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The theory of the scattering of electrons by acoustic modes in piezoelectric semiconductors is generalized so 
as to properly take account of the anisotropic scattering probability. The Herring-Vogt approximate solution 
to the Boltzmann equation is used, which is accurate if the resulting relaxation-time tensor components do 
not differ by more than a factor of two or so. The other main simplifying assumption consists of treating the 
frequencies and polarizations of the acoustic modes by a simple approximation. The theory is applied to three 
symmetry classes of known piezoelectric semiconductors: zincblende and wurtzite symmetry (as typified by 
the III-V and II-VI compounds) anda-quartz symmetry (as typified by selenium and tellurium). The elec
tron mobility anisotropy calculated for CdS (based on the measured electroelastic properties and cyclotron-
resonance masses) agrees quite well with the value deduced from experiment. 

INTRODUCTION 

PIEZOELECTRIC scattering was first discussed by 
Meijer and Polder1 who estimated the magnitude 

of the relaxation time for piezoelectric scattering in 
crystals with zincblende symmetry. They found that 
the piezoelectric mobility depends only weakly on 
temperature (JJL^T~1/2) which implies that piezoelectric 
scattering should dominate deformation potential scat
tering (fx^ T~~zl2) at low enough temperatures in crystals 
having the piezoelectric effect. The calculation of 
Meijer and Polder was approximate in that at the onset 
they took a weighted average of the piezoelectric 
constants appropriate to phonons traveling in the {100), 
(110), and (111) directions. Harrison2 found the re
laxation times for electrons traveling in these directions 
and then performed the weighted average. More 
recently, Hutson3 applied the theory to crystals having 
wurtzite symmetry. In his calculation he took a 
spherical average of the piezoelectric constants before 
calculating the relaxation time. 

The purpose of this paper is to calculate the relaxation 
time tensor for piezoelectric scattering in crystals with 
zincblende symmetry (as typified by the III-V com
pounds and by the cubic II-VI compounds), wurtzite 
symmetry (as typified by the hexagonal II-VI com
pounds), and a-quartz symmetry (as typified by 
selenium and tellurium), assuming ellipsoidal energy 
surfaces. The anisotropics of the scattering probability 
and the effective mass are treated by the method which 
Herring and Vogt4 used for deformation potential 
scattering. 

GENERAL THEORY 

The present paper applies to the scattering of elec
trons (or holes) in a simple single-valley or simple 
many-valley semiconductor. We shall restrict our dis
cussion to scattering events within a particular valley 

* Some of the results of this work were described previously; 
see D. Zook, Bull. Am. Phys. Soc. I I 9, 274 (1964). 

1 H. J. G. Meijer and D. Polder, Physica 19, 255 (1953). 
2 W. A. Harrison, thesis, Physics Department, University of 

Illinois, 1956 (unpublished); and Phys. Rev. 101, 903 (L) (1956). 
3 A. R. Hutson, J. Appl. Phys. (Suppl.) 32, 2287 (1961). 
4 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956). 

and shall choose our coordinate system so that the 
effective mass tensor of the valley is diagonal. Thus, 
the energy of an electron is given in terms of the 
components of its propagation vector k, as follows: 

h2/h2 k2
2 h~2 

« = - ( — + — + • 
2 W i mi m% ) • 

(i) 

where mh m^ and m% are the diagonal components of 
the effective mass tensor. 

We are concerned with the interaction of the electrons 
with the long wavelength acoustic modes, i.e., the 
normal modes of the crystal for which the atoms in 
the same primitive cell move in the same direction in 
phase with each other (physically, this is the same 
motion undergone by the crystal during the measure
ment of the elastic and piezoelectric properties). There 
will, in general, be three such normal modes for a given 
direction of propagation, corresponding to the three 
degrees of freedom of the primitive cell as a whole. In 
general, the normal modes will be neither purely trans
verse nor purely longitudinal and will propagate with 
different velocities. The theory of elastic wave propa
gation in piezoelectric crystals, as discussed for example, 
by Kyame5 and by Hutson and White,6 is fundamental 
in setting up the problem. 

Let X\ > #2 j and %z be an arbitrary set of Cartesian 
coordinates which we shall call the "phonon coordinate 
system" rotated with respect to xi, #2, and #3, the 
coordinate system which diagonalizes the mass tensor, 
and let us consider a long wavelength acoustic normal 
mode (i.e., an elastic wave) propagating along the 3'-
axis with wave vector v, frequency 00a (cr), and amplitude 
IV'*, where a = 1, 2, or 3 labels the three normal modes 
having the same c. The displacement of the lattice from 
its equilibrium position is then a plane wave which we 
may write in the form: 

Uf'a= Uof'* cos(axz'-~a)j), i = 1, 2, 3; (2) 

where Uof are the components of Uo*'" in the phonon 
coordinate system (the primed system). By the nature 

5 J. J. Kyame, J. Acoust. Soc. Am. 21, 159 (1949). 
5 A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962). 
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of the plane wave there are three nonzero strain com
ponents in the phonon coordinate system: 

Sj*ff'a= dUjff>a/dx/= -aUoj*'a sin(axz-o)at), (3) 

where Sjz are the components of the strain tensor S.7 

Since piezoelectric scattering will usually be im
portant only in high-purity crystals, we will assume 
that currents can be neglected (high resistivity) and 
can therefore set the electric displacement D equal to a 
constant6 (e.g., zero). Our theory will be valid in the 
low carrier concentration limit (screening effects must 
be included at higher concentrations3) and the electric 
field E is the fundamental dependent electrical variable. 
I t is convenient to write the piezoelectric equations of 
state in the form8: 

E = - f t S 

T=cD$ (4) 

where T is the stress, h is the piezoelectric tensor, and 
cD is the elastic stiffness tensor at constant displacement 
(we shall hereafter omit the superscript on cD). The 
electric field is, in terms of its components in the phonon 
coordinate system: 

