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atic error is occurring to a similar extent in our present 
work, the magnetic spectral function peaks at 620 and 
1400 MeV shown in Fig. 3 might actually represent the 
effects of a truncated Fourier series in fitting, say, a 
p-co peak near 750 MeV, a 0 at 1050 MeV, and a p 
peak5 at 1250 MeV. (Note that it is uncertain whether 
the p' is 1~~.) In any case, the region below 1000 MeV is 
not inconsistent with this interpretation. The position 
of the zero at 1050 MeV may well be more accurate 
than the positions of the peak or the dip. Finally, the 
value of G for the annihilation process argues for a 
long high energy tail on the spectral function, as in 

I. INTRODUCTION 

THE actuality of anomalous singularities has long 
been regarded by Goldberger as a critical test of 

present-day notions concerning the analyticity of tran­
sition amplitudes involving production reactions.1 In­
deed, in many of the dynamical approaches to strong-
interaction physics, one abandons several important 
concepts in conventional field theory, yet, nevertheless, 
assumes that the singularities of the perturbation am­
plitude are maintained in the correct amplitude.2 To 
the extent that one knows, on the strength of perturba­
tion theory, that amplitudes for production reactions 
are in general characterized by the presence of various 
anomalous threshold singularities, both real and com­
plex,3-5 it is evidently of great importance to the current 
theoretical premise that experimental manifestations 
due to these singularities be found. 

Landshoff and Treiman1 first tackled this question in 
connection with simple triangle diagrams such as 

* Work supported in part by the U. S. Air Force Office of 
Scientific Research and the National Science Foundation. 

1 P. V. Landshoff and S. B. Treiman, Phys. Rev. 127, 649 (1962). 
2 H. P. Stapp, Phys. Rev. 125, 2139 (1962); G. Kallen and 

A. S. Wightman, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 1, 6 (1958). 

3 L. D. Landau, Nucl. Phys. 13, 181 (1959). 
4 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 
5 P. V. Landshoff and S. B. Treiman, Nuovo Cimento 19, 1249 

(1961). 

Fig. 3, rather than approximating the spectral function 
beyond 1000 MeV by a single pole. 

ACKNOWLEDGMENTS 

We are grateful to R. F. Peierls for the use of his 
computing program, and to the 1604 computer group 
for the actual computations. We wish to thank R. 
Hofstadter and K. W. Chen for sending us unpublished 
data on the proton form factors^ and to thank K. 
Barnes and F. Gross for discussions for the equality 
of electric and magnetic form factors at / = 4M2. 

illustrated in Fig. 1, where E is the incoming energy, 
m and \/s are effective masses of particles emitting 
from the second and third vertices. The singularities we 
wish to observe are not poles, but provided they are 
infinites rather than simple branch points, there is hope 
that they can give rise to observable effects when they 
are close to the physical region. Landau3 and Polking-
horne and Screaton6 have prescribed rules that only the 
simplest graphs produce singularities of the infinity-
type. Since the simple triangle diagrams are indeed the 
only graphs with three external vertices that give rise 
to infinities, they are the logical graphs to survey in the 
first instance. 

The process considered by Landshoff and Treiman 

/ S$ 

FIG. 1. Basic tri­
angle graph under 
consideration. 

6 J. C. Polkinghorne and G. R. Screaton, Nuovo Cimento 15, 
925 (1960). 
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Observable consequences of anomalous threshold singularity for triangle diagrams are examined with 
special reference to cases where baryon resonances of narrow width participate as an internal line in the E 
channel. I t is found that the reaction K~-j-p —> K-j-ir+'E, with S* (1530) included as an internal line of the 
graph, offers the best experimental situation for detecting an anomalous singularity effect by studying the 
(Kir) mass spectrum in final state. 
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FIG. 2. Triangle graph 
involving four -body 
final state (7r7T7rA), for 
incident energy E = 1660 
MeV. 

