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The tunneling of electrons through potential barriers with plane boundaries involves the conservation of 
tangential quasimomentum (specular transmission). The boundaries between metals and insulators (e.g., 
oxides) in thin-film tunneling structures can be very irregular or rough, so that the specular transmission 
condition must be replaced by a "diffuse" transmission condition which allows nonconservation of tangential 
momentum. The tunnel current for diffuse boundary conditions and for arbitrary band structures and 
potential-barrier shapes has been calculated. Compared to the result for specular boundary conditions, the 
integrand in the expression for the tunnel current contains a factor U(E,$t) = 2 p(ptf)^(p/,Vt)/p(Vt) for each 
metal [p (pt) — linear density of states for fixed tangential momentum p*,7r (p/,p«) is proportional to the prob
ability that the diffuse boundaries change p / to p*, and the sum is over the "shadow" of the energy surface 
E(p)l- Under reasonable assumptions for x(p/,p«), no appreciable effect of the densities of state on U or on 
the tunnel current should occur. The effects of diffuse transmission conditions on field emission from many-
valley semiconductors and on tunneling between superconductors are briefly discussed. 

1. INTRODUCTION 

ALL the existing treatments of electron tunneling 
through thin insulating films or surface potential 

barriers (field emission) involve conservation of the 
electron quasimomentum component (p«) parallel (or 
tangential) to the boundary. This results from the 
assumption of a one-dimensional barrier region and is 
referred to as specular transmission by analogy with the 
similar case of reflection. However, as pointed out by 
Harrison,1 many sheet resistance measurements for thin 
metal films indicate predominantly diffuse reflection at 
metallic surfaces.2 Thus it seems likely that correspond
ing diffuse boundary conditions will apply for the tunnel
ing of electrons through thin oxide films between metals. 
Clearly, the type of boundary condition applicable will 
depend on the irregular deviation of the boundaries from 
a plane (roughness) and thus must depend on the process 
of fabrication. Indeed, careful annealing of thin gold 
films can lead to the absence of a thickness effect on 
resistivity,3 thus indicating specular reflection (assum
ing a mainly isotropic Fermi surface). Also, the observed 
size dependences for resistivity and galvanomagnetic 
effects in thin electropolished single crystals of bismuth4 

are consistent with the theory involving the highly 
anisotropic Fermi surface and assuming specular 
reflection.5 

To estimate the effect of nonspecular boundary con
ditions, wave functions have been constructed for the 
electrons on either side of the barrier, which imply that 
an electron incident on the barrier with a given value of 
pt is incoherently scattered into all the possible states of 
the same energy inside the barrier region without con
servation of pi. 

1 W. A. Harrison, Phys. Rev. 123, 85 (1961). 
2 A. H. Wilson, The Theory of Metals (Cambridge University 

Press, 1954), p. 248. 
3 M. S. P. Lucas, Appl. Phys. Letters 4, 73 (1964). 
4 A. N. Friedman and S. H. Koenig, IBM J. Res. Develop. 4, 

158 (1960). 
5 F. S. Ham and D. Mattis, IBM J. Res. Develop. 4,143 (1960). 

P. J. Price, ibid. 4, 152 (1960). 

The case of partial specular and diffuse transmission 
has also been considered with different proportions of 
each for the two boundaries. Field emission from fine 
points might be a case where the boundary at the surface 
of the emitter is nonspecular while the other boundary 
(in vacuum) is specular. Although here again it will 
depend on how smooth the emitter is. 

The effects of diffuse boundary conditions on field 
emission from many-valley semiconductors and tunnel
ing between superconductors separated by a thin oxide 
film are discussed in the final section. 

2. CALCULATION 

Since there appears to be "no unique way of intro
ducing a diffuse transmission [boundary] condition" 
(cf* Ref. 1), the following simple artifice has been 
adopted. Assume that the barrier region extends from 
xa to xb with metals to the left of xa and right of xb. 
Following Bardeen's6 method, applied to a one-electron 
model, let the wave function \pa(Ea>Vat) represent an 
electron of energy Ea in metal a when a specular trans
mission condition applies. I t corresponds to a reflected 
plane wave in the region x<xa and an exponentially 
decaying wave in the region x>xa. I t will now be 
assumed that if the transmission is not specular (i.e., the 
boundary is not plane) an electron of energy E in metal 
a can be represented by the wave function 

