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It is pointed out that the so-called self-consistent theories encounter obvious contradictions with experi­
mental facts if the weak interactions are introduced into them in a simple manner. By the self-consistent 
theories we mean the self-consistent quantum electrodynamics with vanishing bare masses, the spontaneous 
breakdown of strong-interaction symmetries, and the like. It follows at the same time that attempts to 
realize the ju-e splitting self-consistently are wrong even if the bare mass is finite. Possible modifications are 
also discussed which make the weak interactions compatible with the self-consistent theories. 

1. INTRODUCTION 

FOR a given Lagrangian we cannot, in general, con­
struct a unique physical world. In some cases, 

there is more than one world described by the same 
Lagrangian. The situation was exemplified by Nambu 
in his superconductor model of elementary particles,1 in 
which there were two solutions, the massless and the 
massive worlds, to the 75-invariant Lagrangian. From a 
similar standpoint, Johnson, Baker, and Willey2 re­
examined quantum electrodynamics to show that one 
can obtain a "self-consistent theory" involving only 
convergent quantities aside from the photon mass. 
Since they started from the electron with vanishing bare 
mass, the theory contains no physical quantity having 
the dimension of length. The physical mass of the 
electron is, therefore, not determined up to scale 
transformation. 

Haag and Maris3 developed dilatationally invariant 
quantum electrodynamics to investigate the y-e puzzle. 

Both theories look closed within the framework of 
quantum electrodymanics. I t appears that attention 
need not be paid to the strong or the weak interactions. 

In the present paper, we shall investigate the weak 
interactions against the background of such a quantum 
electrodynamics. I t will be shown that simple embedding 
of the weak interactions directly leads to contradictions 
with the observations about the JJL —> e+ i>e+ v^ decay. 
I t implies that "self-consistent" quantum electrody­
namics or a ix-e problem should be properly solved after 
inclusion of the weak interactions. We shall first discuss 
the self-consistent quantum electrodynamics by Johnson 
et al. and the dilatationally invariant treatment of the 
tx-e problem by Haag and Maris, and then develop 
similar discussions of the spontaneous breakdown of 
higher symmetries in the strong interactions. 

2. SELF-CONSISTENT QUANTUM 
ELECTRODYNAMICS 

Johnson et al. set the total Lagrangian as 

L=4>yxd>}l'+ieQ\pyx\pAxy (2.1) 
1 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 

124, 246 (1961). 
2 K. Johnson, M. Baker, and R. Willey, Phys. Rev. Letters 11, 

518 (1963); Th. A. J. Maris, V. E. Herscovitz, and G. Jacob, 
Phys. Rev. Letters 12, 313 (1964). 

3 R. Haag and Th. A. J. Maris, Phys. Rev. 132, 2325 (1963); Th. 
A. J. Maris, Nuovo Cimento 30, 378 (1963). 

where the field operators are all unrenormalized and eo 
is the bare electric charge. We have a trivial solution 
22 (yp)=0 to the Schwinger-Dyson equation of the 
proper self-energy part of the electron, YL(yp)- This 
solution indicates that we should divide the Lagrangian 
into the "free" and the "interaction" parts as follows: 

Lo=\py\d\\(/, 

Lint=ieo\i/y\\['A\. 

(2.2) 

(2.3) 

This is, however, not a unique solution. They found a 
self-consistent solution of X) (yp) which rapidly falls off 
as yp—>co. In this case, the physical mass m of the 
electron is finite but not fixed since we have no scale of 
length in this quantum electrodynamics. We should 
regard here 

£0= $y\dxP+niW (2.4) 

as the "free" Lagrangian and 

L int = ie0\py\\fsA x—m\[n// (2.5) 

as the "interaction" one. 
Up to here, the involved f ermion is only the electron. 

In the actual world there exists the muon which has 
completely the same properties as the electron except 
for mass. We shall have to treat the muon in the same 
manner. The Lagrangian should accordingly be modified 
as follows: 

L= ey\d\e+prf\dw+WoLw\e+iiywlA\> (2-6) 

where the field operators of the electron and the muon 
are represented by e and /JL, respectively. 