YQ(I520) 

involved exclusively stable particles and for practical 
considerations were hampered somewhat by very small 
cross sections, competing reactions, large distance of 
the singularity from the physical region, or simply 
rarity of the processes themselves. Variations on this 
approach have been proposed by Aaron7 who introduced 
an unstable particle as an internal line of the graph in 
the s channel, thus obviating the difficulties associated 
with small cross sections. Halpern and Watson8 ex­
tended this to include an unstable particle in the E 
channel, the crossed channel with respect to s as well. 
The hope here is that by considering a four-particle 
final state (two external particles at each vertex of the 
closed-loop diagram), e.g., Fig. 2, we can hope to remedy 
the difficulty associated with "large distance'' of the 
singularity from the physical region as well. Aitchison9 

has questioned whether for the case of an unstable 
particle in the s channel, a simple application of disper­
sion theory or perturbation theory is completely correct. 
Deployment of four or more particles in the final state, 
despite certain advantages, must reckon with experi-

FIG. 3. Four cases of triangle diagrams involving F0*(1520) 
and N* (1238) as an internal line in the E channel. 

350 400 

«/§ (Dipion Mass in MeV) 

FIG. 4. Plot of square of triangle amplitude / (on arbitrary 
scale) against dipion mass \ A for reaction ir~-\-p —> 7r+-f if~-\-n at 
#•(1238) production threshold (£=1378 MeV). The fictitious 
case (d') with M —1238—5^ is also drawn to emphasize the peaking 
effect due to small isobar width. 

mental feasibility in terms of competing and interfering 
background channels open at this energy. Indeed, the 
detection of an anomalous singularity is likely to be 
quite a subtle procedure, since the effect requires usually 
high (and narrowly defined) incident-particle energies. 

Historical interest in triangle-type graphs with an 
unstable particle as an internal line in the E channel 
actually arose from experimental impetus. Kirz, 
Schwartz, and Tripp10 found that the neutron in the 
reaction icp —» 7r+7r~^ comes off preferentially with a 
low momentum in the c m . system; this corresponds 
to the (7r+7r~) dipion taking up as much energy as it 
can—i.e., a peaking over dipion phase space at the 
upper end of kinematically allowed values for \ A - The 
fact that this distortion of the phase-space spectrum 
was observed in the vicinity of the 7r+iV33* threshold 
(and disappeared for incidental energies far from 
threshold), suggests that a triangle-graph singularity 
of the type shown in Fig. 3(d) may be operative. 
Extensive calculations9'11 have shown, however, that 
whereas a possible singularity candidate might exist on 
the physical sheet (sa in the notation of Aitchison9), it 
cannot be near the physical region of s, especially at the 
upper end of dipion phase space, if we are to explain 
the experimental data; this argument is independent of 
the width of the (3,3) resonance. For a fictitiously small 
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isobar width of iV33* (say 10% of its actual width), 
Fig. 3(d) can give rise to an anomalous singularity (s& 
in Aitchison's work9) which, though in the unphysical 
sheet below the s=4:fxir

2 normal threshold branch cut 
of s plane, is nevertheless near the physical region at 
the low end of dipion phase space. The behavior of the 
squared amplitude | 7 | 2 as a function of y/s due to 
Fig. 3 (d) is illustrated for both cases discussed above in 
Fig. 4; we note especially the peaking of | / | 2 in the 
neighborhood of low y/s mass values for a narrow isobar 
width; the "distance" of sj, from physical region is 
strongly dependent on width, as noted by Aitchison. 

Fortunately, amongst the strange-particle baryon 
resonances recently unraveled from high-energy experi­
ments, there are two possible candidates for the internal 
line M of Fig. 1 of very narrow width. The complex 
mass M for Ei/2*(1530) and F0*(1520) assumes the 
following values12 

J f (S*)= (1530-30 MeV, 

M(F 0 *)= (1520-8;) MeV, 

where M=Er—iT/2. The S* case should be especially 
singled out for consideration, not only because of its 
narrow width but also because only the strong decay 
E*-^7T+E is realized at the (M^rri) vertex (cf. 
Figs. 1 and 5), owing to energy conservation13 and 
selection rules. The corresponding situation for 
Fo*(1520) is likely to be more involved, since amongst 
other factors several real decay channels (TTX^KN^TTTA) 
are open to this state with the inherent possibility for 
mutual interference. Other favorable features in 
connection with Fig. 5 will be emphasized in the body 
of the present paper. 