Ef>cl=<jhiJzU<ij
<T><x $m(<rxz-uj), (5) 

where the summation convention is followed, and the 
prime means the piezoelectric tensor components are 
in the phonon coordinate system. I t has been shown6 

that the longitudinal electric field E 3 is much larger 
than the transverse fields Ei and E2, and E% is derivable 
from the potential 

<^,«= W £ V ' a cos(ax/~o)j) = hzjz'Uf'". (6) 

We need to find Wa(k,ks), the probability per unit 
time and per unit volume of k space that an electron 
with propagation vector k will be scattered by the 
elastic wave to a volume d8ks centered on ks. Assuming 
that the perturbation energy eo<pa,a is small (e0 is the 
electron charge) we can use the usual formula from 
time-dependent perturbation theory: 

/2TT\ V 
W«(k,k*) = ( - ) — |<k<W.«|k>|* 

\ h /8TT3 

X«[6(k)-s(kfl)d=««J 

^ T F a o ( k , k ^ [ 8 ( k ) - 8 ( k ^ ) ± ^ o a ] , (7) 

where V/8irz is the number of final states per unit 
volume of ks space and V is the crystal volume. 

The matrix elements {k5|eo£>*,«!&) can be calculated 
using plane waves for the electron wave functions. The 
result is 

<Jks\e0<pl,,a\k)=$eJtm'Uoi*'", (8) 

where k^ must equal k±or, the usual selection rule for 
phonon emission or absorption. 

7 See, for example, Ref. 5. 
8 Standards on Piezoelectric Crystals, Proc. IRE 37, 1378 

(1949). 

The amplitudes Z7o°",Q: at any temperature To can be 
obtained by setting the potential energy (JS-T inte
grated over the crystal) associated with the elastic wave 
equal to one-half the average energy as given by the 
Bose-Einstein distribution9: 

(V/2)o*Uoi''"Uv'-*cm'2*koTQ, (9) 

where ko is Boltzmann's constant and the approximation 
holds at temperatures such that koTo^>ftcoa (a condition 
satisfied in most nondegenerate semiconductors above 
a few degrees Kelvin). 

If the elastic anisotropy of the crystal is not too large, 
Cizjd will be approximately diagonal,10 and the normal 
modes will lie approximately along the axes of the 
phonon coordinate system (if the 1' and 2' directions 
are chosen properly11). To first order in the elastic 
anisotropy we can write: 

Uof>a=Uo*>«8Ja, 
CiZaZ ^CaZaZ $ia , (10) 

where a = 3 denotes the mainly longitudinal mode and 
a = l , 2 denote the mainly transverse modes. To this 
approximation we can write the squares of the matrix 
elements as: 

| {ks | e0<p*,a I k) 12= e#koTo(hZaZy/o*Ca*az', (11) 

which also includes a factor of 2 due to adding the 
matrix elements squared for both absorption and 
emission of phonons. The directional dependence of 
CaZaz is much less pronounced than that of hza% since, 
for example, some or all of the components of the 
piezoelectric tensor will vanish for cr along a symmetry 
axis. We shall therefore use spherical averages12 of 
the stiffness coefficients, i.e., we shall replace £3333' by 
(czzdz)=Ch a n d we shall replace both cuu and £2323' by 
2 {£1313'+£2323') : = ^ , where the angular brackets denote 
spherical averages. These replacements are not essential 
but result in simpler expressions for the relaxation times. 
In the closely related case of deformation potential 
scattering, the expressions for r are not particularly 
sensitive to the elastic anisotropy, and average elastic 
constants can be used with little loss in accuracy.4,13 

Methods for calculating the components of a tensor 
relaxation time have been given by Herring and Vogt4 

9 R. A. Smith, Wave Mechanics of Crystalline Solids (Chapman 
and Hall, Ltd., London, 1961), p. 421. 

10 J. R. Neighbours and C. S. Smith, J. Appl. Phys. 21, 1338 
(1950). 

11 Degenerate perturbation methods can be used to calculate 
the frequencies and polarization directions of the normal modes. 
In this paper the two transverse modes are averaged together 
(except for wurtzite symmetry where this is not necessary) so 
that in this approximation the directions of the 1' and 2' axes are 
arbitrary. 

12 Spherical averaging yields average elastic constants for 
germanium and silicon very close (less than 2% difference) to 
the averages calculated by A. G. Samoilovich and V. D. Iskra, 
Fiz. Tverd. Tela 2, 2827 (1960) [English transl.: Soviet Phys.— 
Solid State 2, 2517 (1961)]. 

13 A. G. Samoilovich, I. Ya. Korenblit, I. V. Dakhovskii, and 
V. D. Iskra, Fiz. Tverd. Tela 3, 3285 (1961) [English transl.: 
Soviet Phys.—Solid State 3, 2385 (1962)]. 
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and by Samoilovich et al.,u whose first-order result for 
ellipsoids of revolution agrees with Herring and Vogt. 
The Herring-Vogt formula can be written in the form 
(see Appendix): 

1 3 (2wiw2m3s)1/2 

m 4 ¥ 
/ — W0(k,ks)d*q, (12) 

J q 

where q is the phonon propagation vector <r in a co
ordinate system chosen so that the energy surfaces 
become spheres of unit radius and the integration is over 
a sphere of radius two. The components of q in the 
ellipsoid (unprimed) coordinate system are given by: 

qi=hcTi/(2mi&y^==fi(ki-kis)/(2mi&y^, (13) 

where <n are the components of <r in the ellipsoid co
ordinate system. Equation (12) is valid only if the 
scattering is not too anisotropic, since it is based on 
retaining only the leading term in an expansion of the 
distribution function in spherical harmonics.4'14 

