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The decay amplitudes of the decuplet particles Ei/fc* (1530), Fi* (1385), and iV3/2* (1238) into a baryon 
and a pion have been calculated assuming that the interaction giving rise to such decays consists of a unitary 
symmetric part plus all the terms violating unitary symmetry which transform as the 2Y component of a 
unitary tensor. It is shown that contrary to what one would expect at first sight, only three undetermined 
coupling constants appear in the calculation of the four amplitudes Gi, G2, Gs, G\ for the decays 
(1) Ei/2*-+H+7r, (2) F i*->2+i r , (3) F I * - > A + T T , (4) iV3/2* -* N+TT. One can therefore predict a rela
tion among the above four amplitudes, which turns out to be: 

G,= - (3/v2)G8- (Vi)G*+(VQGi. 

With the present values of the widths this relation is satisfied remarkably well. 

1. INTRODUCTION 

THE decay amplitudes of the decuplet particles into 
the baryonic and pseudoscalar octets have been 

calculated by Lipkin1 and by Glashow and Rosenfeld2 

using an SU3 invariant interaction. Although the errors 
in the experimental decay widths are still large, it 
cannot be stated that the agreement is satisfactory.3 In 
this paper we have calculated the same amplitudes, 
assuming that to the pure unitary symmetric inter
action all the interaction terms violating unitary sym
metry are added which transform as the Ti component 
of a unitary tensor. The interesting point is that, 
contrary to what one would expect at first sight, only 
three undetermined coupling constants appear in the 
calculation of the four widths available experimentally: 

E*-*E+7T, F i * - > 2 + T, F i * - » A + 7T, N*->N+T', 

one can therefore predict a relation among the above 
four widths, which appears to be satisfied remarkably 
well. 

2. DERIVATION OF THE RELATION AMONG 
THE AMPLITUDES 

We now show that the above four widths can be 
expressed in terms of only three coupling constants. 

The SU3 invariant interaction has the structure 

£ > ® £ ® P = 1 0 ® 8 ® 8 , 

1 H. J. Lipkin, Argonne National Laboratory 1963 (unpublished 
report). 

2 S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10, 192 
(1963). 

3 The ratios between the widths which one obtains with a 
purely unitary symmetric interaction are the following: T(N*)l 
r (F i* ->A) : r (F i* -»S) : r (E*) = 100:41.2:6.S:17.8. These num
bers have been calculated with a value of the parameter X [com
pare the form of Eq. (10)] equal to that of Glashow and Rosenfeld 
(Ref. 2); they are, however, somewhat different from the values 
of Glashow and Rosenfeld because these authors have omitted the 
factor MB which appears in Eq. (7) [compare also the Ref. 5]. In 
any case these values are not in agreement with the experimental 
data. In particular the ratio Fi*(2)/Fi*(A) has been studied very 
accurately (see Ref. 7) and is certainly less than 1/25, a number 
very different from that obtained above (6.5/41.2). 

B 

where D, B, P are, respectively, the decuplet, the 
baryonic octet, and the pseudoscalar octet particles. 
Only one invariant term appears in the reduction of this 
product: call it s and call gs(p

2,p22,pi) the correspond
ing vertex function (here pi, p2, pz are the four momenta 
of the three legs of the vertex). The interaction terms 
transforming as Ti can be obtained by forming the 
invariants from the reduction of the product 

£ > ® £ ® P ® r = 1 0 ® 8 ® 8 ® 8 , 

where the T octet is finally specialized to the form Ti 
and only the terms multiplying Ti are taken. 

Four independent invariants arise in the reduction of 
the product Z } ® J B ® P ® 7 \ In fact we have 

P®T^(P®T)27-
+ (P® T) 8 l+ (P® T)82+ (P® T)!, 

where the suffix indicates the dimension of the repre
sentation. On further multiplication with D®B, only 
the representations 27, 10*, 81, and 82 can give rise to 
one - (and only one) invariant so that we obtain four 
invariants: 

a = Z > ® P ® ( P ® r ) 2 7 , 

& = £>®P®(P®r) io* , 

c = Z > ® P ® ( P ® P ) 8 ] , 

d=D®B®(P®T)82. 

I t follows that, in general, we have to do with five 
vertex functions, corresponding to the five interactions 
s, a, b, c, d. 