The theoretical basis for the s&-type anomalous 
singularity, with incident energy E^m+Er has been 
discussed by several authors8,9; what comes into play 
is a second-type singularity14 (of the inverse-square-root 
type) which combines subtly with the logarithmic 
singularity at s& to produce the sharp peaking effect 

FIG. 5. An example of 
a triangle graph involv­
ing K~+p -> K+<ir+3, 
whose anomalous singu­
larity is most susceptible 
to experimental investi­
gation. 

12 For recent values of experimental width and resonances 
masses see, for instance, A. H. Rosenfeld, Baryon Spectroscopy, 
University of California Radiation Laboratory, UCRL-10897, 
1963 (unpublished). 
_ 13 There are of course possible virtual processes like E* —> KA, 

K2, but these are of scant interest in the present considerations. 
14 D. B. Fairlie, J. Nuttall, P. V. Landshoff, and J. C. Polking-

horne, J. Math. Phys. 3, 594 (1962). 
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FIG. 6. Plot of \I\2 versus (Kir) mass \ A for 
process ir'+p -> J T + T T + S [Fig. 3(c)]. 

noticed in | / | 2 . For convenience of reference, we have 
summarized briefly in Sec. I I some of the results 
pertaining to the triangle diagram in perturbation 
theory. We give here some heuristic and empirical 
conditions that seem to determine the magnitude and 
position of the peak. In fact it is found upon detailed 
numerical analysis that under suitable conditions for 
values of E, tn, /xi, and ju2 of Fig. 1, an actual enhance­
ment peak for \I\2 occurs in the physical interval for s 
with -\A>Mi+M2, that is, not necessarily "near" the 
lower edge of phase space in this channel (cf. Figs. 6 
and 7). That Fig. 5 falls into the new category is most 
gratifying, since it should improve substantially the 
chances of experimental detection for the phenomenon. 
Previous cases studied1'8 with either stable or unstable 
particles in internal lines of the triangle, have tended 
to produce a sharp-rise type peaking at either end of 
the physically allowed energy range for y/s, where they 
must compete with falling phase space. The dynamical 

For E»2024MeV 

FIG. 7. Plot of 17|2 

and total probability 
of events against 
(KIT) mass y/s for 
the reaction K~+p 
->iT+7r+S(Fig.5). 

650 680 

</S (KB Moss in MeV) 
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FIG. 8. Plot of | / 1 2 and total probability of events versus (Kw) 
mass \/s for the reaction K~-\-p —> K+N-\-ir [Fig. 3(b)]. Since 
the scale for | / 1 2 is arbitrary, it is the structure shape for the total 
probability of events that is significant. 

origin and mathematical theory behind both types of 
peaking is of course the same in terms of complex 
singularity for the basic triangle diagram. 

In Sec. I l l , the numerical results are presented for 
the cases shown in Figs. 5 and 3. Section IV discusses 
briefly the possible competing reactions and background 
to Fig. 5 phenomenologically. We have calculated the 
Feynman amplitude for the triangle graph with neglect 
of structure effects at the vertices, since we are con­
cerned with the variation of the amplitude over a 
narrow range near the singularity. For the same reason 
we also neglect spin effects, treating all particles as 
spinless. Indeed, location of singularities from Landau 
rules will not be dependent upon spin, and implicit 
belief in these rules is the basis of the whole work. We 
have essentially denominator terms of form 

\/(p?+m?) 
for all internal lines, and singularities are determined 
therefrom. Spin effects, even for / = § particles, belong 
to the numerator. Likewise the isospin dependence can 
be handled independently, with the appropriate isospin 
factors incorporated at each vertex in the end. With 
our present experimental knowledge of the relative 
importance of different isospin contributions to the 
vertices of Fig. 5, we cannot infer the preeminence of 
the peaking effect in one or the other of the two isospin 
states available to the (Kir) system. 

II. TRIANGLE AMPLITUDE IN PERTURBATION 
THEORY 

We are interested in the Feynman integral / for 
Fig. 1, where E is the total energy at the incident 
vertex, JLH, AI2, and M are masses for the internal lines, 

a single particle m emerges from a second vertex, and 
the remaining particles join at a third vertex of mass 
\ A . The energy range of interest is concentrated in the 
region of E^fjLi+Re{M)='fAi+Er, with M I + M 2 < \ A 
<E—m. 

