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I. INTRODUCTION 

THIS paper was prompted by considerations of the 
possibility of measuring neutron-neutron scatter

ing at low energies in a colliding beam experiment 
utilizing a single underground nuclear explosion.1 Ex
perimental aspects of this problem will not be dis
cussed here, but it appears that it may be possible to 
measure this scattering cross section to an accuracy as 
high as 10%, from about 20 keV to about 2 MeV. The 
questions under investigation are: (a) why the knowl
edge of low-energy neutron-neutron scattering would 
be of interest (Sec. I ) ; (b) the relationship of experi
mental data to the effective-range parameters to be 
determined (Sec. II); (c) the dependence of the un-

1 Charles D. Bowman and William C. Dickinson, University of 
California, Lawrence Radiation Laboratory Report No. UCRL-
7859, 1964 (unpublished). 
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certainty in the effective-range parameters on the 
number, distribution, and error of the experimental 
data points (Sec. I l l ) ; and (d) the relationship between 
the errors on the effective-range parameters and the 
uncertainty in the parameters describing the scattering 
potential (Sec. IV). The conclusions are stated in Sec. V. 

A precision knowledge of the neutron-neutron scat
tering parameters at low energy would be of interest 
for several reasons. Firstly, it would furnish a test of 
charge symmetry. Although charge symmetry is rather 
firmly believed, the substantial evidence for it comes 
exclusively from nuclear structure. Since our knowledge 
of the relationship of nuclear structure to the nuclear 
two-body problem is far from complete, there is much 
to be said for a direct check of charge symmetry using 
the two-nucleon interaction itself. Furthermore, there 
are several phenomena which will cause an apparent 
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This paper investigates the information contained in a neutron-neutron scattering experiment at low 
energies which could be performed by colliding beams coming from an underground nuclear explosion. The 
significance of such an experiment is discussed from the point of view of a check on charge symmetry and 
charge independence, and it is found that because of the electromagnetic complications in proton-proton 
scattering, and because of the proton-neutron mass difference, the knowledge of neutron-neutron scattering 
would be of considerable value. The functional form of the experimental data which is most convenient for 
analysis and the approximate relative magnitude of the terms is investigated, and it is concluded that for the 
kind of experiment which is envisaged (measuring cross sections to 10% from 20 keV to 2 MeV) only two 
parameters should be kept in the effective-range expansion. The connection between the number and distri
bution of energies at which the cross section is measured and the error on the individual measurements, on the 
one hand, and the accuracy of the effective-range parameters deduced from the experiments, on the other, is 
given explicitly and is found also to depend on the absolute magnitude of the scattering length. The results 
show that ten 10% measurements, suitably distributed between 20 keV and 2 MeV, can determine the sign of 
the scattering length to four standard deviations, the magnitude of the effective range to 50-70%, and the 
magnitude of the scattering length to about 3%. Finally, the relationship between the variation of the ef
fective-range parameters and the corresponding variation in the parameters of the scattering potential is 
studied, and it is found that, while this relationship is strongly shape-dependent, a small change in the poten
tial parameters, in any case, results in a large change in the scattering length, but a small one in the effective 
range. Numerical relationships show that, even in the worst case, the variation in the scattering length is 
about eight times the variation in the potential parameter. It is concluded that a 10% experiment at 20 
energies between 20 keV and 2 MeV would be able to get information on the potential parameters suffi
ciently accurately so that charge-dependent or charge-symmetry violating effects could be detected. 
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deviation from charge symmetry, even after the 
Coulomb interaction is separated out in the proton-
proton scattering, such as nucleon electromagnetic 
structure, magnetic moment interaction, and the neu
tron-proton mass difference.2"4 One presumes that all 
these effects are electromagnetic in origin, and that 
the "pure" strong interaction between nucleons is 
charge symmetric. Yet, it is not even clear how such 
separation of these electromagnetic effects could be 
carried out. For instance, in comparing the width and 
depth of the "pure nuclear" scattering potentials of 
neutrons and protons, should one measure these pa
rameters in the same absolute units, or in units of their 
respective masses? The investigation of these and 
similar questions would receive a large boost if charge 
symmetry could be checked directly to sufficiently 
high accuracy (i.e., to about 0.1%). It will be demon
strated in this note that such a high-precision check 
would be quite feasible with the experiments referred 
to above. 