Suppose we get a self-consistent solution with the 
muon and the electron having finite physical masses. 
Their absolute scale cannot be fixed, although the mass 
ratio may possibly be determined. In this world or in 
this representation of the operator ring, the picture is 
drawn by the Lagrangian divided in the following form: 

£ 0 = eyxdxe+meee+ p,yxdxfJL+mfijlfjL, (2.7) 
and 

Lint=ieo(eyxe+flyxfx)Ax—meee—mfififjL. (2.8) 

The physical masses me and m^ are so determined that 
the one-particle expectation values of Z i n t may vanish: 

(e I Zint I e)= (n I Lint I /*)= 0. (2. 
B769 
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Except for the claims4-6 predicting a massless boson, 
everything seems to be going well as long as the theory 
is concerned with quantum electrodynamics only. 

To apply this theory to the actual world, however, we 
must incorporate the weak interaction process n —> e-\- ve 

+ vM into the theory. Let us add the responsible inter­
action term in the form 

Z i n t c w ) = ( g / v 5 ) [ ^ x ( l + 7 B ) ^ ] 

X D y y x ( l + 7 6 K ] + H . c , (2.10) 

or in its Fierz-transformed form 

X [ > x ( l + 7 6 ) j u ] + H . c. (2.11) 

We have to add the weak self-energies to L0 and subtract 
them from the right-hand side of Eq. (2.11). However, 
we omit this manipulation, as well as self-currents, if 
any, since they are irrelevant to the following discus­
sions. Using the equations of motion from the Lagrangian 
given here, one can easily see 

d x I > x ( l + 7 6 K ] = 0 (2.12) 

to the zeroth order of the weak interactions. This is not 
affected at all by whatever particles, such as the 
nucleon and the mesons, may take part in the La­
grangian. Equations of field operators must not change 
from one representation to another of an operator ring. 
Equation (2.12) holds as it stands in both the massless 
and the massive worlds. In the following, let us show 
that this directly leads to a violent contradiction to 
experiment. 

To see it we need not explicitly calculate the decay 
spectrum of the electron. Instead, it suffices to exploit 
the following theorem.7,8 

Theorem: The squared matrix element for the /j, —» e 
+ ve+vM decay, summed over the neutrino and the 
antineutrino spins, depends only on 

dx[*yx(l+76)/*] (2-13) 

in the configuration in which the electron suffers the 
maximum recoil. 

The proof is straightforward. The matrix element is 

M^i{g/^J2)[mVemvJEVeEv^ 

X^7x( l+76K.<e |5 i /5yx | /*>, (2.14) 

where j\= ivyx(l+75V« and 8L/8j\ are the Heisenberg 
operators, \e) and |yu) being the physical one-particle 
states. We have made here the approximation of 
neglecting the electromagnetic structure of the neu­
trinos. According to the existing experiments, it is 

4 J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone, 
A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962). 

5 S. Bludman and A. Klein, Phys. Rev. 131, 2364 (1963). 
6 See also M. Baker, K. Johnson, and B. W. Lee, Phys. Rev. 133, 

B209 (1964); A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266 
(1964); Y. Nambu, Phys. Letters 9, 214 (1964). 

7 An equivalent theorem has been proved by S. L. Adler for 
"inelastic" high-energy neutrino reactions (Ref. 8). Here we 
follow his method of proof. 

quite a good approximation. The squared matrix ele­
ment summed over the neutrino spins is 

E | M \*=g\e | bL/bh I M>rx,</* 16L/5J, \ e), (2.15) 
v spins 

TXa = (l/qioq2o)\j[iffq2\+q2(rqi}i 

— (qiq2)h<r+ €\aafiqiaq2fiJi, (2.16) 

where qi and q2 are the energy momenta of the neutrino 
and the antineutrino, respectively. Both q\ and q2 are 
null vectors: #i2=#22=0. Therefore, the invariant mo­
mentum transfer squared from the neutrino current to 
the n-e current is exactly zero in the maximum-recoil 
configuration, qi|[q2- I t should be, however, noted here 
that the time component of the momentum transfer is 
nonvanishing and given by 

go= (mf—mfj/lmn, (2.17) 

in the same configuration in the rest system of JX. We 
may write 

qi=(q/qo)qio, (2.18) 

q2=(q/qo)q2o, (2.19) 

q=qi+q*. (2.20) 
Substitution of these expressions into Eq. (2.16) shows 
the third and the fourth terms to be vanishing, giving 

Txa=z2qxq<r/qo2' (2.21) 

Since (e | dx (8L/8j\) | yu) = — iq\{e \ 8L/8jx | M>, we find 

£ \M\*=(2g*/q0*)\(e\dx(8L/Sn)\»)\2. (2.22) 
v spins 

This is just what we want to show. I t is a matter of 
course that the proof is not altered at all for the jx—^e 
+ ve-\- Vp process. 