The total transition probability W(k,k8) consists of 
the sum of the probabilities for the three modes with 
different polarizations. Since we use an average of the 
stiffness coefficients for the two transverse modes, we 
can combine the transverse modes and write: 

1 m-i 3 mi 

Hii1 eoT^1 Sir A 

i f qc / 

tJ q mxqi 

fan'2+fa2s'2 

q miq^+m2qi+mzqz2 

for the transverse modes, and 

1 mi 3 Mi 

•cPq (14a) 

mi r q* 

• AiJ q mitf i2 eoTu1 STTAIJ q miq^+m^+mzqi 

for the longitudinal modes, where 

1 eokoTo /2wiw2m3\1 /2 

•<Pq (14b) 

At,i 4:Th2c, ̂ -
3y'2 

(15) 

The two mobilities are then combined by adding 
reciprocals to give the reciprocal of the mobility due to 
scattering by both types of modes. 

The mobilities given above depend on energy through 
the factor A (s) and must be averaged over the energy 
spectrum of the entire electron population. For 
Maxwell-Boltzmann statistics3,15 we replace /*(g) by 
fx((64:/9T)koTo) since fx^ s1/2. We can then write a 
convenient form for the average value of A (in mksa 
units): 

/ 6 4 \ /fn0\
z/2/77\112 

At,i[ — £ 0 r 0 W 3 . 2 7 4 X l 0 7 c M f — J f—J , (16) 
\9TT 

pendent, so that if an energy-dependent mobility is 
desired, Eq. (15) is to be used, while if mobility aver
aged over all energies for classical statistics is desired, 
Eq. (16) is to be used for A. 

The integration over the magnitude of q in Eq. (14) 
can be carried out immediately, giving a factor of 2. 
The integration over solid angle can be simplified in 
the case of energy ellipsoids of revolution (mi—nt^) and 
we can express the solid angle d£lq in terms of dQa, a 
more convenient variable of integration. Making the 
substitution, we obtain: 

At 3 / W A 1 / 2 /•/o-A2r mi—w3/0-3\2~r3/2 

pa* 4cir\mz/ J \a / L m3 \cr) J 

where w*= (mimtfni)llz is the density-of-states mass 
for a single ellipsoid and To is in degrees Kelvin. In the 
equations that follow, the ratio A/n is energy inde-

14 A. G. Samoilovich, I. Ya. Korenblit, I. V. Dakhovskii and 
V. D. Iskra, Fiz. Tverd. Tela 3, 2939 (1961) [English transl.: 
Soviet Phys.—Solid State 3, 2148 (1962)]. 

15 See, for example, Ref. 9, p. 324. 

and 

A i 3 /wA1 '2 r/(n\ 

an1 4x \m 3 / 

X C W + W 1 ) ^ , , (17a) 

mb+~ei m% \a t 

X W 2 ^ , . (17b) 

Note that if m^—mi and if h2 does not depend on di
rection (or if an average value of h2 is used), then the 
mobility is equal to A divided by h2. 

The remaining problem is that of expressing the 
piezoelectric constants hzaZ in terms of the direction 
cosines of a, i.e., a/v. In general, the piezoelectric 
constants in the phonon coordinate system will be 
given by: 

^3a3 ' = dudajQ'Zhhijk , (18) 

where the aij are the components of the rotation matrix 
which take vectors in the unprimed system into vectors 
in the primed system, and h^ are the piezoelectric 
constants in the ellipsoid (unprimed) coordinate 
system. The 3 ' axis is denned to be along <r with the 
V and 2' axes arbitrary11; we now choose the 2' axis 
to be in the (1,2) plane16 so that we can write the trans
formation matrix in the following ways: 

f#ll 

0 2 1 

[ # 3 1 

012 

022 

032 

013 

023 

033_ 

= 

= ' 

cos# COScp 

—sin<p 

^sin# 

rG\G% 

0-2 

<rx 

0"i 

I a 

cos<p 

0"20"3 

<TCTi 

C2 

<J 

cos# sin<p 

COS<£ 

sin# sin<p 

a 

0 

0"3 

<J . 

? 

— sin# 

0 

cos# 

(19) 

16 For wurtzite symmetry this choice of coordinates is such that 
normal lattice modes lie nearly along the 1' and 2' axes and only 
one of the transverse modes has a piezoelectric effect associated 
with it [see Eq. (30)]. 
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where 0*1= (<TI2+<72
2)1/2 and ($,^,o-) are the polar co

ordinates of cr. The integration of (17) is therefore over 
d and (p and is quite simple. The integration over <p is 
of the form 

/.2TT 

sinw<p cosm(pd(p 
' 0 Jo 

with n and m integers, and it is not hard to show that 
the integrations over # can always be written in terms 
of the quantities: 

/» = 
1 / W A 1 / 2 r 

2W3/ Jo 

1/mi 

2\mz* 

(a 2+l) 1 / 2 

cos*# sintWtf 

0 {l+[(wi—mi)/m{\ cos2#}3 

2 n & 

J o (a ' 

02+l 

J 0 

•2 + 2 2)3 /2 

zndz 

P J0 {[(^+l) /^]-Z2 } 
3/2 

(20a) 

(20b) 

(20c) 

where n=0, 2, 4, 6, or 8; a2= (mi~mz)/mz; and 
/52= (ra3— mi)/mi. Equation (20b) is the convenient 
form for oblate ellipsoids, while (20c) is convenient for 
prolate ellipsoids. In either case the integrals can be 
found in a standard table of integrals,17 and in the case 
of isotropic mass they reduce simply to / „ = l/(n+l). 