$a(EJpat) = T,Ao(pat,Pat)fa(Ea,Vat), %<%a ( l a ) 
Vat 

= 2Z Ai(pat,Pat)lpa(Ea,Vat), X> Xa , ( l b ) 
Vat 

where the sum over j)at extends over the projection of 
the energy surface Ea(p), in metal a, on a plane parallel 
to the boundary region. (This projection has been re
ferred to as the "shadow" region in Ref. 1.) For a 
specular boundary, 4>a(jE,pa*) would still be a solution 
of Schrodinger's equation, in the region x<xb, if each 
coefficient Ai(pat,Vat) were equal to the corresponding 
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coefficient Ao(pa/,Pat)- I t will be assumed that for a 
nonspecular boundary Ai(pa/,pat) and Ao(pat,pat) are 
not necessarily equal. The values of the A0 and At co
efficients will depend on the nature of the boundary 
layer. Specific assumptions are introduced later]: in the 
section. 

In a similar fashion the wave function 3>b(Eb}pb/) for 
an electron of energy Eb in metal b can be written 

$b(Eb,pbt) = T, BQ(PM ,pbt)^b(Eh$ht), x>xb (2a) 

= E BifobtyVbMbiEbiPbt), x<xby (2b) 
Vbt 

where the sum over pbt extends over the shadow of the 
energy surface in metal b. Following Bardeen6 we then 
consider the tunneling of an electron from metal a to 
metal b as a transition between the states <£« and <3?&. 
The probability per unit time of the transition is given by 

2nZa& will be independent of the initial and final value of 
the tangential momentum so that 

where 

3D = (47rg/A£) / | Wlab 1
2fiMfa-fb)dE, (8) 

(9) / *a=£p«=(A/A a ) / p 0 dV. 

rab = (2w/%) | mab\
 2phfa{l-fb), (3) 

where pb is the density of states in metal & for fixed 
tangential momentum pb/, fa and fb are the occupation 
probabilities of the states and the matrix element is 
given by7 

is the usual three-dimensional density of states. [NB 
since papb is proportional to A2, | 2nTa&|2 must be pro
portional to A -1, cf. Eq. (17b) below.] 

Turning now to the evaluation of the matrix element 
'fflab by substituting into Eq. (4) from Eqs. (1) and (2), 
we have 

Mab=ZAi*(Pat\vdBo(Vbt',Pbt)Mab(St) , (10 ) 

where the "specular" matrix element is given by 

Mab(pat)8pat,pbt 

Mab= *b*(H-Ea)*adT. (4) 

Thus the transmitted current density j is given by 

adE (5) j= (2q/A) £ / TabPad 
Vat',Vbt' J 

= (47rq/Ah) £ f \Wlab\2PaPb(fa-fb)dE, (6) 
Vat',pbtf J 

where A is the area of the barrier region. For specular 
transmission of both boundaries this reduces to the 
expression1 

js-(^q/Afi)Z \\Mab\2PaPb(fa~fb)dE (7a) 
p< J 

= (8T*q/h*)J (fa- fb)dE[J \Mab\*papbd*p^\, (7b) 

where the matrix element Mab is only nonvanishing if 
Pai—pbi=pi, say. For completely diffuse boundaries, 

= fb*(Eb,J>bt)(H-Ea)MEa,Pab)dT (11) 

so that the sum over p± is over the overlap region of the 
two shadows. [Here we have used the fact that the 
integrands in Eqs. (4) and (11) are nonvanishing only 
when %>%b.~] 

Before evaluating 3TCa& for nonspecular boundaries, 
we will test the form of the wave functions by considering 
that the $ functions are produced from the \f/ functions 
by a unitary transformation. Thus, if A^AQ and 
Bi=B0, the current density derived from Eq. (6) should 
equal that derived from Eq. (7) for specular boundaries 
or the equation 

E \^ab\2Pa(Pa/)pb(Pb/)-=i:\Mab\W(Pt)pb(Pt) (12) 
Vat',Vbt' Vt 

must hold. That this is the case can easily be verified 
using Eq. (10) and the relation 

£ p{pat)A *(Pat >Pat)A{pat
f
 }pat')^ p{Pat)h»t,vat>> , (13 ) 

Vat' 

which can be shown to lead to the closure property for 
the complete set of ®a(Ea,pa/) functions. 