A second reason why low-energy neutron-neutron 
scattering would be of great interest is that it would 
facilitate tests of charge independence. At the present, 
direct tests of charge independence for nucleons in
volve a comparison of proton-proton scattering with 
the T= 1 part of neutron-proton scattering. The 
former, however, is greatly hampered by the large 
electrostatic scattering which has to be separated out 
of the data and which completely overwhelms the 
scattering below, say, 100 keV. Furthermore, vacuum 
polarization corrections also have to be taken into 
account in the analysis of high-precision proton-proton 
scattering experiments. Furthermore, since the scatter
ing experiments are restricted to above 100 keV, to 
get any energy range at all, experiments at relatively 
high energies (e.g., 5 MeV) must also be included in 
the analysis, which, in turn, necessitates the inclusion 
of higher partial waves as well as more terms in the 
effective-range expansion, and this complicates the 
analysis.5 Thus, although proton-proton scattering ex
periments are, in general, much easier to carry out 
than neutron-neutron experiments, their interpretation 
is considerably more complicated. 

A joint knowledge of neutron-neutron and proton-
proton scattering would also make the test of charge 
independence easier for another reason. In previous 
comparison of proton-proton and neutron-proton scat
tering at low energies, a rather large difference was 
found in the scattering lengths. To this very day it is 
not clear, however, whether this discrepancy can be 
explained by electromagnetic effects or not. In addi
tion to the magnetic moment interaction, nuclear form 
factors, and the neutron-proton mass difference already 
discussed above in connection with charge symmetry, 

2 J. Schwinger, Phys. Rev. 78, 135 (1950). 
3 E. E. Salpeter, Phys. Rev. 91, 994 (1953). 
4 Riazuddin, Nucl. Phys. 7, 217 and 223 (1958). 
6 H. P. Noyes, Phys. Rev. Letters 12, 171 (1964). 

there are here also effects due to the mass difference 
between neutral and charged pions. In previous calcu
lations of these corrections,2"4 there was enough of an 
uncertainty so that one could not tell whether the 
discrepancy disappears if these corrections are applied. 
With the neutron-neutron scattering also available for 
comparison, it would be easier to check these correc
tions against experiment, since some of them affect 
only charge independence, while others affect both 
charge symmetry and charge independence. 

Finally, if there is a slightly unbound dineutron 
resonance state, it would have a marked effect on the 
low-energy neutron-neutron scattering cross section. In 
particular, there would be a dip superimposed on the 
straight-line behavior of Q(T), to be defined by Eq. 
(2.4). The position and size of this dip would be valua
ble and unprecedented information concerning such 
a resonance. 

In the low-energy region below, say, 2 MeV, only 
5 waves will contribute substantially to the scattering. 
The veracity of this statement depends, of course, on 
the precision by which experiments are carried out. In 
this report we will consider experiments in which the 
error on the individual cross sections at various energies 
is of the order of 10%. With such experiments, up to 2 
MeV, any waves other than x5o can be neglected. A 
"proof" for this can be obtained by comparing it with 
p-p scattering, where at 2 MeV the 5-wave phase 
shift is around 45°, while the largest of the three P 
phase shifts is only 0.5°, so that even the S-P inter
ference terms in the differential cross section will be 
negligible compared to the experimental error. Further
more, if one measures total cross sections, even this 
interference term is absent and the P-wave effects 
are truly infinitesimal. 

With only the S waves present, the differential cross 
section will be isotropic in the center-of-mass system 
and the interaction can be characterized by only one 
parameter, the ^So-wave phase shift. The subject of 
investigation is, therefore, the energy dependence of 
this phase shift. This is usually expressed in terms of 
the effective-range theory which gives this energy de
pendence in terms of a power series in k, the center-of-
mass momentum of one of the two colliding neutrons.6 

The number of terms one has to keep in this power 
series depends on the energy range under consideration 
and the precision of the experiments. In our case, 
since we expect that the effective-range parameters for 
neutron-neutron scattering will be of the same order of 
magnitude as those for proton-proton scattering, we 
can make a fairly reliable a priori estimate on the 
number of parameters to be kept. These and other 
quantitative considerations will be discussed in the 
next section. 