This theorem predicts together with Eq. (2.12) that 
the high-energy end of the electron spectrum goes to 
zero if one embeds the weak interaction responsible for 
the ii-e decay in the simple manner as in Eq. (2.10) or 
(2.11). The Michel parameter p is zero in this case. 
Experimentally,9 p=0.78±0.02 and the conventional 
V-A theory with four-fermion interactions leads to 
P = | . At any rate, the prediction p = 0 is in violent 
disagreement with experiment. 

Let us consider alternative modifications of the weak 
interactions in the self-consistent quantum electro­
dynamics. 

(1) The muon should not be treated on the same basis 
in the self-consistent theory. This may be the simplest 
way of avoiding the above-mentioned difficulty, but the 
theory must explain why the self-consistent mechanism 
does not work for the muon, but only for the electron. 
We know that the muon has entirely the same electro­
magnetic properties as the electron apart from the mass. 

8 S. L. Adler, Phys. Rev. 135, B963 (1964). 
9 R. Piano and A. Lecourtois, Bull. Am. Phys. Soc. 4, 82 (1959). 
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Of course this modification is incompatible with the 
dilatational-invariance approach to the muon-electron 
problem. 

(2) The weak interactions play a substantial role in the 
self-consistent theories. The lowest approximation to the 
weak interactions is not valid. If this is the case, we do 
not know how to handle the y-e problem. We can find no 
reason to expect that the conventional V-A theory, 
which is in fine agreement with experiment, may be 
reproduced. 

(3) An original form of the decay Lagrangian is not of 
the form V-A. The effective interaction after electromag­
netic renormalizations appears to be V-A owing to enhance­
ment effects. This will, however, destroy the underlying 
elegance associated with the V-A picture of the \x-e 
decay. 

(4) The decay Lagrangian should not be set as in Eq. 
(2.10), but as 

£int (w)=(g/V5)[i>.7x(l-76)«] 

X [ W X ( 1 + 7 5 ) M ] + H . c. (2.23) 

Accordingly, the electromagnetic interactions should be 
Lint^^ = ie0(-eyxe+jlyxfx)Ax. (2.24) 

This modification is, however, in vain since it is reduced 
to the original formulation by the replacement ec—±ef 

and ve
c —•* vj, where the superscript c means charge 

conjugation. 
(5) An intermediate boson mediates between the (vee) 

and the (i>M/x) currents. The nonlocality thus introduced 
will violate the conservation of the (e/j,) current, since it 
is from the Fierz transform of the original current 
X current interactions. Although we cannot carry out 
any reliable estimate, the violation will be too small to 
explain the fact that p=f , if we consider the very high 
lower bound on the mass of the weak boson. 

Thus, we cannot find any hopeful modification of the 
weak interactions in the self-consistent quantum electro­
dynamics. The final way seems to formulate the self-
consistent theory with finite bare masses. 

3. APPROACHES TO THE y-e PROBLEM 
WITH mf = m,? 

We shall extend our arguments to the approaches to 
the fj,-e puzzle, which attempt to explain the observed 
fx-e mass difference within the framework of the quan­
tum electrodynamics. We showed that the approach 
assuming the bare masses to be zero cannot satisfac­
torily accommodate the n-e decay. Let us show that the 
circumstances are not changed even if the bare mass, 
mfi

0=me0, is assumed to be finite. 

The Lagrangian may be written as 

L= ey\d\e+m°ee+ fxyxd^fx+mPpLfx 

+ vey\d\ve+v»y\dxVpJtieQ{eyxe+ fxy\ix)A\ 
+ ^ / V J ) [ ( W X ( 1 + 7 5 ) ^ ) ( ^ X ( 1 + 7 5 ) M ) + H . C ] . ( 3 . 1 ) 

Using the equations of motion one can easily see 

dx(^7xM) = 0, (3.2) 
while 

dx(e7x75/*)^0. (3.3) 

Let us again concentrate on the maximum-recoil 
configuration. The theorem in the preceding section 
predicts that only the divergence of the axial-vector 
part d\(ey\y$n) contributes to the jj,-e decay in this 
configuration. This is again in obvious disagreement 
with experiment. In fact, were it the case, the maximally 
recoiled electron would have no longitudinal polari­
zation. 