For the case of nonspecular boundaries 

6 J. Bardeen, Phys. Rev. Letters 6, 57 (1961). 
7 This differs slightly from the corresponding expression given 

in Ref. 6. Carrying out the perturbation calculation indicated in 
Ref. 6, we find that Bardeen's matrix element Mmn should 
equal J\f/mn*(H—Wo)\podT, where the integrand is nonzero only 
for x>Xb. However, if Wmn — Wo, out expression for Mmn is equal 
to the complex conjugate of the expression given in Ref. 6, thus 
leaving the tunneling probability unaltered. 

\Wlab\2=Z\Ai\*\B0\
2\Ma (14) 

where we have neglected cross terms by assuming an 
arbitrary phase dependence of the A t- and B0 coefficients. 
(This is physically equivalent to the assumption of in
coherent scattering at the boundary regions.) Inserting 
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this value for 3TCa& into Eq. (6) then gives 

Sw2q 
Js 

Ah 
f(fa-fb)dEZ\Mab\ 

EM*l2PaL|£o|V (15) 
X P o f ' Pbt' 

Harrison1 has derived the value of Mab for gradual 
transition regions. Using the WKB approximation, he 
finds 

|^ & | 2 =(4x 2 paP6)- 1 e-% (16) 
where 

/

Xb 

\px\dx. (17) 
a 

Thus j 8 is completely independent of the densities of 
state while, more generally, using Eq. (6) 

i = — f(f*-f>)dEZ—' £M*|2P«i:.W2P6 (18) 
hA J 

with 

** paPb *ai 

EI^I2=E|5o|2=i 
Vt Pt 

Vbt' 

(19) 

from the normalization conditions. Let 

Ua(E,Vt)-= 

X \Ai(Pat',Pt)\2pa(pat) 
Pat' 

Pa(Vt) 

(20) 

Then Eq. (18) can be written more compactly as 

i = (2q/h*) j(fa-fb)dE fe-*UaUbd*pt (21) 

and, using Eq. (19), 

£ Ua(E,Vt)pa(Vt) = L P a ( P a / ) = Pa . ( 2 2 ) 
P< Pa*' 

We now consider the values of the coefficients A i and 
B0. For the specular case 

\Ai\^(h"/A)8vatf>pty 

\B0\
2=(h*/A)8pbt>tVt, 

(23) 

so that Ua~Ub= 1, and the usual result [cf. Eqs. (7b) 
and (16)] is recovered. 

From Eq. (1), |-4*(pa/,p<|2 can be interpreted as the 
probability that the vector p* is in the element of area 
dpt- In the Appendix it is shown that if reflection from a 
perfectly diffuse surface leads to a reflected vector p 
which is uniformly distributed over the energy surface 
E(p) ,then the probability that p* is in the element of 
area dpt is proportional to p(pt)dpt> If we now assume a 
similar result for completely diffuse transmission, then 

M ; | 2 = P«(p*)/pa, 

\Bo\2 = Pb(pt)/pb, 
(24) 

and Ua~ Ub= 1 again. The result is reasonable since the 
incident electrons already have their p values uniformly 
distributed over the energy surface E(p). Thus, under 
the present assumption, diffuse scattering prior to 
tunneling does not alter the distribution of pt values. I t 
is however, not clear that other assumptions concerning 
the distribution of p* values are not possible. 

I t will now be assumed as a simple example that the 
probability for the vector p* to be in the element of area 
dpt is proportional to dpt. Then 

\Ai\*=h*/ASa(E), 

\B,\^hyASb{E), 

(25) 

where S(E) is the area of the shadow of the energy sur
face E, and 

U=(h*/*)WpS)- (26) 

For spherical energy surfaces it can be shown that 

U=2ll-(pt*/p*)l"*, (27) 
so that 

JD '»=4S)/ ( /--w 

v r f pt\in/ pt\1/2 i 
x[H^ l1-̂ ) **>•(28) 

This is equal to four times the value of js if the two 
factors involving square roots are replaced by one. The 
latter is a reasonable approximation for sufficiently large 
shadows, i.e., when 

(dr)/dpt)0py>l, 

since the tunneling factor e~^ usually decreases rapidly 
as pt increases from zero. 