6 See e.g. M. J. Moravcsik, The Two~Nucleon Interaction 
(Clarendon Press, Oxford, England, 1963). The scattering length 
for p-p scattering in Table 8 on p. 45 should be negative. 
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In the absence of a direct measurement of neutron-
neutron scattering, there have been proposals in the 
past to determine the low-energy scattering parameters 
from the final-state interaction in a reaction resulting 
in two neutrons and a photon.7 The disadvantages of 
this method are as follows: (a) It depends on certain 
assumptions about the mechanics of the reaction and 
hence is not as firm as the direct measurement; (b) in 
its proposed form it measures only the absolute value 
of the scattering length, and not its sign or the corre
sponding effective range; (c) even the magnitude of 
the scattering length can be obtained only to about 
25%, while the experiment discussed in this note can 
hope to do an order of magnitude better. 

II. EXPERIMENTAL QUANTITIES AND 
EFFECTIVE-RANGE PARAMETERS 

The effective-range formula for 5 waves is usually 
written in the following form: 

* cot8=-(l/a)+h'ok2~Pr0
dk\ (2.1) 

where k is the center-of-mass momentum of one of the 
neutrons, a is the scattering length, r0 is the effective 
range, P the shape parameter, and 5 the phase shift. 
On the other hand, the 5-wave cross section can be 
written as 

dcr sin25 Air 
<r = 4 r r — = 4 T T = , (2.2) 

dQ k2 &2+(&cot5)2 

where a is the total cross section, and dv/dQ, the differ
ential cross section. Furthermore, we have the kine
matic relationship 

k2=mT/2, (2.3) 

where m is the neutron mass and T is the kinetic 
energy of the incoming neutron in the laboratory 
system. 

Combining these equations we can write 

( day1 \ m( r0\ 

dd a2 2\ a J 

ro2m2/l rQ\ 
_| _ + 2 p _ ) r 2 . (2.4) 

4 \4 a J 
We can rewrite this equation in practical units as 
follows: 

1 / r0\ / l r0\ 

«m-+('")*+Ki+2^)"- (2-5) 
where Q(T) is given in (F2/sr)-1, a and r0 in F, and e 
is defined as (T in units of MeV)/82.88. The shape 
parameter P is dimensionless. 

We will now try to estimate the relative magnitude 
of the terms in Eq. (2.5). For proton-proton scattering 

7 K. W. McVoy, Phys. Rev. 121, 1401 (1961). 

the approximate values of the effective-range param
eters are5'6 a = - 7 . 8 , r0=2.8, P=0.02, while for the 
T = l neutron-proton amplitude a=—24, r0=2.7, P 
= 0.02. Hence, one can roughly estimate that for 
neutron-neutron scattering, we would have an ro/a with 
a magnitude of the order of 0.3-0.1. With P of the 
order of 0.02, this means that in the term quadratic 
in e, the terms 2Pr0/a is only about 4% of the \ term. 
Furthermore, the whole quadratic term is very small 
compared to the linear term, since the coefficient of the 
linear term is of the order of 1, and the coefficient of 
the quadratic term is of the order of 2. Since, however, 
e is only 0.02 even at 2 MeV, the upper limit of the 
range we are considering, the quadratic term as a 
whole is at most only 4% of the linear term. With 10% 
errors on the individual experimental points, therefore, 
we can ignore the quadratic term. If needed, however, 
one could include it as r0

2e2/4 (which, as we have just 
seen, is a very good approximation to it) and such a 
quadratic term would not add an extra parameter to 
be determined from the experiments since ro already 
appeared in the linear term. In other words, one could 
then fit the data against 

Q(T) = e+(a-i-W)2 (2.6) 

which contains only two parameters. 
It is evident from the above considerations that 

with a 10% experiment, it would not be possible to 
measure the shape parameter at all, and that a linear 
approximation for Q(T) is very likely to be sufficient. 

The value of this straight line at €=0 would give 
us directly or2. Since the square of a is involved, the 
sign of the scattering length is not determined by this 
term. On the other hand, for the same reason, an x% 
determination of this term gives us a %x% determina
tion of the scattering length itself. The slope of the 
straight line gives the coefficient of the linear term and 
determines ro/a. It also determines the sign of a. 

III. EXPERIMENTAL ACCURACY AND UNCERTAINTY 
IN THE EFFECTIVE-RANGE PARAMETERS 

As we saw in the previous section, a and ro are 
determined from the experimental data by a two-
parameter fit. In planning a significant experiment one 
has to determine, therefore, the relationship between 
the particulars of the experiment and the uncertainty 
in the effective-range parameters obtained therefrom. 
The latter will depend on the number and distribution 
of energies at which the cross section is measured, on 
the size of the error attached to the individual meas
urements, and, as it turns out, on the values of the 
effective-range parameters themselves. In this section 
we will be given some quantitative information on 
these dependences, whose qualitative behavior is quite 
plausible. 

