for the 
lowest order perturbation theory. The matrix of the 
secular equation in the lowest order of perturbation 
theory will be automatically diagonal and we are left 
with the calculation of matrix elements of the potential 
V(r) only between states (21) with the same n, j , and k. 
For a given n, the perturbation energy will depend on k 
only (we take therefore j—0): 

Vn(k)= *n**(ay)V(xy)*n*(xy)dxdy. (23) 

By expanding the potential V(xy) in a Fourier series 
and by taking a proper normalization for the functions 
^n k , we get 

Vn(k)= £ exp{-2Ti(m1p+m2q)}Hqp(n), (24) 
P, Q 

where p and q take all integral values from — oo to + °o ; 
mi and m2 define the k vector according to relation (22) 

and Hqp(n) are the overlap integrals: 

HQP(n) = Vq^p [ exp! — (-) \HJ-) 

( l/y—gNa\2} fy—qNa\ 

H-I(-T-)K-T-) 
\-2TT ) 

X exp j ipy \ dy. (25) 

Here Vq,-P is the Fourier transform of the potential 
V(xy): 

1 f f 2TT 1 
Vq,-P=— I exp] i(qx—py)\V(xy)dxdy. (26) 

a2 J [ a ) 

The integration in (26) is over an area of a unit cell in 
the x-y plane. 

From the definition of the overlap integrals (25) and 
from the reality of the potential V(xy)y it follows: 

Hpg*(n) = H-p,-q(n). (27) 

I t can also be shown (see Appendix) 

Hpq(n) = Hq,^p(n) - H^p,^q(n). (28) 

Combining (27) and (28) we find that the overlap 
integrals Hpq(n) are real. 

The final expression for the perturbation energy (24) 
will be 

Tn(k)= I ] cos(2wm!p) cos(2Trm2q)Hpq(n) 
pq 

oo 

= H0o+2 £ £cos(2irmip)+cos(2Trm2p)']HoP(n) 
p - i 

00 

+ 2 X) cos(2irmip) cos(2irtn2q)Hpq(n). (29) 
P,I=I 

As expected the perturbation energy Fw(k) satisfies 
relation (15) and has the symmetry of the potential. 
The first term in (29) is a constant (it equals V0o) and 
leads to a total shift of all energy levels. The other 
terms in the perturbation energy (29) will lead to both 
broadening and unequal spacing of the Landau levels. 
In order to estimate these two effects let us take the 
lowest order term of F n(k) . We have (omitting the 
constant term H00): 

K.W-2r.-p{-(^)*|i.((^)*} 

X (cos27rWi+cos27rw2), (30) 

where Ln(x) is a Laguerre polynomial. The argument 
(ir\/a)2 in both the exponential and the Laguerre 
polynomial is very large for all practically achievable 

file:///-2tt
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magnetic fields: 

(7rA/tf)2~1010Xl/#. (31) 

For fields H^ 105 G, (7r\/a)2^T05. For small quantum 
numbers n, the perturbation F»(k) will therefore be 
negligible. For high quantum numbers (n> 100) we use 
the asymptotic expression for the Laguerre polynomials 

1 
L n ipc) ̂  e x p {J#} x~llAfi~1!4i 

X/TT 

Xcosf 2 / » 1 / 2 * - - ) +0(n~^). (32) 

The perturbation energy F»(k) will be 

/2TT2X2 \-VA ( X T\ 
Vn(k)~Voil—^n) cosf 2 T T - V 2 » — J 

X (COS2TTWI+ cos27rm2). (33) 

For H^IO5 G and n^lOz
y we get 

Fw(k)—0.01Foi(cos27rWi+cos27rw2). (34) 

This is already a strong perturbation, and we have to 
expect that, for high quantum numbers n, the shift of 
Landau levels and the broadening will become con
siderable. However, when n —>oo, F«(k) —» 0. This is in 
agreement with the fact that very high-energy levels are 
not influenced by the periodic potential. 

Finally, it is interesting to note that the formula (29) 
for the perturbation energy has the same form as in the 
case of the tight binding approximation. This fact is not 
surprising because the procedure used here for con
structing symmetry adapted functions in the magnetic 
field is exactly the same as one uses for constructing 
Bloch-type functions from atomic orbitals. 

IV. CONCLUSION 

The Landau level broadening considered in this paper 
is an example of symmetry lowering which is caused by 
the introduction of a perturbation. In the case under 
consideration, a periodic electric potential is introduced 
as a perturbation into the problem of a free electron in a 
magnetic field. As a result of the perturbation, the 
degeneracy is partially removed and we get a broadening 
of the energy levels. I t is a usual thing in quantum 
mechanics to expect that when an additional field is 
applied to a system the symmetry of the latter is 
lowered. This is, however, not the case when the 
additional applied field is a constant magnetic field. To 
see this let us compare the translation operators 

exp{(i/fc)p*a},- (35) 

which commute with the Hamiltonian for a free electron 
(a is an arbitrary translation) with the operators (1) 

which commute with the Hamiltonian for an electron in 
a constant magnetic field. The latter do not form a 
subgroup of the operators (35). The same can be said 
about the case when a magnetic field is applied to a 
Bloch electron. The translation operators that commute 
with the Hamiltonian for a Bloch electron are 

exp{(*/*)p.Rn}. (36) 

When a magnetic field is also present, the operators that 
commute with the Hamiltonian are defined by Eq. (2). 
Again, the latter do not form a subgroup of the usual 
translation group (36). The fact that we get a different 
symmetry group by introducing a magnetic field prob
ably explains the difficulties in solving the problem for a 
Bloch electron in a magnetic field. The only case when 
symmetry is lowered in the presence of a magnetic field 
is the example treated in this paper. This example is in 
fact very easy to treat. 
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APPENDIX 

We derive here the symmetry properties (28) of the 
overlap integrals Hpq(n): 

1 f (y\ (y-PNa\ 
2n/7rll2\n\ J W \ A / 

f 2r } Xexp iqy \dy, (Al) 

where 

-©H4(DMD' (A2) 

The integrals that appear in (Al), 

f fy\ (y-pNa\ f 2TT I 
Ipq^ / <Pn\-)<Pn[ ) exp iqy\dy (A3) 

are the Fourier transforms of the products <pn(y/X) 
X(Pn((y—pNa)/\). Using the formula for a Fourier 
transform of a product of two functions, we get 

Ipq=Iq,-p. (A4) 

Since we assume cubic symmetry for the potential 
energy relation (28) follows at once from the equal
ity (A4). 