APPLICATION TO CRYSTALS WITH ZINCBLENDE 
SYMMETRY AND [000] OR 

[100>TYPE VALLEYS 

In the case of zincblende symmetry (point group 
43m) there is only one independent piezoelectric 
constant in the cubic crystal coordinate system18 with 
axes along the fourfold axes. For energy minima at 
points along the cube axes of reciprocal space (A points), 
the effective mass tensor is diagonal in the crystal co
ordinate system and two of the diagonal components are 
equal. At the center of the Brillouin zone (a T point) 
all three effective mass tensor components are equal. 
In either case the ellipsoid coordinate system is the 
same as the crystal coordinate system and the piezo
electric tensor is of the form18: 

0 0 0 hu 0 0 
h= 0 0 0 0 hu 0 

0 0 0 0 0 hu 
(21) 

where we use the two subscript notation for piezo
electric tensor components in the crystal coordinate 
system. 

Although we could express the piezoelectric tensor 
components in the primed coordinate system using Eq. 
(18) directly, in practice it is more convenient to use 

17 For example, H. B. Dwight, Tables of Integrals and Other 
Mathematical Data (The Macmillan Company, New York, 1947). 

18 W. P. Mason, Piezoelectric Crystals and Their Application to 
Ultrasonics (D. Van Nostrand Company, Inc., New York, 1950), 
p. 40. 

O 1/20 1/10 1/5. 1/3 1/2 I 2 3 
m3/i«| 

FIG. 1. The mobility and relaxation-time tensor anisotropy as 
functions of the mass anisotropy for piezoelectric scattering in 
crystals with zincblende symmetry and [100]-type valleys. The 
subscripts refer to the directions of the principal axes of an energy 
ellipsoid (the " 3 " direction is along the axis of revolution), while 
t and / refer to scattering by the mainly longitudinal and mainly 
transverse modes. 

the tables of Hearmon.19 From Hearmon's tables 3 and 
4 and our rotation matrix, Eq. (19), we obtain 

^333'= 6hu(<ri<r2<rz/<rd), 
fo2z= 2hu[.<Tz(<7i2—o-22)Ai2], 
W = 2huL(rM2crs*-aJ

2)/<Ti*l. 
(22) 

When the transverse modes are combined, the squares 
of the piezoelectric constants are given by 

hm,2=36hu2^MW/aQ), 

^313 ,2+^323 /2=4^142[((T2V32+(71V32+(7lV2
2)/(74] (23) 

—foz/2, 

which exhibit the cubic symmetry. 
The integration of Eq. (17) can be written in terms 

of the differences of the In integrals: 

^ ^ 3 3 ^ P l 4 2 { ( / 2 - / 4 ) - 2 ( / 4 - / 6 ) + 9 ( 7 6 - / 8 ) } , 

At/^ = lhu2{{h-h)-3{h-U)+n(h-h) 

- 9 ( I « - J 8 ) > , 
27 (24) 

V / * 3 3 Z = — ^ 1 4 2 { ( / 4 - / 6 ) - ( / 6 - - / 8 ) } , 

2 

27 
Ai/ix^-hu*{{h-h)-2(h-h)+{h-h)). 

4 
JR. F. S. Hearmon, Acta Cryst. 10, 121 (1957). 
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The reduction formulas for integrals of binomial dif
ferentials17 (integration by parts) can be used to show 
that the In integrals obey the recurrence relation: 

/32+lr (32+n+l 
In — In+2 — ' 1 1 

If P2+n+l -1 
- 1+ In 
L p+i J 

(25a) 
np2 L £2+l 

- (naT'L-1+ {no?+n+\)In~], (25b) 

which are the convenient forms for prolate and oblate 
ellipsoids, respectively. 

The mobility anisotropy K—tm/uzz and the r-tensor 
anisotropy TW/TZZ are plotted in Fig. 1 for the longi
tudinal and transverse modes as functions of the mass 
anisotropy. In both the oblate and prolate cases the 
scattering becomes anisotropic quite rapidly as the 
mass anisotropy is increased. As mentioned above, 
when the scattering is too anisotropic Eq. (12) can no 
longer be used with confidence, and the curves are 
extended to this region only to show the qualitative 
features of the scattering. The error incurred by the 
use of Eq. (12) has not been investigated but could be 
determined by calculating higher-order terms using 
the equation of Samoilovich et al.n>u At any rate, the 
error should not be appreciable if m and m differ by 
less than a factor of two.4 

The magnitude of the scattering is also dependent 
on the mass anisotropy as shown in Fig. 2. The im
portant point is that the average mobility 

/Z=-|(2jUii+Al33) 

is only weakly dependent on the mass ratio, so that the 
isotropic formulas can be used to estimate the mag
nitude of the piezoelectric mobility in a crystal if the 
density-of-states mass of a single valley is known, even 
if the mass anisotropy is not known. In the isotropic 
case the mobilities are simply given by 

^//^==(16/35)/*14
2, 

^//^=(12/35)/z1 4
2 . (26) 

These values are also obtained if one takes a spherical 
average of the piezoelectric constants at the onset 
[using Eq. (23)], and they are quite close to the values 
estimated by Harrison,2 who calculated a relaxation 
time for an electron along the (100), (110), and (111) 
directions using the method of Herring20 and Brooks21 

and to the values estimated by Meijer and Polder1 who 
took averages of the piezoelectric constants along the 
(100), (110), and (111) directions (see discussion section 
below). 

The mobilities for the longitudinal and transverse 
modes must be combined by adding reciprocals to give 

20 C. Herring, Bell system Tech. J. 34, 237 (1955), Appendix A. 
(The formula for r(k) is not written out explicitly but is described 
as the basis for calculations of deformation potential scattering. 
These calculations disagree with the later ones of Ref. 4.) 

2 1H. Brooks, Advan. Electron. Electron Phys. 7, 85 (1957), 
Eq. 6.21. 