As it is evident from Eq. (2.5), the quantities ac
tually determined from the fit to the experiment are 
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the intercept / of Q(t) with the ordinate and the 
coefficient C of the e term. [The analysis is analogous 
but slightly different if Eq. (2.6) is used instead. Since 
the quantitative difference between Eqs. (2.6) and 
(2.5) will be very small in our case, all quantitative 
conclusions in this section hold also for Eq. (2.6).] As 
mentioned before, a given percentage error in / will 
result in half that percentage error in a. A given per
centage error in C, however, will result in a percentage 
error in r0 which will depend on the magnitude and 
sign of ro/a. In particular, using fo=2.7 (which is the 
effective range for proton-proton scattering, and which, 
not being sensitive to small differences in the potential 
depth and width, will likely be about the same for 
neutron-neutron scattering), we can say that a p% 
error in C will become a (l+0.38|a |)p% error in r0/a. 
The uncertainty in ro/a can be directly related to the 
uncertainty in ro since in practice a is always much 
better known than ro. Having made these remarks we 
can now restrict ourselves to the uncertainty in I and 
C as determined from the experiments. 

Perhaps the simplest relationship of the effects listed 
above is between the error on the individual data points 
and the errors on / and C: If, other things being equal, 
all experimental errors are doubled, the uncertainty in 
I and C will also double.8 

Almost as simple a relationship exists between the 
number of data points and the uncertainties in I and 
C: Again, other things being equal, if the number of 
data points are increased by a factor of 2, the un
certainty in I and C decreases by 21/2. (In this case, 
strictly speaking, other things cannot be held the same, 
since the increased number of data points will, by 
necessity, mean a slightly different distribution of 
energies.) One can see the above relationship by realiz
ing that, given a certain number of "counts" N taken 
in the over-all energy range, it should make essentially 
no difference whether they are classified into n energy 
subintervals, in which case, each point will have a 
percentage error of (N/n)~112, or into 2N energy sub-
intervals, in which case, the individual percentage 
errors will be (N/2n)-112. 

The rest of the relationships cannot be predicted on 
general grounds but has to be investigated for the 
circumstances of each particular situation. Such a 
study for the problem under consideration yielded the 
following results. 

1. Distribution of Energies and Errors 

Since / is determined mostly by measurements at 
the lowest energies, its accuracy hinges on many pieces 
of data at low energies. C, on the other hand, is de
termined mainly by data at the ends of the over-all 
energy range. Hence, for an optimal determination of 

8 P. Cziffra and M. J. Moravcsik, University of California, 
Lawrence Radiation Laboratory Report No. UCRL-8523 Rev., 
1959 (unpublished). 

both quantities, it is most advantageous to perform 
most measurements near the low and high ends of the 
over-all energy range. Furthermore, the uncertainty in 
/ depends fairly strongly on the value of the lowest 
energy at which measurements exist, while C is es
sentially independent of this as long as the size of the 
over-all energy range remains approximately the same. 

2. Dependence on the Magnitude of the 
Effective-Range Parameters 

The uncertainty in I and C depends also on I and C 
itself or, to be precise, on their ratio. For a given per
centage error in the data points, / is determined more 
accurately if i^[Q(Em a x ) -Q(£m i n ) ] /Q(£m i n ) is small 
than if it is large. For C, however, the situation is just 
the reverse. 

The above qualitative statements can best be sum
marized quantitatively by giving a number of ex
amples. This is done in Table I. The three variables 
explored are the above defined R, the distribution of 
energies D (including dependence on the lowest energy 
measured), and the distribution of relative errors E. 
Although only a few combinations in the three-dimen
sional space are given, the table suffices for a quantita
tive estimate to find out which features of a proposed 
experiment are the most critical. For a fixed ro, the 
value of R can be directly related to the value of a. 
Since we do not expect much deviation from the value 
of ro=2.7, the three blocks in Table I, showing the 
R dependence, can thus be labeled by the a value which 
corresponds to this value of r0. 