The Landau singularity surface of triangle diagram 
(Fig. 1) is given parametrically by the equations15 

E2==M2+fxi2-2Mfi1(u1
2-u2

2--uz
2)/2u2U^) 

m2=M2+fM22-2MfX2(u2
2-u1

2-u3
2)/2um, (2.1) 

\Zs==JJLi2-\-fJL22—2flifX2(u^2 — Ui2 — U22)/2UiU2. 

For the case of interest to us, the Landau singularity 
surface touches the physical region at point P where 

^ 2 = ^ 1 + ^ 3 , E=m+M, 
(2.2) 

In (2.1) and (2.2), for convenience of notation, we have 
written M for the real part of the complex isobar mass. 

The integral for the triangle diagram is 

1=1 dai I da2 I da%d(I~ai — a2-~az)/A, 
Jo Jo Jo 

A = E2a2Ciz-\rM2aias~T-saia2 

~ (v22ai+V>i2a2+M2az)(ai+a2+az). (2.3) 

We perform the ai integration first, then the o:2, and 
finally the 0:3. I t is evident that after doing the a\ 
integration by means of the delta function, denominator 
A may be written as 

A = L [ a 2 - (p+Si) ] [>2- (p+5 2 ) ] , (2.4) 

where L, p, and the 5's may depend on a3. An elementary 
evaluation of the 0̂2 integral gives 

[ oi2— (P+8I)~ 

C K 2 — ( 

•In (2.5) 
L(8i—82) La2— (p+82)-

The roots p+5i, p+5 2 lie on opposite sides of the real 
a2 axis and must pinch the contour to produce a physical 
sheet singularity. If <x2 passes the real part of these roots 
between the limits of the a2 integration, 0 and 1— a3, 
the phase of the logarithm will change by almost 2iri 
and contributes dominantly to the singularity. / is 
approximated by 

r da3 

I^2iri I , 
J L(81-52) 

where 

£(Si-S2) - lAa*2+2Baz+Cji2, 

A = E'+m'+s2- 2m2s~2E2m2- 2E2s, 

B^l-s'+Eh+mh+^s+^E2 

+}jLi2m2+ixi2s--fjL22/fn2—fjLi2E2-

C = ^ 2 + M I 4 + M 2 4 " 2sM 2
2- 2 W - 2/xi V . 

(2.6) 

-2sM2~], (2.7) 

15 The treatment here is similar to that of Ref. 8. 
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At the point P, the functions A, B, C vanish identically, 
and in a neighborhood of P we write 

L{h-h) = r 1 ' 2 / - (rf+rf+rf)"*/, (2.8) 

with E—fjLi~M=rieia, etc., and / a slowly varying 
function dependent on derivatives of L (5i~-62) with 
respect to E, m, \ A at P . 

I t is evident that / , in a near neighborhood of P, is 
approximately r~1/2 times some scale factor, and \I\2 

will manifest a sharp rise at the lower edge of phase 
space for \ A (—M1+M2), since L(8i—82)^0 at P . This 
type of behavior is exhibited by the case given in 
Fig. 8, as well as in some of the examples discussed by 
Halpern and Watson.8 

In practice, the size and position of the peak (of 
which the sharply rising \I\2 at sm-m discussed above is 
one manifestation) in the physical range of s is deter­
mined also by internal mass conditions on /xi and /*2 
and the width of M, as well as on the given values of 
E and m. We write down here two empirical conditions16 

which must be approximately satisfied to give a peak 
enhancement for \I\2 in the mid-range of physically 
allowed values of \/s (i.e., away from lower and upper 
edge of phase space in this channel). They are 

(E—m—fxi~-fjL2)(E+m~fjii—iJL2)~\2 

TABLE I. The various cases described by Figs. 5 and 3 
and their parameters. All energies are given in MeV. 

2EQn+nJ 

1 > - , (2.9) 
l+iEni/m)1"' 

Efn/uv>9, (2.10) 

where for simplicity we have written M=u-\-iv 
( = £ • • - t T / 2 ) . 