10 _ — J r , — 

1 
41 in 
111 
L\i 
r\\ ' V r v i \ \ V 
r V 

^ « s ^ 

1 — > 1 — 1 _ _ 

n — i i—i—' i 1 — i — 

TRANSVERSE MOOES. ] 
LONGITUDINAL MODES j 

n 
// j 

// // 1 
// 

-̂ -'̂  
^*^**«fc_^r f^^ - * *"^ 

j | I I L 1 1 _J 1 
1/20 l/K> 1/5 1/3 1/2 1 2 3 10 20 • 

FIG. 2. The average mobility Mo = J (2JUH+/X33) normalized to the 
isotropic {mi—mz) mobility for piezoelectric scattering in crystals 
with zincblende symmetry and (100)-type valleys. 

the total mobility. Because the longitudinal modes are 
stiffer than the transverse modes (larger sound ve
locity), the transverse modes usually dominate the 
scattering. The stiffness coefficients in the phonon 
coordinate system are given by10'19 

where 

and 

W = cii+2c*r(<r), 

| (Cl313 /+^2323 , )= :^44-^r(cr) , 

£*= 2C44+Ci2— C\\, 

r(cr)= (vM+arM+criWyo* 

(27) 

The spherical average of T is f, so that 

Except for an effective mass factor, the numerical 
value of the piezoelectric mobility can be calculated 
for GaAs, ZnS, ZnTe, ZnSe, and CdTe, whose piezo
electric constants6-22~26 and elastic constants25,26 have 
been recently measured. We assume an isotropic effec
tive mass m*, and combine Eqs. (16), (26), and (28). 
The relevant parameters derived from the measure
ments are summarized in Table I, along with the 
calculated piezoelectric mobility at 77°K. The mobility 
at other temperatures can be obtained from the T~112 

dependence. Cyclotron resonance of electrons in GaAs27 

and CdTe28 indicates that the energy surfaces are 
spherical29 with the effective masses given in Table I. 

22 H. Kaplan and J. L. Sullivan, Phys. Rev. 130, 120 (1963). 
23 E. J. Charlson and G. Mott, Proc. IEEE 51, 1239 (1963). 
24 M. Zerbst and H. Boroffka, Z. Naturforsch. 18a, 642 (1963). 
25 D. Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys. Rev. 

129, 1009 (1963). 
26 T. B. Bateman, H. J. McSkimin, and J. M. Whelan, J. Appl. 

Phys. 30, 544 (1959). 
27 E. D. Palik, S. Teitler, and R. F. Wallis, J. Appl. Phys. 

(Suppl.) 32, 2132 (1961). 
28 K. K. Kanazawa, Bull. Am. Phys. Soc. 8, 620 (1963). 
29 For a review of other band structure data, see, for example, 

D. Long, J. Appl. Phys. 33, 1682 (1962). 
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TABLE I. Calculated piezoelectric mobility of certain zincblende-type semiconductors based on the 
piezoelectric and elastic quantities shown. 

Units 

GaAs (~300°K) 

ZnS (77°K) 

ZnTe (298°K) 

ZnSe (298°K) 

CdTe (77°K) 

ku (Ref.) 
109 V/M 

»1.2 (6,22) 
1.57 (23) 
1.57a (24) 

2.26 (25) 

0.314 (25) 

0.61 (25) 

0.394 (25) 

ci (Ref.) 
lOio N/AP 

14.03 

12.89 

8.41 

10.34 

6.97 

(26) 

(25) 

(25) 

(25) 

(25) 

Ct (Ref.) 
lOio jy/M% 

4.86 

3.60 

2.48 

3.29 

1.55 

(26) 

(25) 

(25) 

(25) 

(25) 

mr 
— (Ref.) 
mo 

0.071 (27) 

0.096 (28) 

p at 77°K 
HP/VS 

77b 

Uv 
' Uv 

/ m0y* 
\m / 

206 

a We have assumed that kp means kilogram weight in Ref. 24. 
b Using hu =1.57 XIO* V/M. 

APPLICATION TO CRYSTALS WITH WURTZITE 
SYMMETRY AND [0001>TYPE VALLEYS 

The symmetries of second-, third-, and fourth-rank 
tensors for wurtzite symmetry (point group 6mm) are 
the same as the corresponding symmetries for a material 
having axial symmetry.18 The piezoelectric tensor is of 
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FIG. 3. The relaxation-time tensor anisotropy as a function of 
the ratio of piezoelectric constants for piezoelectric scattering by 
the mainly transverse modes in wurtzite-type crystals. The ex
perimentally observed ratios of the piezoelectric constants are 
shown for those crystals in which they have been measured. The 
relationship between the effective masses assumed for each curve 
is shown in parentheses. 

the form18 

h= 
r o 

0 
hzi 

0 
0 

hi 

0 
0 

hz 

0 
AlB 
0 

*15 

0 
0 

0 
0 
0 

(29) 

where the 3-axis is the symmetry axis. Points on the 
3-axis (A points) of reciprocal space also have the axial 
symmetry, so that for valleys centered at these points 
the effective mass tensor is diagonal, m^—m^ and the 
ellipsoid axes are the same as the crystal coordinate 
axes. We shall consider here only such |J300l3-type 
energy minima. 