Table I shows that while C can be measured best for 
large negative a% the corresponding precision in the 
determination of r0 is best for intermediate a's. We 
also see that a Z>(4), E(l) type measurement would 
give a precision of 7-10% on I and at the same time 
would yield ro/a to 50-70%, regardless of the magni
tude of a. This would be sufficient to give a very 
reliable result for the sign of a. At the same time, the 
magnitude of a would be known to 3.5-5%. 

IV. RELATIONSHIP BETWEEN THE EFFECTIVE-
RANGE PARAMETERS AND THE DEPTH 

AND WIDTH OF THE POTENTIAL 

Although the scattering length and effective range 
are the parameters immediately connected with the 
experimental data, the theoretically more significant 
quantities are those describing the scattering potential. 
At these low energies, and with the available experi
mental precision which can measure only two effective-
range parameters, one can determine only the depth 
and the width of an "equivalent" central potential. 
The shape of this central potential cannot be deter
mined, although the actual values of depth and width 
belonging to a given value of scattering length and 
effective range will depend on the assumed shape. 
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E(l) 

6.5 
24 (102) 

5.8 
24 (102) 
8.9 

20.4 (86) 
7.1 

17.2 (73) 
7.1 

26.2 (111) 
6.6 

26.8 (114) 

22(2) 

7.1 
44 (189) 

6.5 
44 (189) 

9.4 
31.8 (135) 

7.3 
29.8 (127) 
8.3 

48.4 (206) 
7.9 

30.8 (132) 

E(3) 

10.5 
29.2 (124) 

8.7 
27.8 (118) 
16.6 
28.2 (120) 
14.0 
22.8 (97) 
11.1 
30.4 (130) 
9.5 

29.2 (124) 

£(4) 

8.5 
26.2 (111) 
8.0 

26.4 (112) 
10.0 
21.8 (93) 
9.1 

19.8 (84) 
9.3 

27.8 (118) 
8.8 

28.0 (119) 

TABLE I. Percentage errors in the intercept / and slope C of 
Q(T) of Eq. (2.4), as functions of the distribution D of energies 
of the data points and of their errors E, as well as of the scattering 
length a, assuming that fo=2.7. The percentage error in a is 
simply half the percentage error in / . The percentage error in ro, 
given by (l-\~0.38\a\) times the percentage error in C, is given 
in parentheses following the percentage error in C. The notation 
for the distributions is as follows: 

D(l): 20, 40, 70, 100, 200, 300, 500, 700, 1000, 2000 keV; 
D(2): 20, 30, 40, 70, 100, 150, 200, 500, 1000, 2000 keV; 
D(3): 20, 100, 300, 600, 800, 1000, 1200, 1400, 1700, 2000 keV; 
Z>(4): 20, 30, 40, 100, 500, 1200, 1400, 1600, 1800, 2000 keV; 
D(5): 100, 120, 140, 170, 200, 300, 500, 700, 1000, 2000 keV; 
D(6): 100, 120, 130, 140, 170, 200, 250, 500, 1000, 2000 keV. 

The notation for the errors is as follows: 

£(1) : 10% for all points; 
E(2): 10% for the five lowest energy points, 20% for the rest; 
E(3): 20% for the five lowest energy points, 10% for the rest; 
E(4): 10% for the two lowest and three highest energy points, 

20% for the rest. 

a=~-8.2F 

D(l) 

D{2) 

D(3) 

0(4) 

Z>(5) 

D(6) 

a=-15.8F 

D(l) 

D{2) 

D(3) 

D(4) 

D(5) 

D(6) 

a = - 2 8 . 3 F 

D(l) 

D(2) 

D(3) 

^W 

0(5) 

0(6) 

In this section we will investigate the sensitivity of 
the effective-range parameters to small variations in 
the potential depth and width. This is crucial in de
termining whether a given experiment can serve to 
detect certain noncharge-symmetric effects (such as 

m) 
8.3 

10.0 (70) 
7.0 

12.0 (84) 
10.5 
8.2 (58) 
8.0 
7.8 (55) 

11.0 
12.2 (85) 
10.3 
13.0 (91) 

E{2) 

8.6 
18.0 (126) 
8.1 

21.5 (150) 
11.7 
11.8 (83) 
8.4 

13.6 (95) 
13.3 
22.5 (156) 
13.3 
25.0 (175) 

E{3) 