Thus, the spontaneous jx-e splitting is not solved, at 
least within quantum electrodynamics. I t does not 
apply to the real world. We shall not repeat possible 
exceptions to this conclusion or possible modifications 
of the way to embed the weak interactions, since they 
are not substantially different from those given at the 
end of the preceding section. 

Hitherto we have assumed the minimal interactions 
of electromagnetism. I t is, however, evident that all the 
conclusions are unaffected by introduction of tensor 
interactions, so long as we introduce them in the form 

£int= (Keeo-xpe+KpjiaxpidFxp, (3.4) 
with 

Ke=K,i. (3.5) 

4. SPONTANEOUS BREAKDOWN OF STRONG-
INTERACTION SYMMETRIES 

Let us further extend our investigations to the 
spontaneous breakdown of strong-interaction sym­
metries.10-12 We shall illustrate by the eightfold way 
of SU3.

13 Suppose we set the strong-interaction La­
grangian fully invariant under SU3. In addition, the 
weak interaction Lagrangian is assumed to be of the 
current X current type. Let the vector parts of the 
hadronic currents be components of the unitary spin 
current according to recent hypotheses.14 The conven­
tional manner of spontaneous breakdown requires that 
some asymmetric solutions to the self-consistency rela­
tions exist as well as the symmetric one. Self-consistency 
is usually required within the strong interactions. The 
weak interactions are considered to play no role in the 

10 M. Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962); 
S. L. Glashow, ibid. 130, 2132 (1962). 

11 M. Suzuki, Progr. Theoret. Phys. (Kyoto) 30, 627 (1963); 31, 
222 (1964); 31, 1073 (1964); K. Kikkawa, ibid. 31, 858 (1964). 

12 R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132,1888 (1963); 
133, B1292 (1964). These do not assume any Lagrangian or 
Hamiltonian. 

13 For SU3 symmetry refer to M. Gell-Mann, Phys. Rev. 125, 
1067 (1962); Y. Ne'eman, Nucl. Phys. 26, 222 (1961). 

14 B. d'Espagnat and J. Prentki, Nuovo Cimento 24, 497 (1962); 
N. Cabibbo, Phys. Rev. Letters 10, 531 (1963); M. Gell-Mann, 
ibid. 12, 155 (1964). The term "hadron," which means a strongly 
interacting particle, was invented by L. B. Okun in Proceed­
ings of 1962 International Conference on High-Energy Physics at 
CERN, edited by J. Prentki (CERN Scientific Information Serv­
ice, Geneva, Switzerland, 1962), p. 845. 
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breakdown, although the electromagmetic interactions 
may be possibly relevant to choice of the direction of the 
spontaneous breakdown. 

So long as one assumes the Lagrangian or the 
Hamiltonian formalism, the vector parts of the weak 
hadronic currents must be conserved as operator equa­
tions to the zeroth order of the weak and the electro­
magnetic interactions. Whatever the physical mass 
spectra and the associated coupling constants may be, 
the asymmetric worlds thus derived are the representa­
tions of the single Lagrangian. The Lagrangian shall be 
divided here as 

L=L0+Lint, (4.1) 

Z o = £ 0
( s y m ) + £ ( a s y m ) , (4.2) 

^int=i:int(Sym)--i:(aSym) + Zint(e-m-) + Xint(w), (4.3) 

iint<w) = A + X A , (4.4) 

A = / x + 5 x + i x , (4.5) 

where Z0
( s y m ) is the free part in which the "mass" terms 

of the particles belonging to the same multiplets are 
equal, i > s y m ) contains the deviations of the masses 
from the unitary-symmetric values, and Xi n t ( e m ) and 
£int(w) are the electromagnetic and the weak inter­
actions, respectively. We have denoted by J\, S\, and 
j \ the strangeness-conserving, the strangeness-changing, 
and the leptonic currents, respectively. Since the break­
down of SUV occurs in the direction of the eighth axis 
(A8), the vector part of J\ is evidently conserved to the 
lowest order of the electromagnetic and the weak 
interactions if we take it for granted that the vector 
parts of the hadronic currents are components of the 
unitary spin current. The conservation of the vector 
part of S\ seems to be violated. Nevertheless, it is 
strictly conserved as an operator equation provided that 
the breakdown is spontaneous in origin and caused only 
through the strong interactions. 