6 10 20 « 

FIG. 4. Same as Fig. 3 for the mainly longitudinal modes. 
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In the phonon coordinate system the relevant piezo
electric constants are: 

hzzz=cosd (hzz—hx sin2#) 

W = 0 
hzn^ —smd(hn+hx cos2#), 

(30) 

where we have defined the anisotropic piezoelectric 
constant hx=hzz—hzi—2hn. Because of the axial sym
metry, the integrations over <p in Eq. (17) give a factor 
of 27r, while the integrations over d can be written in 
terms of the In. The mobilities are then given by: 

At f /h 
— = 3/z15

2 ( / 2 - / 4 ) + 2 ( / 4 - J « ) 
M33* I ( - ) 

+ ( W t ) 01 ' 
At 

L=f/*152 ( / o - 2 / 2 + / 4 ) + 2 ( / 2 - 2 / 4 + J 6 ) 
M i l 

/hx\ 

+ (h-2h+I8) 

=3h^\h-2(h-h) 
M33* I x «33 

\hj\' 

( " ) 

+ (I4-2h+lJ—)}, 

(31) 

—=§&332 (h-h)-2(h-2h+h) 
M i l 

/hx\ 

( - ) ' 
\ * 8 8 / 

+ ( / 2 - 3 J 4 + 3 / 6 - J 8 ) 

In this case there are two parameters which determine 
the mobility anisotropy for either the transverse or 
longitudinal modes, namely, the mass anisotropy and 
the ratios of the piezoelectric constants. Figures 3 and 
4 show the ratios TU/TZZ as functions of the ratios hx/hn 
and hx/hzz for several cases of mass anisotropy. I t is 
clear that the scattering anisotropy can be quite sensi
tive to the ratios of the piezoelectric constants. Mea
surements25 of the piezoelectric properties of CdS and 
CdSe show that the ratios hx/hn and hx/hzz are quite 
close to the values obtained theoretically by comparing 
the ideal wurtzite structure to the zincblende struc
ture,25'30 namely, —5 and 2.5, respectively. The mo
bility anistropy K is plotted in Fig. 5 for these values 
and also for hx/hi$— —6 and hx/hzz=2 as a function of 
the mass anisotropy. Again, we must caution that the 
calculated values of K can be considered accurate only 
if TU/TZZ is not too far from unity. 

To combine the scattering by the transverse and 
30 See L. J. Touchard, J. Appl. Phys. 34, 2694 (1963), for a 

similar comparison of the elastic constants for these two structures. 

20 • 

FIG. 5. The mobility tensor anisotropy K and relaxation-time 
tensor anisotropy TU/TZZ for both longitudinal and transverse 
modes as functions of the effective mass anisotropy. The ratio of 
the piezoelectric constants assumed for each curve is shown in 
parentheses. 

longitudinal modes we must know the average stiffness 
coefficients. In the phonon coordinate system the 
relevant stiffness coefficients are given by 

err crz <T 
C3333 — — ~ C \ \ - \ — - C 3 3 + 2 -

C13137 = Cu+ {<T}?(Tz/<r*)cx, 

-(^13+2^44), 
(32) 

where cx=cn+Czz—2ciz—4:Cu and c^z2z is not relevant 
since ^323'=0 by symmetry and thus only one transverse 
mode contributes to the scattering. A spherical average 
of (32) gives 

ci=I (2C11+C33) — (2/lS)cx, 
(33) 

ct=cu+(2/15)cx. 

As in the case of cubic symmetry, the magnitude of 
the scattering is not sensitive to the mass anisotropy, 
and thus the combined mobilities for transverse and 
longitudinal modes can be estimated by choosing 
m\—m%. Table I I lists the calculated mobilities and the 
relevant elastic and piezoelectric quantities which have 
been measured for CdS25, CdSe25, and ZnO.3-31'32 Cyclo
tron resonance of electrons in CdS33,34 indicates that 

31 A. R. Hutson, Phys. Rev. Letters 4, 505 (1960). 
32 T. B. Bateman, J. Appl. Phys. 32, 3309 (1962). The author 

thanks an attentive referee for calling this reference to his 
attention. 

33 W. S. Baer and R. N. Dexter, Bull. Am. Phys. Soc. 8, 516 
(1963). 

34 K. Sawamoto, J. Phys. Soc. Japan 18, 1224 (1963). 
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TABLE II. Calculated piezoelectric mobility tensor co mponents for certain wurtzite-type semiconductors, 
based on the piezoelectric and elastic quantities shown. 

«i/wo, K=— 
hzz (Ref.) his (Ref.) hx (Ref.) a (Ref.) ct (Ref.) md/m0 (Ref.) MSS at 77°K /x3 3 

Units 109 F/ilf 109 7 / J f 109 V/M 1010 ityikf2 1010 iV/ikf2 • • • M*/VS 

CdS 5.21 (25) -2 .63 (25) 13.4 (25) 8.95 (25) 1.902 (25) 0.153' ( 3 3 ) L 0 3 L69 

£;*>*, (40) 0.77 1.82^ 

/moY' 2 

CdSe 3.84 (25) -1 .77 (25) 8.95 (25) 7.40 (25) 1.716 (25) ••• 0.135 — ) 1.89 
\m*J 

ZnO 15 (3) - 4 . 3 (3) 26 (3) 21.0 (32) 5.01, (32) 
/ m 0 \ 3 

0.036 — 
\m*/ 

a We assume here that the effective mass without the piezoelectric polaron correction is isotropic in order to illustrate the effect of mass anisotropy on K. 
b The value of K for ZnO is subject to a large uncertainty since it is quite sensitive to the ratios hx/hzz and hx/hn which are not known with accuracy 

for ZnO. 

the energy surfaces are oblate ellipsoids of revolution in terms of the In integrals: 
with the effective masses indicated in Table I I . 