14.3 
12.0 (84) 
11.7 
12.6 (88) 
21.5 
9.8 (69) 

16.2 
8.7 (61) 

18.0 
13.4 (94) 
15.1 
13.7 (96) 

E(4) 

10.0 
11.1 (77) 
9.3 

11.8 (83) 
11.8 
9.4 (66) 

10.1 
10.4 (73) 
13.2 
12.5 (87) 
12.7 
13.0 (91) 

E(X) 

11.0 
8.0 (93) 

10.0 
9.0 (105) 

15.0 
6.0 (70) 

10.4 
6.4 (74) 

22.6 
9.1 (106) 

22.2 
9.9 (115) 

E(2) 

12.0 
13.0 (151) 
11.6 
16.2 (187) 
15.2 
8.7 (102) 

10.8 
10.9 (127) 
30.6 
17.0 (198) 
31.5 
19.3 (224) 

E(3) 

21.5 
8.5 (99) 

17.8 
9.5 (110) 

30.0 
7.2 (83) 

20.2 
7.0 (81) 

27.0 
9.9 (115) 

30.5 
10.9 (127) 

E(4) 

12.7 
8.9 (104) 

11.8 
9.3 (108) 

15.1 
7.7 (90) 

12.0 
9.0 (105) 

25.2 
9.9 (115) 

25.0 
10.5 (122) 

neutron-proton mass-difference effects, whose mag
nitude is likely to be 0.1% in the potential parameters). 

Let us denote the potential depth as Fo, and the 
potential width as b. One can then define9 a parameter 

s^KVcfi2, (4.1) 

where the K has such dimensions as to make s dimen-
sionless, and its numerical value [but not the func
tional form of Eq. (4.1)] is shape-dependent. 

Further relationships of use to us are given in Ref. 
10, Tables I and V. We will denote these by 

and 
r*/s=l/t(s) 

s=u(w), w^ro/a, 

(4.2) 

(4.3) 

respectively. Again, the precise form of these functions 
is shape 
get 

-dependent. Combining these two relations, we 

C«(w)]=/(w) 
and therefore 

and 
b=r<>f(w) 

s C s C 
F „ = C - = _ s _ g ( w ) , 

(4.4) 

(4.5) 

(4.6) 
£2 fQ2 p(p) r^ 

where f(w) and g(w) are shape-dependent, but the 
rQ dependence of Eqs. (4.5) and (4.6) is not. In Eq. 
(4.6) we used C~K~~l which is a shape-dependent 
constant. 

From the above equations, one can obtain the per
centage variations in h and Vo as functions of the per
centage variations in ro and a. The relations are 

db r df(w)~\drQ df(w) da 
~=\ l+wf^iw)—— J wf-^w)— (4.7) 

dw J ro 

and 

dVo 
= wg-1 (w) 

dg(w) 

dw 

dw a 

dg(w) da "Wo 
•2 wg~l{w)-

J ro dw a 

(4.8) 

It should be noted that Eqs. (4.7) and (4.8) do not 
depend separately on rQ and a, but only on their 
ratio w. 

One can also see from the above equations that at w = 0 
(which, for instance, can be obtained with a=dh <*>), if 
we assume that g(0)^0, and 6g(w)/dw\ ^ «>, then an 
infinitely small change in Fo or b results in an in
finitely large change in a. This fact is well known and 
can be seen easily from the study of the wave function 
for this case. A similar infinite sensitivity can also 
occur for the ro, but at different values of w, namely, 

9 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York 1952), pp. 55-56. 

10 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949). 
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TABLE II. Functions F(w) and G(w), defined by Eq. (4.11), as 
a function of w, defined by Eq. (4.3) for square well, exponential 
well, and Yukawa potential shapes. 

w 

-0.200 
-0.188 
-0.176 
-0.164 
-0.152 
-0.140 
-0.128 
-0.116 
-0.104 
-0.092 
-0.080 
-0.068 
-0.056 
-0.044 
-0.032 
-0.020 
-0.008 

Squj 
F(w) 

0.323 
0.327 
0.330 
0.335 
0.339 
0.344 
0.348 
0.353 
0.358 

| 0.363 
0.368 
0.373 
0.378 
0.384 
0.389 
0.395 
0.401 

ire well 
G(w) 