The interesting point now is that the terms c and d 
cannot contribute to the pionic decay processes so that 
we remain with three vertex functions gs(pi2,p22,pi), 
ga(pi2,p22,pi), and gb(p2,p22,pi). Indeed a typical 
element of the tensor (P® T)$ can be written as: 

(P®2V= ••Pr?T}-WP*Ty* 

Now only the P elements which multiply Ti have to be 
considered; these are Ptf(ix= 1,2,3) and are all orthog
onal to the pionic states. 
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Having remained only with the vertex part gss+gaa 
+gbb, we write below explicitly, s, a, and b omitting the 
space-time properties: 

s = B**DMyiPfay, (!) 

a = f t ^ ^ l eaT,WTy°+PfTj), (2) 

6 = £ / £ > ^ SatbPfTa'e,*,. (3) 

In the interaction # we have omitted a term which does 
not contribute to the pionic processes. In the above 
notation, SUtV)Z means symmetrization over the indices 
u,v,z in the ensuing expression. D[aPy] stands for 

We next extract the interactions giving rise to the 
decays: (1) E*-->E-+7r° , (2) F i* - ->2-+7r° , (3) 
Fi*--*A°+7r- , (4) N*--+n+T~. The identification 
of the particles participating in such decays, with the 
symbols previously introduced, is the familiar one4: 

D particles: 2 * - = (\/2^)D^m\ 

F!*~= (l/2V3)Z>w», N*-=\D*w; 

B particles: g-=JB31, ^~ = B2\ A 0 - - (f)1/253
3; 

TP/y/2+X°/V6=B1\ - 2 ° / v 2 + A ° / v / 6 - 5 2
2 , n = 5 2

3 ; 

P particles: TT+ = P2\ 7r°/v5+770/^6 = A \ 
-TrVvI+Tjo /Vo^iY. 

Substituting these into Eqs. (1), (2), and (3) we get 
that the decays (1), (2), (3), and (4) above are deter
mined by the following amplitudes Gi, G2i G3, G4: 

H * - - > S - + T T ° : G i = - l / v / 6 ( g . 1 + g a l + 2 ^ i ) , 

F i * - - > S - + ^ : G2=-l/x/6(gs2-ga2+2gb2), 

The experimental values, in arbitrary units, are given 
in the equation under (9); they have been calculated 

TABLE I. Summary of the experimental data used in the 
present article. The symbols are defined in the text. 

1 
2 
3 
4 

&*-
Fi*-

Ki*-

N*' 

Decays 

- _* H--T-7T0 

--*2-+7T 0 

-->A°-Hr-
- —>n-\-Tf~ 

MD& 

(MeV) 

1530 
1385 
1385 
1238 

MB
a 

(MeV) 

1321 
1197 
1115 
940 

q* 
(MeV) 

148 
119 
210 
233 

Y total; 

(MeV) 

7b 

^2C 

50a 

100a 

Ti 
(MeV) 

2.33 

O 
50 
100 

« See Ref. 8. 
b See Ref. 9. 
« See Ref. 7. 

4 See, for instance, J. J. Sakurai, Phys. Rev. 132, 434 (1963). 

where g8i, gai, and gu are the values of the above vertex 
functions calculated for pi2, p2

2, pi corresponding to the 
masses of the particles of the vertex. 

To be as simple as possible, let us first neglect the 
dependence of gSi, ga%, gbi on the vertex index i; that is 
we put : 

g*i=g*,gai=ga,gbi=gb ( i = l , - " , 4 ) . (5) 

We shall show in a moment that this simplification has 
practically no consequence on our results, this being due 
to the relatively small mass difference in the masses of 
the various vertices. The four amplitudes Gi are then 
expressed by the Eqs. (4) only in terms of the three 
parameters g8, ga, and gb; by eliminating them we obtain 

G4= - (3/v2)G 3 - (VDG2+ (VQGi. (6) 

We now transform this relation in a relation among the 
widths. The ith decay width can be written: 

T^GW(MBi/MDi)=Gt
ipi. (7) 

Here Gi is the amplitude defined above, qi is the three 
momentum of one of the decay products in the rest 
system of the decaying particle, MBI is the mass of the 
decaying decuplet particle, and MBI is the mass of the 
produced baryon [in writing Eq. (7), the kinetic energy 
of Bi has been neglected in comparison to its mass5] ; 
pi is defined by the last equation. Also, in the following 
we write 

T/ = Ti/Pi. (8) 

Obviously the G/s are determined from the T / only up 
to a phase factor, which, in view of the reality6 of the 
Gi turns out to be just a sign. In practice only two 
signs are important because IV is practically zero; when 
these signs are chosen in the only way which fits the 
data, the Eq. (6) can be transcribed in terms of the 
widths explicitly as follows: 

using the data of Table I.7 - 9 The agreement is amazingly 
good; we cannot state, at this stage, whether it will 
persist when the large experimental errors which 
presently affect the widths will decrease. 