APPLICATIONS TO CRYSTALS WITH TELLURIUM ~~~t"^(/2-2/4+/6)-i(^--3/4+3/6-/8)} 
SYMMETRY AND [001 ]-TYPE VALLEYS M33 . , UT T , 

+/Zi4 2( i4—/e) , 
Tellurium and selenium have the same symmetry At hu2 

(point group 32) as that of a-quartz and can therefore, ^~7j~{ (7o~3/2+3/4—/e) 
in principle, be piezoelectric, although the physical ^ n

 1( 

basis of piezoelectricity in elemental crystals has never " ^ ° ~ 2~*~ 4~~ 6 ' 8 ^ / 
been discussed, to the author's knowledge. A large ^ 2 
piezoelectric effect has been measured in the case of -\ (I2— 2 / 4 + / 6 ) , 
selenium,35 the piezoelectric constant dn being thirty- 2 
two times as large as that of a-quartz. In the crystal _i_iJJ 2/r _ ^ r I-IT _j \ 
coordinate system (3-axis along the trigonal axis, and i 2 n * 2 4 6 8 ' ' 
1-axis along the binary axis) the piezoelectric tensor is 
of the form: A i 

An 
0 
0 

—An 
0 
0 

0 
0 
0 

hu 
0 
0 

0 
~~hu 

0 

0 
hu 
0 

(34) 

-= i A n 2 { / o ~ 4 / 2 + 6 / 4 - 4 / 6 + / 8 } . (36) 
Mil ' 

For isotropic effective mass these reduce simply to : 

Again, for simplicity we discuss the type of valley — h\-?-\ hu2 

for which the effective mass tensor is diagonal in the JU33* 315 35 
crystal coordinate system and the ellipsoid coordinate 
system is the same as the crystal coordinate system. _!____/, 2J ___/, 2 
In the phonon coordinate system the piezoelectric t 53 n 105 H ' 
constants of interest are: (37) 

hm=hu sin3# cos3<?, 

h%i%— —An sin2?? sin3<p+Ai4 sin$ cos$, (35) 

hziz—hn sin2$ cost? cos3^>. 

Ai 8 
= An2, 

M33z 315 

A1 32 
= An2 , 

fJiu1 315 
As before, for T and A points the two transverse effective 
masses must be equal and the mobilities can be written w h i c h s h o w s t h a t t h e s c a t ter ing is quite anisotropic with 

. K=fjiii/fjizz<l if Ai42<An2 (in a-quartz, An2~32Ai4
2). 

» H. Gobrecht, H. Hamisch, and A. Tausend. Z. Physik 148, Note added in Proof' A piezoelectric effect in tellurium 
209 (1957). has been measured recently by G. Quentin and J. M, 
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Thuillier [Solid State Commun. 2, 115 (1964)] who 
found that dn2/.Sii€i=0.12. Recent cyclotron-resonance 
results at 68 Gc/sec [J. H. Mendum and R. N. Dexter 
(private communication)] have shown that the valence 
band of tellurium is characterized by a single energy 
extremum with effective masses mi/mo— 0.126, mz/mQ 

= 0.243. Using the approximate relationships: nn2/ci 
~dn2/«yii€i2, €i«^j.2€o and the index of refraction 
^i=4.8 measured by R. S. Caldwell and H. Y. Fan 
[Phys. Rev. 114,664 (1959)], and assuming that^i4

2=0 
and that ci/ct—1.5 [the elastic constants have been 
measured by J. L. Malgrange, G. Quentin, and J. M. 
Thuillier, Phys. Stat. Solidi 4, 139 (1964)] we obtain 
for the piezoelectric mobility: 

Mii=3.8(77/T^XIO4 cm2/V sec, m=2Am. 

The theory as developed above may not be adequate, 
however, since tellurium is quite anisotropic elastically. 
For example, along the I axis the stiffness coefficients 
for the two transverse modes differ by a factor of seven, 
and averaging them together is not justified. Also, the 
cyclotron mass should be corrected for piezoelectric 
polaron effects, as in the case of CdS. 

DISCUSSION 

The piezoelectric mobility of electrons (or of holes) 
has been calculated for the three classes of known 
piezoelectric semiconductors, assuming energy surfaces 
which are ellipsoids of revolution with principal axes 
along the crystal axes. For other types of valleys the 
piezoelectric tensor must first be expressed in the 
ellipsoid coordinate system. Two main simplifying 
approximations are used: an approximate solution to 
the Boltzmann equation valid if the scattering is not 
too anisotropic, and approximate formulas for the 
frequencies and polarizations of the long wavelength 
acoustic modes. Improvements in either of these ap
proximations are difficult in general, but in specific 
cases numerical calculations could be used to give 
improved accuracy for comparison with accurate ex
periments. The piezoelectric mobilities in semicon
ductors for which all the elastoelectric properties have 
been measured are listed in Tables I and II. The 
effective mass has been included in the tables only for 
those crystals in which cyclotron resonance has been 
measured. 

In the case of zincblende symmetry and [000]-type 
valleys the present results [Eq. (26)] agree quite well 
with the previous calculations1'2 which invoked various 
averaging techniques. It is easy to show, by examination 
of Eq. (17), that in the case of an isotropic effective 
mass tensor a spherical average of the piezoelectric 
constants gives the average mobility fxa, where 

Ma 3\ /Xi i JU22 M33' 

For cubic symmetry the im are equal to each other and 
to Mo, thus it is not surprising that the present calcu
lations are in good agreement with the results of Meijer 
and Polder1 who took a weighted average of the piezo
electric constants in the (100), (110), and (111) di
rections. Harrison2 used the formula for r(k) postulated 
by Herring20 and Brooks21 and took a weighted average 
of r(k) for k along the (100), (110), and (111) directions. 
This formula, however, is basically incorrect for calcu
lating relaxation-time anisotropy since it is not based 
on a solution of the Boltzmann equation for anisotropic 
scattering, but rather on a generalization of the exact 
solution which exists for isotropic scattering. The in
correctness of this formula for calculating the anisotropy 
can be judged from the fact that it predicts the wrong 
direction of the relaxation time tensor anisotropy for 
ionized impurity scattering.36 It is not hard to show, 
however, that for isotropic effective mass a spherical 
average of l/r(k) gives the same result as Eq. (38). It 
is therefore not surprising that Harrison's results also 
agree well with Eq. (26). 