More generally, the factor 

(29a) 

(29b) 

U= pd2pt/pS 

dE/dpx r dpudp, 

s (dE/dpx) 

can differ appreciably from the value 2 and be aniso
tropic for energy surfaces in the conductors that are 
appreciably nonspherical. {E.g., for a cylindrical energy 
surface whose height is K times its base diameter, 
U=2+K if px is the cylinder axis and U=(3ir/2K) 
X[l-{py 2 / (py 2+pJ)}J / 2 if P* is the cylinder axis.} 
This is apart from any anisotropy that could arise in the 
tunneling probability e-r?, due to nonisotropic energy 
surfaces in the barrier region, which would also affect 
js. Of course, in practice, an anisotropic tunnel current 
can only arise if at least one of the outer metals or the 
insulating layer are single-crystalline. For mixed specular 



A 840 R O B E R T S T R A T T O N 

and diffuse transmission 

{Ai^W/AMl-PjSa-i + Padiat'.vatl, (30) 

| JB 0 | 2 - {¥/A)[i\-Ph)Sh-^+Phb9W^ t~], 

where Pa,b (the "polish") measures the relative amount 
of specular transmission on either boundary. (The 
quantity P is similar to the parameter introduced to 
measure the amount of specular reflection in the theory 
of thin-film sheet resistance.8) Then it can be shown that 

j=(l-Pa)(l-Pb)JD + PaPbjs 

2q r r r /h2 pa \ 
+Pb(l-Pa)- / (fa-f>)\ hnl W 

k*J U \ApaSaJ 

2q r r r /h2 pb \ 1 
+Pa(l-Pby- / Ua-h)\ / e-4 Adtpt \dE, 

WJ U \APbSj J 

(31) 

where jx> is given by Eq. (28). For spherical energy 
surfaces and with the various factors (l — pt

2/p2)l/2 

taken as unity, 

j~(2-Pa)(2-Pb)js. (32) 

The case of field emission from a point (surface a) 
through a potential barrier in vacuum (surface b) can 
be treated by setting Pb= 1 and /& = 0. 

From the structure of Eqs. (20) and (21) it seems 
unlikely that any surface conditions would lead to a 
strong dependence of the tunnel current j on the density 
of states p. 

3. DISCUSSION 

The basic assumption underlying our technique for 
treating tunneling through a barrier with diffuse bound
aries is that the tangential momentum of an electron 
passing through the boundary is not conserved [cf. Eqs. 
(1) and (2)]. Rather, an electron with any tangential 
momentum po t outside boundary a can be transmitted 
into a state of the same energy with any other tangential 
momentum p a / inside the barrier provided p a / is inside 
the shadow of the energy surface Ea. The latter condi
tion can be shown to be plausible by considering the 
corresponding case of diffuse internal reflection from the 
surface of a conductor. Ham and Mattis5 have argued 
that pf must be conserved during specular reflection in 
agreement with the result for specular transmission. 
Now if diffuse reflection from a surface is caused by its 
roughness, we can consider the reflection of an electron 
from a portion of surface inclined to the (y,z) plane 
which gives the mean position of the surface. Then the 
component of p in the inclined surface will be conserved, 
thus leading to a change in p*. the component in the 
(y,z) plane. However, the final value of pt must still be 
inside the shadow region since the final value of p is 

still on the constant energy surface E. I t seems reason
able that if all the reflected electrons have p^ values 
which lie inside the shadow region, the same will be 
true for the transmitted electrons. 

On the basis of experimental observations of field 
emission from various low-index crystal planes forming 
an #-type Si tip, Busch and Fischer9 have argued that 
the tangential component of electron momentum is not 
conserved. This is because if pt were conserved, very 
little emission would be observed for a {111} plane as 
compared with a {100} plane, due to the large initial 
value of pi in the former case leading to a relatively very 
low tunnel probability. However, experimentally the 
two emission currents are comparable in magnitude. The 
authors suggest three reasons for a possible noncon-
servation of p*: (1) diffuse boundaries, (2) change in 
crystal periodicity parallel to the surface, (3) phonon 
absorption or emission. If our description for diffuse 
transmission is accepted item (1) cannot be the explana
tion since pt must remain inside the shadow region which 
consists of six elipses in the {111} plane, far removed 
from the origin. Also item (2), together with the assump
tion of specular transmission, would probably not lead 
to nonconservation of pf since changes in the band 
structure, along the direction normal to the boundaries 
of the barrier, are in fact assumed by Harrison1 in his 
calculation for specular tunneling. Possibly the com
bination of items (1) and (2) could lead to the required 
change in p* if the correct electron energy surfaces for 
Si, near the {111} surface planes, actually had shadows 
with portions close to the origin of momentum space. 
[Incidentally, it is also difficult to accept item (3) since 
the ratio of the probability of indirect (phonon assisted) 
tunneling to the probability of direct tunneling (for the 
same effective barrier height) is usually a small number, 
e.g., about 10"3 for the similar case of p~n junction 
tunneling in Ge.10] 