-0.0363 
-0.0351 
-0.0337 
-0.0323 
-0.0308 
-0.0292 
-0.0274 
-0.0256 
-0.0236 
-0.0215 
-0.0192 
-0.0168 
-0.0142 
-0.0115 
-0.0086 
-0.0055 
-0.0023 

Exponential well 
F{w) 

0.456 
0.465 
0.475 
0.486 
0.496 
0.507 
0.519 
0.530 
0.543 
0.555 
0.568 
0.581 
0.596 
0.610 
0.625 
0.641 
0.657 

G(w) 

-0.388 
-0.398 
-0.407 
-0.418 
-0.428 
-0.439 
-0.450 
-0.461 
-0.473 
-0.486 
-0.498 
-0.512 
-0.526 
-0.540 
-0.555 
-0.570 
-0.586 

Yukawa well 
F(w) 

0.535 
0.549 
0.562 
0.577 
0.592 
0.607 
0.623 
0.641 
0.659 
0.677 
0.697 
0.717 
0.739 
0.762 
0.786 
0.811 
0.838 

G(w) 

-0.651 
-0.668 
-0.687 
-0.706 
-0.726 
-0.747 
-0.768 
-0.791 
-0.815 
-0.841 
-0.867 
-0.895 
-0.925 
-0.956 
-0.989 
-1.024 
-1.061 

for 
dg(w) 

wg~l{w) ~2 (for Vo) (4.9) 
dw 

and 
df(w) 

wf'1 (w) ~ - 1 (for b). (4.10) 
dw 

Whether such a condition is physically realizable or not 
is not immediately clear. 

One can also see from Eqs. (4.7) and (4.8) that the 
sensitivity coefficients depend only on the logarithmic 
derivatives of f(w) and g(w), defined as 

F(w) = f~l(w)df(w)/dw, 

G (w)=g"1 (w) dg (w) J dw. 

These functions are tabulated in Table II, for the 
values — 0.2<w<0, which is the range of validity for 
negative w of the formulas in Ref. 10 from which they 
were derived. The table gives these functions for a 
square well, for the exponential well, and for the 
Yukawa well, thus covering the usual range of shapes 
under consideration. It is evident from Table II that 
there are very large variations among the various 
shapes in the sensitivity coefficients. In particular, 
G(w) for a square well is not only an order of magnitude 
smaller than for the other two shapes, but its absolute 
value decreases with increasing w, reaching a very 
small value indeed around w=0. If we could calculate 
the small deviations from charge symmetry, this large 

variation in the sensitivity coefficients would give us 
a means to obtain information on the shape of the 
potential. Under the present circumstances, however, 
one can only assume a conservative approach and say 
that in the range of w which is most likely to be of 
interest to us (—0.2<w<— 0.1), F(w) is not larger 
than of the order of 0.6 and G(w) is not larger than of 
the order of 0.75. 

V. CONCLUSIONS 

One can conclude from the above considerations that 
if the neutron-neutron scattering cross section could 
be measured with a 10% error at 20 energies between 
20 keV and 2 MeV, with a concentration of energies 
near the low and high ends of the energy range, one 
could obtain the magnitude of the scattering length a 
to an accuracy of 2.8-3.7% and the sign of a with a 
quite high degree of confidence (the points corre
sponding to the two different signs of a being four 
standard deviations apart). This, in turn, would permit 
us to determine the parameters of the corresponding 
scattering potential to an accuracy of at least 0.3%, 
and perhaps 0.1%. With this precision charge-depend
ent and charge-symmetry violating effects could be 
detected. The experiment would also yield a 30-50% 
determination of the effective range ro, but since r0 is 
relatively insensitive to changes in the interaction 
potential, and since the error on this determination is 
quite large, the value thus obtained for ro would not 
be of much interest. 

It is hoped that the foregoing considerations will 
serve as positive encouragement for the actual carrying 
out of a neutron-neutron scattering experiment in an 
underground nuclear explosion using colliding beams. 

Note added in proof. After submitting the manuscript 
of this paper, I encountered an article [M. Bander, 
Phys. Rev. 134, B1052 (1964)], in which the method 
of Ref. 7 is discussed further and some of the approxi
mations used therein improved. In view of the fact, 
however, that some of the uncertainties of Ref. 7 
remain unresolved, the estimate of the accuracy for the 
determination of the scattering length on the basis of 
such a calculation (i.e., an error of 1 F) appears some
what optimistic, and the sign of the scattering length 
and value of the effective range remain undetermined. 
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