I t seems that this directly leads to contradictions 
with the observations about the Kez decays.15 According 
to analyses by many authors, the strict conservation of 
the strangeness-changing vector current gives a too 
small value for the branching ratio T (K^)/T (Kez) and 
does not correctly reproduce the shape of the pion 
spectrum. The present experimental data appear to re­
ject the strict conservation. However, there are some 
confusions in the existing experimental data on the Kez 
decays. We must wait a little while to judge it finally. 

15 J. L. Brown, J. Kadyk, G. Trilling, R. Van de Walle, B. Roe, 
and D. Sinclair, Phys. Rev. Letters 7, 423 (1961); J. M. Dobbs, 
K. Landa, A. Mann, K. Reibel, F. Sciulli, H. Uto, D. White, and 
K. Young, ibid. 8, 295 (1962); J. L. Brown, ]. Kadyk, G. Trilling, 
R. Van de Walle, B. Roe, and D. Sinclair, ibid. 8,450 (1962); A. M. 
Boyarski, E. Loh, L. Niemela, D. Ritson, R. Weinstein, and S. 
Ozaki, Phys. Rev. 128, 2398 (1962): See also J. L. Brown, J. A. 
Kadyk, G. H. Trilling, R. T. Van de Walle, B. P. Roe, and D. 
Sinclair, in Proceedings of 1962 International Conference on High-
Energy Physics at CERN, edited by J. Prentki (CERN Sci­
entific Information Service, Geneva, Switzerland, 1962), p. 462. 

We can derive some consequences of the strict con­
servation in the Y—> N+e~+ve decay. If the break­
down is spontaneous in origin, and if the weak inter­
actions take no part in it, we see from the theorem in 
Sec. 2 that the angular correlation between the mo­
mentum of the maximally recoiled nucleon and the 
polarization of Y is of the form 

N(B) = constant (4.6) 

in the rest system of Y in the approximation of me=0. 
If we make routine calculations using the conventional 

V-A theory, the angular correlation is given by 

N(6) cc gv2+2gvgA(PY) cosd+gA*, (4.7) 

where (Py) is the average polarization of F. If one uses 
the values for gv and gA estimated by the Cabibbo's 
theory,16 

N{6) cc 1 -0.90(PA> cos0 (4.8) 

for A —* p+e~~+ Pe, and 

N(6) oc 1+0.92<P2) cosfl (4.9) 

for S~ —-> n-\-e~-\- ve. 
The hyperon produced in the two-body boson-nucleon 

reactions is polarized perpendicularly to the production 
plane. Therefore, the test proposed here will be feasible 
if a sufficient number of events is accumulated. 

Let us enumerate the possible modifications of the 
spontaneous breakdown of SU3 symmetry. 

(1) The strangeness-changing weak vector current has 
nothing to do with the unitary spin current before renor-
malization. It transforms under SUz approximately like 
a component of the unitary spin current, owing to the 
strong-interaction renormalizations. 

(2) The strong interactions cannot be properly described 
by a Lagrangian or a Hamiltonian-formalism. Then we 
have no means of showing explicitly the contradictions 
with the observations on the weak interactions as well 
as the unpleasant feature associated with the massless 
scalar boson. If such a theory is shown to be equivalent 
to the local field theory based on the Lagrangian for­
malism, this modification will be in vain. 

5. SUMMARY 

We have shown how difficult it is to include naturally 
the weak interactions in the various kinds of self-
consistent theories. They may be self-consistent within 
a certain class of interactions. In order that they may 
apply to the actual world, however, they must ac­
commodate the weak interactions without contradiction 
to the observations. As for quantum electrodynamics 
with vanishing bare masses, we have not succeeded in 
finding any natural way of introducing the decay inter­
actions for the fji-e decay. I t was shown that the decay 
interactions simply introduced lead to a vanishing 
Michel parameter, p = 0 . If a charged intermediate 

16 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963). 
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boson mediates the fx-e decay, nonlocality is introduced, 
which gives a finite value for p. However, it is known 
from the recent high-energy neutrino experiment that 
the mass of the weak boson, if any, is not smaller than 
1.3 BeV. The lower limit seems to tend to increase 
incessantly. After all, the weak boson will not be able to 
produce such large values of p as observed, although one 
cannot estimate it in any reliable way. 