The average mobilities na for wurtzite symmetry and 
isotropic mass agree exactly with Hutson's results,4 

since he used a spherical average of the piezoelectric 
constants. (However, the present formulas include the 
effect of dielectric anisotropy exactly, through the use 
of h rather than e for the piezoelectric tensor.) The 
effects of piezoelectric scattering will be larger in the 
wurtzite-type crystals than in the cubic crystals, 
because the piezoelectric effect itself is larger in these 
crystals.25 

In the case of CdS, crystals of sufficient purity are 
available such that piezoelectric scattering is important 
in determining the mobility.37-38 Zook and Dexter37 

invoked a combination of polar optical mode scattering, 
piezoelectric scattering, and impurity scattering to 
explain their measurements of electron mobility in CdS 
between 77 and 300°K. A significant result of their 
experiments was the observation of a temperature 
dependence of the mobility anisotropy which was con
sistent with the hypothesis that the piezoelectric mo
bility was anisotropic while the mobility due to other 
mechanisms was essentially isotropic. From these data 
and assumptions, a piezoelectric mobility anisotropy of 
K=fjni/fjLzz~ 1.55±0.12 was deduced. In that paper an 

36 The author is indebted to D. Long for pointing out that in 
Ref. 20 Herring deduced a direction of the relaxation time an
isotropy for ionized impurity scattering opposite to that deduced 
in Ref. 13. The latter theory agrees with experiments [see L. J. 
Neuringer and W. Little, Proceedings of the International Con
ference on Semiconductors, Exeter, 1962 (The Institute of Physics 
and the Physical Society, London, 1962), p. 614; J. D. Maines 
and E. G. S. Paige, Proc. Phys. Soc. (London) 81, 767 (1963); 
also, L. J. Neuringer and D. Long, Phys. Rev. 135, A788 (1964)]. 

» D. Zook and R. N. Dexter, Phys. Rev. 129, 1980 (1963). 
38 W. S. Baer, thesis, The University of Wisconsin, 1964 

(unpublished). 



A 878 J . DAVID ZOOK 

incorrect39 theoretical estimate was given of the piezo
electric mobility anisotropy for isotropic mass, based 
on the formula for r(k) discussed above. The calculated 
mobility anisotropy for CdS is given in Table II, using 
the recent cyclotron-resonance results33 which indicate 
slightly oblate (mi/mz= 1.12) ellipsoids. The measured 
cyclotron-resonance masses include a piezoelectric 
polar on correction which would not be observed in 
experiments done at temperatures well above a few 
degrees Kelvin.40 Assuming the electron effective mass 
without the piezoelectric polar on correction is 0.20 mo40 

and isotropic, we obtain the second set of mobilities 
for CdS indicated in Table II. Both calculated values 
of K have associated with them probable errors of about 
8% due to the stated accuracy of the measurement of 
the piezoelectric and dielectric constants. The agree
ment between either of the theoretical values and the 
experimental value of K is quite good in view of the 
simplifying assumptions used in deducing both the 
theoretical and experimental values. A more accurate 
comparison of the magnitude and anisotropy of piezo
electric scattering can be made only if the experiments 
are repeated under conditions such that virtually all 
the scattering is due to the piezoelectric mechanism. 
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APPENDIX. REWRITING THE HERRING-VOGT 
FORMULA FOR * w ( s ) 

It is always convenient in discussing ellipsoidal 
energy surfaces to change to a coordinate system in 

39 There are two other errata in Ref. 37. In the statement on 
page 1986 to the effect that Casella calculated appreciable longi
tudinal magnetoresistance for toroidal energy surfaces, the word 
"longitudinal" should be deleted. Casella did calculate transverse 
magnetoresistance for current along the c axis and pointed out the 
longitudinal magnetoresistance in this case is zero by symmetry. 
On page 1987, the value of a for CdS should be 0.7 instead of 0.3. 
The author is indebted to R. C. Casella and W. S. Baer, respec
tively, for pointing out these errors, neither of which affect the 
rest of the discussion in Ref. 37. 

40 G. D. Mahan and J. J. Hopfield, Phys. Rev. Letters 12, 214 
(1964). 

which the energy surfaces are spherical. We use the 
notation of Ref. 14 to write such a transformation: 

^fiki/{2m^yi\ iis=hkis/(2misy^9 

?<=&-&*. (Al) 

The Herring-Vogt formula (Eq. (11), Ref. 4] can then 
be written 

—— = f f fc(*~^)A°a- ?*)dM2«-/ 
Tii(e) J J i 

/"#*»*, (A2) 

where A0 is related to W°, as follows: 

l(2m1m2md&)1^/¥2W0(k,ks)===A°(^~iE>
s). (A3) 

We have assumed that the scattering probability 
W(k,ks) depends only on the difference k—ks. 

The first step in rewriting (A2) is to symmetrize it 
by interchanging £ and %s, adding the result to the 
original equation and dividing by 2 to obtain 

——=- f [m-sw^t-&&&*?, (A4) 
r»»(e) 4TT J J 

since A is symmetrical with respect to interchange of £ 
and %8, and the denominator of (A2) is just 47r/3. The 
next step is to change the integration over d£l$s to an 
integration over dtiq} holding £ constant. Taking the 
pole of a spherical coordinate system to be along £, we 
can obtain the relationship 

dtitB=2qdQq9 0<q<2. (A5) 

Then, interchanging the order of integration, we hold 
the direction of q fixed and can write 

dQ^idqd/3, (A6) 

where p is the azimuthal angle about the vector q. The 
integrand of (A4) depends only on q so that the inte
gration over p yields a factor of 27r, and we then obtain 
Eq. (12). 