For purposes of numerical calculations, we write (2.3) 
in the following form: 

where 

1 r1 

=— / <fei(i VQ) In-
-VQ 

y+VQ 
(2.11) 

-Q= - ( 1 / 4 J ) [ ( « . - 1 > + < X 3 ( E 2 - W 2 ) + M 2 2 - M I 2 ] 2 

- a 3 ( l - a s ) £ 2 + M i 2 ( l - « 3 ) + M 2 a 8 , 

yb=\j(l-az)+a3(£?-m2)+iji22—^y2\/s, 

T „ = [ ( a , - i.)s+at(E?-m*)+tf-tfy.2Vs. 

For the case m=ni^=n, (2.12) becomes 

-Q= ~ ( l / 4 s ) [ ( a 3 - l > + a 3 ( £ 2 - « 2 ) ] 2 

- a 3 ( l - a ; 3 )£ 2 +M 2 ( l -«3 )+ iW 2 a3 , 

76= [ ^ l - « 3 ) + a 3 ( £ 2 - m 2 ) ] / 2 V
/ ^ 

7a= C ( a , - l ) 5 + a 3 ( £ 2 - w 2 ) ] / 2 ^ • 

(2.12) 

(2.12') 

16 These conditions can be justified by elementary methods; the 
mathematics is, however, cumbersome, and will be discussed 
elsewhere. 

Cases 

(a) 
(b) 
(c) 
(d) 

wo (e) 

E 

1660 
1660 
2014 
1378 
1378 
2024 

m 

1194 
940 

1194 
940 
940 

1321 

/* i 

140 
140 
494 
140 
140 
494 

/*2 

140 
494 
140 
140 
140 
140 

M 

1520-8* 
1520 - 8 * 
1520-8** 
1238-50*' 
1238-5* 
1530-3* 

Range of \/s 

280 to 466 
634 to 720 
634 to 820 
280 to 438 
280 to 438 
634 to 703 

Numerical calculations of \I\2 are initiated at a 3 = 1, 
because here 7&=7a . In the rest of the computation, 
we make sure the logarithm is continuous (especially 
its imaginary part), since our integration is over a real 
interval. 

III. NUMERICAL RESULTS 

The squares of the moduli of the amplitudes of 
several diagrams were evaluated over the allowable 
range of \ A by performing the integration given by 
Eq. (2.11). The calculations were performed numeri­
cally on an IBM-7090 computer using the automatic 
Taylor Series method developed by one of us (Y. F. 
Chang), which yields results of at least five-figure 
accuracy. Altogether, six cases are presented here to 
illustrate the multifarious behavior of | / 1 2 with respect 
to \/s. The six cases are tabulated in Table I with all 
their parameters: E, m, m, /X2, M, and the range of \/s. 
Case (d7) is fictitious, studied for the purpose of gaining 
insight into the dependence of the amplitude upon 
isobar width. 

Figure 3(d) was the first diagram studied. The 
variation of \I\2 with respect to \/s is shown in Fig. 4. 
The result is rather uninteresting so far as a peak of 
| / | 2 is concerned, no significant structure is present. 
Application of criteria (2.9) and (2.10) to case (d) 
shows (2.9) to be satisfied, but (2.10) is not satisfied. 
Therefore fictitious cases are studied to see how the 
effects due to the several parameters enter in. Case (d') 
differs from (d) only in that the imaginary part of M 
has been substantially reduced. This reduction of v 
yields very strong inequalities for (2.9) and (2.10). 
The resulting response of | / | 2 shows a distinct peak 
of 28% over its value at \/sm-m. The conditions (2.9) 
and (2.10) are tabulated in Table I I for all the diagrams 

TABLE II. Application of conditions (2.9) and (2.10) for the 
various cases. The peaks are given in percent over the 1112 value 
at \Amin. The term 'peak' here does not describe situations 
where \I\2 shows a sharp rise for s = smm as in case (b). 

Cases 

(a) 
(b) 
(c) 
(d) 
(d') 
(e) 

Condition (2.9) 

1.303>0.373 
0.166> 0.373 
0.411>0.199 
1.009>0.723 
1.009>0.304 
0.151 >0.127 

Condition (2.10) 

19.1 > 9 
19.1 > 9 
81.8 > 9 
3.116>9 

31.16 > 9 
218>9 

Remarks 

peak (19%) 
no peak 
peak (78%) 
no peak 
peak (28%) 
peak (88%) 

file:///Amin
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FIG. 9. Plot of | / | 2 , against dipion mass \/s for 
process K~-\-p —» T T + X + S [Fig. 3(a)]. 

studied, together with the magnitude of the peaks if 
any. As can be easily seen, in comparing case (d) with 
(d'), the inequalities have been greatly strengthened by 
the reduction of v. 