The calculations have shown that the expression for 
the tunnel current [cf. Eq. (21)] for nonspecular trans
mission differs from that for specular transmission by a 
pair of additional factors Ua(E,j>t) Ub(E,-pt) [cf. Eqs. 
(20) and (21)] where, for example, 

tfa=£p(p/Mp/,p*)/p(p«) (33) 

and 7r(p/,p*)= M«(p/,p«)l2 is proportional to the prob
ability that diffuse scattering changes the tangential 
momentum from p / to p*. Although we have not been 
able to derive 7r(p/,p*) from first principles, the discus
sion in the previous section indicates that Ua and thus (j) 
are unlikely to depend strongly on the density of states. 

Cohen, Falicov, and Phillips11 have shown that if 
metals a and b are superconducting, Eq. (6) for the 

8 K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938). 

9 G. Busch and T. Fischer, Physik Kondensierten Materie 1, 367 
(1963). 

10 E. O. Kane, J. Appl. Phys. 32, S3 (1961). 
11 M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev. 

Letters 8, 316 (1962). 
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tunnel current holds provided the matrix element 9TCa& is 
that appropriate to an electron transfer between normal 
electron states on either side of the barrier while the state 
densities in Eq. (6) refer to the superconducting state. 
Thus Eq. (21) for j will apply with Ua replaced by 

Ua8(E,pat) = I M < 2 (Pa/ ,PaO | WiPa/)/Pa" (Vat) , ( 3 4 ) 
Pal' 

where the superscripts S and N refer to "normal" and 
"superconducting," respectively, and Ub is similarly 
replaced by Uis. Hence 

( — ) « — / (fa-M dE, (35) 
\j»J qVj • J Lua»Ob"\n 

where we have assumed that fe~H^t is constant for 
the small voltage (V) and energy range involved and 
that e~r] decreases very rapidly as pt increases from zero, 
For specular boundary conditions, or when \A{\2 is 
given by Eq. (24), the factor in square brackets reduces 
to ZPaSPbS/paNPbN^\Pt=

zO in essential agreement with the 
result of Giaver and Megerle.12 If \Ai\2 is independent 
of p* [cf. Eq. (25)], then the factor in square brackets 
reduces to [_pa

sPbS/paNPbN~], neglecting the very small 
change in the areas of the shadows. For spherical energy 
surfaces,the last two expressions are essentially the same 
[cf. Eq. (27)] since p is approximately proportional to p, 
the factor (l—pt2/p2)1/2 being incorporated in the 
integral over p*. In fact, the experimental tunneling-
current results in Ref. 12 have been analyzed on the 
basis of three-dimensional, rather than one-dimensional, 

1 21. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961). 

densities of state because of the approximate propor
tionality of p and p. 
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APPENDIX. REFLECTION FROM A PERFECTLY 
DIFFUSE SURFACE 

I t will be assumed that after internal reflection of an 
electron from the diffuse surface of a metal, its quasi-
momentum vector p is distributed randomly over the 
energy surface E(p) (provided the normal component 
of velocity points into the metal). Then the probability 
that the vector p is in an element of area do on the 
energy surface is proportional to the volume element 

dv = dodE/\VJ>E(p)\. (Al) 

Let dat be the projection of da on the reflecting surface. 
Then 

dat/da = Vp£ • p , / ( | VPE | px) (A2) 
so that 

dv=datdEpx/px • VPE. (A3) 

But, if L is the thickness of the metal layer, 

2L/h 2L/h 
p(P«) = = Px, (A4) 

dE/dpx p*-Vp£ 
thus 

dv=(h/2L)dEp(pt)dot (A5) 

from which it follows that the probability that p* is in 
the surface element dat is proportional to p($t)dat. 