6 The correct formula would have MB-\-EB instead of MB 
[compare e.g., P. G. Federbush, M. T. Grisaru, and M. Tausner, 
Ann. Phys. (N. Y.) 18, 23 (1962)]. The neglecting of the kinetic 
energy of the baryon implies a maximum error, in our case, of 
~1 .5%. Note that the factor {MB+EB)/MD is often given in the 
literature as ^{MD-^-MBY—M^/MD2; they are the same thing. 

6 The fact that the G's are real—or better, pure imaginary—can 
be easily shown using unitarity and time reversal in the approxi
mation in which it is possible to define asymptotic fields for the D 
particles; this can be seen either by standard methods or through 
the use of helicity amplitudes as in L. Durand III, P. C. De Celles, 
and R. B. Marr, Phys. Rev. 126, 1882 (1962). 

7 P. L. Bastien, M. Ferro-Luzzi, and A. M. Rosenfeld, Phys. 
Rev. Letters 6, 702 (1961). 

8 A. H. Rosenfeld, UCRL-10897, 1963 (unpublished). 
9 P. E. Schlein, D. D. Carmony, G. M. Pjerrou, W. E. Slater, 

D. H. Stork, and H. K. Ticho, Phys. Rev. Letters 11, 167 (1963). 

[rr(iV* -> n+7r-)2ll2=S/VZCT'CF!* -> A+T-)j**^y/$ [r'(Fi* -> 2-+X0)]1'2-V6[r'(E*- -> S-+TT°) J>2 

10 17 =F '0' - 6.95 
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3. SOME CORRECTIONS TO EQ. (9) 

We now discuss the statement made previously 
[Eq. (5)] concerning the quasi-independence of the 
gai from the vertex index i. To clarify this point let us 
assume for the vertex function a reasonable expression 
like: 

g*(pi2,p22,P*2)=g«X/(q2+X2y2 a = s,a,b, (10) 

where the ga's and X's are constants; q, the three 
momentum of the pion in the rest system of the reso
nance, should be thought expressed in terms of the 
masses of the legs of the vertex and therefore in terms 
of pi2, p22, and pi. We determine X to be: 

1 = 2 . 5 % , (11) 

a value which results from fitting the shape of the TV* 
resonance.10 

We are aware of the fact that X might be different for 
the s, a, and b interactions, but at this stage it looks 
unreasonable to enter in such details: even if the X's 
for the interactions s, a, and b were different, but with 
values of the same order or larger than that given in 
(11), our conclusions would not be appreciably changed. 

From Eq. (10) we obtain for the coupling constants, 
which appear in the Eq. (4), the expression: 

ga^gaX/W+X*)1* * = 1 ' - - - ' 4 (12) 
a = s,a,o. 

10 For this, introduce the momentum-dependent width Ti(q) for 
channel i, defined by Ti(q)=\qs/(q2-\rX2). We now write the 
well-known Chew-Low equation 

Ti(q) OOR 

tan533 (?)'= i . 
03 — OOR 00 

By fitting the experimental phases around the resonance, the 
value (11) for X is obtained; note that this is the same as that 
used in Ref. 2. 

In the 10% approximation in which the changes of the 
denominators in (12) for the various vertices can be 
neglected, the gai are independent of the index i and our 
previous conclusion is justified. 

A better approximation is obtained on using the 
Eqs. (4) with the Eq. (12) for the gai> Because in each 
of the Eqs. (4) a term X/(qf+X2)112 can be factorized, 
nothing changes in our final Eq. (9) except that IV is 
now defined as 

r/=(r^)[(^+x*)/^] (13) 
instead of by Eq. (8). 

With the new values for I1/, our final Eq. (9) is 
satisfied practically in the same way as previously 
(right-hand side: 10; left-hand side: 9.8). 

4. CONCLUSIONS 

The Eqs. (4) and (12) allow us to determine the ratios 
of the coupling constants g8, ga, gb- They are, in the 
approximation X= <*>, 

g . : g « : ^ 1:0.45:-0.28 

and they change by only 2 % if X=2.5MV. The unitary 
invariant interaction is 2 or 3 times larger than the 
interaction transforming as T£, a situation in a sense 
similar to that which holds for the baryon-octet mass 
formula where the interaction transforming as Ti and 
the invariant one have couplings in the ratio J. The 
reason why, in spite of this apparently large expansion 
parameter, things go as if a perturbation expansion 
limited to first order in Ti were valid is not very clear 
for the masses and even less so for our case. But it is 
remarkable to see how well this prescription works; and 
it will be of course interesting to check whether the 
agreement persists when our experimental knowledge 
of the widths will be affected by errors smaller than the 
present ones. 