From the above analysis, one can infer that v should 
be as small as possible. There are two realistic baryon 
resonance candidates that promise to be very interest­
ing: F0*(1520) and Ei/2*(1530). We discuss first 
Fig. 3(b). The plot of | / | 2 with respect to \ A is shown 
in Fig. 8 together with plots of the phase space and the 
total probability of events. The total probability of 
events is the product of the phase space and \I\2. In 
this case, criterion (2.9) is not satisfied because of the 
very large m mass, and the resulting 11 |2 does not have 
a peak in the sense discussed above. However, the total 
probability of events can have an interesting shape, 
due to the very sharp rise in \I\2 as we approach the 
minimum value for \ A . Diagrams similar to this case 
have been discussed by LandshofT and Treiman1 and 
Halpern and Watson.8 

Figure 3 (a) has a fx2 much less than that in Fig. 3 (b); 
so in fact the left side of inequality (2.9) is substantially 
larger than right-hand side. Here a peak of 19% is 
found in | / | 2 with respect to its value at \Amin. 
Figure 9 shows 11\2 versus \/s for case (a). Comparison 
of the inequalities (Table II) for case (a) with those of 
case (d7) shows (2.9) to be comparable, 1.009/0.304 
= 3.32 as compared with 1.303/0.373 = 3.49, whereas 
the left side of (2.10) is quite different, 31.16 as com­
pared with 19.1. Therefore (2.10) is probably more 
important in determining the magnitude of the peak 
in | / 1 2 versus \ A . 

Figure 3(c) was studied to test the importance of 
(2.10). In this diagram, Efii is much larger than in 
Fig. 3(a). Here, condition (2.9) is relatively weak, in 
the sense that 0.411/0.199=2.07 (cf. Table II) only, 
but for (2.10) the inequality ratio on the left-hand side 
is very large, 81.8. If comparison with cases (d') and 
(a) are used as a guide, the peak in | / | 2 against \ A 
should be in the neighborhood of 80%. This has indeed 

been found by detailed calculations. Figure 6 shows 
\I\2 versus \ A for case (c). 

Finally, we consider case (e) (Fig. 5). This is a case 
where (2.10) is extremely large for the inequality ratio, 
218; therefore, one would expect a tremendous peak 
in | / | 2 . However (2.9) is just barely satisfied, 
0.151/0.127=1.19 (cf. Table I I ) ; this attenuates the 
peak. Figure 7 shows | / | 2 versus \/s for case (e). For 
the K++3* threshold value of E (2024 MeV), the peak 
in | / | 2 is 88% above its value at \Amin. Apparently 
condition (2.9) is important when it becomes near its 
critical value. 

Case (e) was studied in some detail because of its 
very attractive experimental possibilities. Figure 7 also 
shows plots of phase space and the total probability of 
events. Comparison with Fig. 8 shows a distinctly 
different probability of events. Figure 10 shows the 
behavior of | / | 2 versus y/s as E is varied from its 
threshold value. At E = 2004 MeV, the peak has almost 
completely disappeared, and the entire curve is much 
lower. At £ = 2 0 4 4 MeV, the peak is much larger than 
before. I t was therefore of interest to study the be­
havior of the peak over the entire range of E. Figure 11 
shows the locus of the peak as a function of E as it is 
both increased and decreased from its threshold value. 
This plot shows that there is an optimum value of E 
about 10 MeV above the threshold. The position of the 
peak relative to \/s is of importance, because those 
peaks that are very close to the minimum value of \/s 
will be hardly distinguishable from such responses as 

\ E = 2 0 4 4 MeV 

E=2024 MeV 

670 £80 ' 690 
683 

v̂ S (KII Moss in MeV) 

FIG. 10. The behavior of | / | 2 versus \/s as incident energy E is 
varied from its threshold value £ = 2024 MeV for the triangle 
diagram (Fig. 5). 
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FIG. 11. The locus of peaks as a function of incident energy E 
for reaction K~-\-p —> J T + T T + S via triangle graph (Fig. 5). 

represented by that of Fig. 3(b), where they 
compete with rapidly falling phase space for experi­
mental detection. From this point of view, the optimum 
value of E with respect to the position of the peak is 
very nearly the threshold value itself. Thus, all in all, 
the peak in | / | 2 versus \/s should be best observable 
for a range of E from threshold value of 2024 MeV to 
about 2050 MeV. 