We have also shown that the y-e puzzle cannot be 
solved, at least within the framework of quantum 
electrodynamics. If it were formally solved, we should 
encounter evident contradiction with the experiments 
on the longitudinal polarization of the electron in the 
ix-e decay. If one constructs a self-consistent theory with 
me09^mli

0, the weak interactions are accommodated 
without any contradiction. 

Outside of quantum electrodynamics, we have two 
alternative ways of avoiding similar difficulties. One of 

I. INTRODUCTION 

R ECENT experiments at 5-20 BeV have shown a 
substantial shrinkage with increasing energy of the 

forward peak width of p-p and K+-p elastic scattering, 
whereas only a slight shrinkage was observed for w-p 
and K~-p scattering.1 

It was pointed out2 that the three Regge pole approxi­
mation3 may still explain the above features of the high-
energy scattering if the following assumptions are made: 

(i) The slope of the Pomeranchuk trajectory is 
assumed small in order to understand the absence of 
strong shrinkage in w-p scattering. 

(ii) The s dependence of the residue function is 
important for the sharp forward peaking in high-energy 
scattering. 

* Present address: Tokyo University of Education, Tokyo, 
Japan. 

1 K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 
Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376, 543 (1963); 
11, 425 (1963); and Brookhaven National Laboratory (to be 
published). 

2Bipin R. Desai, Phys. Rev. Letters 11, 59 (1963); Akbar 
Ahmadzadeh and Ismail A. Sakmar, ibid. 11, 439 (1963). 

3 F. Hadjioannou, R. J. N. Phillipps, and W. Rarita, Phys. Rev. 
Letters 9, 183 (1962). 

them is to formulate without a Lagrangian or Hamil-
tonian a self-consistent deviation theory which cannot 
be described by the Lagrangian theory in an equivalent 
way. 

The origin of the contradictions pointed out here lies 
in the strict conservation of the weak currents. If one 
assumes the weak vertices to be nonvanishing on the 
light cone, one is led, as is well known, to the massless 
scalar bosons. The massless bosons are eliminated if the 
weak vertices are zero on the light cone. However, the 
present arguments lead to the contradictions inde­
pendently of the behavior of the weak vertices near the 
light cone. 
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It is very interesting, therefore, to investigate whether 
one can get (i) and (ii) theoretically, starting from the 
Mandelstam representation and using unitarity and 
crossing symmetry. It is the purpose of this paper to 
investigate the asymptotic behavior of the model of 
pion-pion scattering to clarify the diffraction mechanism 
at high energy and low momentum transfer. 

Attention is focused on small-momentum-transfer 
behavior of the position a(s) and residue y(s) of the top-
level Pomeranchuk trajectory. This trajectory controls 
the high-energy scattering at low momentum transfers. 
There have been several "bootstrap" methods proposed 
for calculating the T-T amplitude from the requirement 
of analyticity, unitarity, and crossing symmetry.4-10 We 

4 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); 
Nuovo Cimento 19, 752 (1961). 

5 F . Zachariasen, Phys. Rev. Letters 7, 112 and 268 (1961); 
F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962). 

6 L. A. P. Balazs, Phys. Rev. 128, 1939 (1962); 129, 872 (1963); 
Phys. Rev. Letters 10, 170 (1963). 

7 V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 1177 (1963). 
8 G. F. Chew and E. Jones, Phys. Rev. 135, B208 (1964). 
9 H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963); 

Phys. Rev. 132, 1854 (1963). 
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Self-Consistent Calculation of the Scattering Amplitude and the Diffraction Peak 
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We investigate the irw scattering at low-momentum transfers, in order to understand diffraction scattering. 
A self-consistent calculation of the position a (s) and reduced residue y (s) of the Pomeranchuk-Regge tra­
jectory is carried out using the Balazs method. The result of the calculation under certain simplifying ap­
proximations is that the.? dependence of y (s) is responsible for the sharp forward peaking in the high-energy 
scattering and can roughly reproduce the experimental width of the diffraction peak derived from the 
factorization theorem. 