IV. DISCUSSIONS 

In the last section we have detailed the numerical 
results. We see that the triangle diagrams due to 
Figs. 3(a) and 3(b), together with a diagram (cf. 
Fig. 2) discussed earlier,8 can lead to very interesting 
structural effects for \I\2 (Figs. 8 and 9). The fact that 
these diagrams contribute to the isospin T= 1 state of 
the initial K~-p system in an important way at pre­
cisely the energy E where the resonant state Fi*(1660) 
was recently found,17 raises the question of possible 
interference effects between the triangle amplitudes and 
that of the resonant amplitude when we come to deter­
mine the quantum numbers of the latter.18 If at thresh­
old the 7r+ F0* systems interact dominantly in the S 
state, their influence on the initial Kr-p system is likely 
to be felt principally in P3/2, since Fo*(1520) has 
spin-parity (f—). 

Figure 3 (c) and Fig. 6 represent a possible candidate 
for experimental investigation of a triangle singularity 
effect with incident ir~-p total energy E around 2014 
MeV. Table I I suggests a substantial peaking for | / 1 2 , 
though this case must reckon with the several decay 
channels available to Fo* as discussed in the 
introduction. 

17 L. W. Alvarez, M. H. Alston, M. Ferro-Luzzi, D. O. Huwe, 
G. R. Kalbfleisch et at., Phys. Rev. Letters 10, 184 (1963). 

18 M. Taher-Zadeh, D. J. Prowse, P. E. Schlein, W. E. Slater, 
D. H. Stork et al, Phys. Rev. Letters 11, 470 (1963). 
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The most promising candidate for experimental 
investigation is probably the triangle singularity 
associated with Fig. 5 and Figs. 7 and 10. As discussed 
in the previous sections, we are favored with a very 
narrow width for the H* resonance and a single, energeti­
cally allowed, strong decay channel to 7r+S at the 
second vertex, as well as suitable mass conditions on 
internal lines /xi and JU2. Table I I suggests that at 
iT++H* threshold (2024 MeV), the peak is quite 
prominent for \I\2 (88%). Also it occurs close to the 
center of physically allowable range for \ A , which 
should make it particularly amenable to experiment, 
since one is less fettered by the problem of falling phase 
space competing as would be the case at smin or ^max. In 
fact the locus of peaks (Fig. 11) indicates that even for 
maximal enhancement (£=2034 MeV, peak >100%) , 
the peak position sits at around 658 MeV, as opposed 
to 634 for -\Amin-

The question of the "strength" of the triangle 
amplitude / , though naturally of interest from the 
experimental viewpoint, is much less easy to assess. For 
purposes of theoretical discussion, we tend to argue 
singularity rather than order of magnitude. However 
the current information19 on E* production near 
threshold suggests that K~-\-p —» E*+7r°+i£"+ has alone 
a production cross section of the order 80 jjb, which 
compares favorably with ir-\-p—>7r+7Vr*(1238) at 
threshold, though the latter is already the dominant 
channel for (w~p).20 Thus we anticipate that the 
(K-pK+Z*) vertex is "strong." At the second vertex, 
the (E*E7r) coupling can be estimated from the cascade 
width 

gH*V4x=|r(£rVPs3), 
where p% is the momentum of E* decay products in its 
c m . system. There is little information on the (KTKTT) 
vertex, since we are below the energy of the iT* reso­
nance ; theoretical estimates21 for S-wave (Kw) scatter­
ing generally yields a coupling gK^/^ir of the order 
unity. 

A little thought will show that there is no meson or 
vector-meson exchange between K~ and proton to give 
a final-state system (i^xE), because of the strangeness 
selection rule. Thus it is expected that the most im-

K£ 

FIG. 12. Isobar diagram competing *Sy( 
with triangle diagram of Fig. 5. Here ^s^** « * 
k, p, q are the four-momenta of inci- *p y **• 
dent K~ and proton and final K+, II 
respectively. ^ ^ . ^ » 

__ V" 
19 We have benefited from a helpful discussion with Professor 

J. Leitner. 
20 M. Olsson and G. B. Yodh (to be published). 
21 B. W. Lee, Phys. Rev. 120, 325 (1960). 
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FIG. 13. Dalitz plot 
for the three-body final 
state (KTTH). The 
(effective mass)2 dis­
tributions for (Sir) and 
(Kir) are projected, 
respectively, on the 
ordinate and abscissa. 

M2(K0) 

portant competing diagram to the triangle amplitude 
will be the isobar diagram (Fig. 12), which can cer­
tainly contribute significantly at the E* threshold of 
interest. A very crude estimate of the relative proba­
bility of contributions for the two processes (Figs. 2 
and 12) is 

<(gK*W\i\*\(p+k-qy-~Mz** - * . 
An examination of the Dalitz plot (Fig. 13) should 
enable us to differentiate between the two reactions. 
In the standard isobar picture, the (STT) has maximum 
mass and the i£+-meson minimum mass, and events of 
this type are likely to cluster around region A of Fig. 13; 
those due to the triangle singularity will likely distribute 
over region B. We are fortunate here, in that only one 
strong final-state interaction is present amongst the 
final particles (KTS) : that of (Sir) to form E*. This is 
to be contrasted with the overlapping resonance case 
at the A* (1238) threshold for ir+p-tm+w+N, 
where N-\-iri can be important at the same time N+TT2 
is important, and thus might artificially create a 
"resonance" in the (71-1̂ 2) system to confound the 
Dalitz-plot interpretation. 

Since we seek to find an anomalous singularity effect 
which is expected to be dominant over only a small 
energy range E for the initial K~-p system (£=2024 
to 2050 MeV), a high and narrowly defined incident 
K~ beam is required. The momentum spread in R~ 
beam at this energy is about 1% (20 MeV/c) for current 
experiments; thus our proposal should be amenable to 
bubble-chamber investigation in the near future.19 I t 
is important to emphasize that amplitude / is inde­

pendent of the angle of emission of the E particle in 
final state. This could be tested if one had reason to 
suspect that the graph in question were not in fact 
dominating the reaction. 

In conclusion, we would like to emphasize that the 
basic premise of the present study is in essence implicit 
faith in the correctness of the Landau-Cutkosky rules 
and the importance of the triangle graph over other 
graphs of higher orders. The recent work of Bronzan,22 

which sums a particular class of scattering diagrams in 
the Khuri-Treiman dispersion representation23 of a 
decay amplitude, is particularly to be noted in that it 
serves well as an example of the type of theoretical 
problems which are yet to be faced. 

Note added in proof. I t has been pointed out to us by 
I. J. R. Aitchison (private communication) that for an 
experimental effect involving the triangle singularity, we 
must be (a) far away from any resonance in the two-
body channel looked at and (b) the triangle effect A 
must be such that compared with background it is at 
least 10% of unity. Both these conditions are in fact 
satisfied for the practical cases we propose since for 
Figs. 5 and 3(c), the J£*(888) is far away from the \ A 
range of (Kir) energies we consider; in addition Amax 

= 0.16+0.2i and 0.20+0.07i for the two cases, respec­
tively. Thus, fortuitously, the theoretical difficulties 
raised by J. B. Bronzan (cf. Ref. 22), are not important 
for the examples we discuss in the present paper. A 
detailed analysis of the theoretical question is given by 
I. J. R. Aitchison ["Final State Interactions among 
Three Particles" (to be published)]. 

ACKNOWLEDGMENTS 

We are much indebted to Professor Tai Tsun Wu, 
who collaborated with us on the early stages of this 
work; he bears no responsibility for the results discussed 
here, however. Helpful discussions with Professor S. B. 
Treiman and assistance from Dr. I. Gyuk are also 
gratefully acknowledged. Finally, we would like to 
thank the Computer Science Center of Purdue 
University for unfailing courtesy to us. 

22 J. B. Bronzan, Phys. Rev. 134, B687 (1964). 
23 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960). 


