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A previous theorem, proving the shrinkage of the effective core, is extended to the scattering of particles 
of arbitrary spin with the result that any matrix element of the scattering amplitude has at high energy 
no significant contribution from the "partial waves" whose total angular momenta are larger than 
const ln2.?/sin0. It is also shown that any matrix element of the scattering amplitude is bounded by 
min (const ln3/2.?/sin20, const s In2.?) at high energy. 

I 
1. INTRODUCTION AND RESULTS w a V e expansion of the amplitude T(s, cos0), we have 

N a previous paper/ one of us (K.Y.) proved that t h e l o w i n g expansion for the helicity amplitude2: 

when the scattering amplitude T(s, cosB) is divided ( 0 , 0 ^ 1 r(s)|0AXi,X2> = E (2J+1) 
into an upper and a lower sum for the partial waves by j 
definition 

ZV(J,COS0) = X ; (2/+l)a«(j)Cl-/z(j)]P|(cos0) (1.1) 

and 

TL(s,cosO) = Z (2l+l)ai(s)fi(s)Pi(cose)9 (1.2) 

using the "step function" 

/ i( j) = { l - e x p [ - a l n V ( ^ + l ) sin0o]}'3 l n s , (1.3) 

and T(s, cos0) is analytic in a particular region as a 
function of cos0 and is bounded by a power of s within 
this region, then for a sufficiently large, 

XiXzMT^lX^e^^d^M, (1.7) 
where X=XX—X2, M ^ ^ — X 4 , X* is the quantum number 
for the helicity, / is the total angular momentum, and 
d\/(6) is 

d^(0) = (J\\exp(-iOJv)\J\) 

, x , r ( / + X ) ! ( / - X ) ! - | 1 / 2 

L ( / + M ) I ( / - A * ) U 

X ( l+cos0)( x+^ 2 ( l -cos0)( x -* ) / 2 

X P J - X X " ^ X + " ( C O S ^ ) . (1.8) 

| 7 V ( * , c o s 0 ) | < f * for | s in0 |> | s in0 o | , (1.4) H e r e > PJ-\*-»*+I1 is a Jacobi polynomial. Using the 
expansion (1.7), we can define an upper sum by3 

where N is an arbitrarily large positive number. The 
dependence on sin0o in the definition (1.3) of fi(s) is (0,0,A3>X4|7V(.y)|O,O,Ai,X2) = Z) (2J+l)£l—fj(s)2 
important only when the angle 60 has an s dependence J 

and converges to 0 or T at s —> oo. The inequality (1.4) 
is also valid for such an s dependent angle. 

By Eq. (1.3) 

and 
\l-fi(s)\<s~N for l<(N/a)\ns/sm.00 (1.5) 

l / z C ^ I O - ^ for />a0lnVsin6>0 , (1.6) 

where ao=—a/\n£l — exp(—N//3)2> Therefore, from 
the inequality (1.4) and (1.6) one can see that, in the 
high-energy limit, the partial-wave amplitude ai(s) for 
l>const In2s/sinO does not contribute substantially to 
the amplitude T(s, cosfl). 

The purpose of this note is to show that the result of 
I can be obtained for the scattering amplitudes of 
particles with spin. In this case, instead of the partial- 2 ^ j a c o b a nd G. Wick, Ann. Phys. (N.Y.) 7, 404 (1959). 

3 One might think that it is better to use the orbital angular 
* This work supported by the U. S. Atomic Energy Commission momentum in dividing T(s, cos0), instead of the total angular 
fNATO Fellow, on leave of absence from Istituto di Fisica del- momentum, since the orbital angular momentum has a direct 

PUniversita, Padova, Italy and Istituto Nazionale di Fisica connection with impact parameter. However,, we think that the 
Nucleare, Sezione di Padova, Italy. use of total angular momentum is better, since only the total 

J On leave of absence from the Department of Physics, Osaka angular momentum is conserved through a collision in our case. 
University, Osaka, Japan. However, even if we use the orbital angular momentum, we can 

1K. Yamamoto, Phys. Rev. 135, B567 (1964), hereinafter prove the inequality (1.10). At any rate, the difference between 
referred to as I. total and orbital angular momentum is finite for any case. 
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X <X8,\4 i TJ(s) I \u\2)<r**-">*dx/(0). (1.9) 

The main object of the next section is to prove, then, 
that if we choose a sufficiently large, 

|(^,x3,x4|rC7(5)|o,o,x1,x2)| <s~N. (1.10) 

In Sec. 3 we use the unitarity condition to estimate 
the upper bound of the helicity amplitude. The results 
are 

I <0,*,X8,X4| T(s) |0,0,X1,X2)| <const ln3 /yS in20 (1.11) 

or 
I(0,0,A8,X4 |r(j)|O,O,^2>| <consUln2^. (1.12) 
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These are the most general extensions to particles 
with spin of the bound of Kinoshita, Loerfel, and 
Martin.4 The inequalities (1.11) and (1.12) give us the 
result that any matrix element of the scattering ampli
tude of particles with arbitrary spin is bounded by 
min[const ln3/2,?/sm20, const? ln2s]. 

The contents of this note are not the mere generali
zation to particles with spin, of I. We expect that, in a 
final stage, the results of I could be generalized to 
include the multiple production process. For this 
generalization the contents of this note will be useful. 

2. PROOF 

In this section we outline the proof of the inequality 

As is well known, helicity amplitudes may include 
singular kinematical factors. Therefore it is convenient 
to use the auxiliary function 

F(s, cos0) = ;C (2J+l)aJ(s)Pj^-^+»(cosd), (2.1) 
J 

which is free from these kinematical singularities, where 

r(/+X)!(/-X)!n1/2 

o'(s) = \ <X8 ,X4|^(5)|Xi,X2>. {2.2) 

L(J+u)l(J—u).u 
In Eq. (2.1) we assume that 

X—|M|>0 (2.3) 

without loss of generality, because we know that5 

dx/(cos0) = (-)^dy(cosd) = d_Mi_x'(cos0). (2.4) 

Apart from a bounded ^-independent factor, the only 
difference between the helicity amplitude (1.7) and 
F(s, cos0) is in the factor 

(1+COS0)<X+^ /2(1-COS0) (X—/*>/2 (2.5) 

In order to prove the inequality (1.10), it is sufficient 
to show that 

\Fu(s,cas0)\<srN, (2.6) 
where 

Fu(s, cos0) = E (2J+l)a'(s)tl-fj(s)-] 
j 

X P z - x ^ ' ^ c o s t f ) . (2.7) 

For this we define a new function G(s,z) by 

G M = E (2J+l)aJ(s)zJ~\ (2.8) 
J 

with /—X a non-negative integer. The connection 
between F(s,z) and G(s,z) is obtainable from a pro
cedure of Cornille.6 F may be obtained from G, using 

4 T. Kinoshita, J. J. Loeffel, and A. Martin, Phys. Rev. Letters 
10, 460 (1963). 

5 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), p. 54. 

6 H. Cornille (to be published). 

the integral representation, derivable from Rodrigues' 
formula of the Jacobi polynomials, as 

1 r2*-
F(s, cos0) =— / d<t)G(s, cosd+i sin0 cos$) 

2ir J o 

/ i s in0^ \ x ~V 
X I (1 

\ l -cos0/ \ 

i s in0^\ X+" 

1 + COS0> 
(2.9) 

and G may be obtained from F as 

where 

G(s,z)= f K{z,z')F(s,z')dz', (2. 10) 

K(z,z') = 2-^-1(l+z,y+»(l-z')*->' Z (2/+1) 
j 

(7+X)I(/-X)I 
X — a/-xP/_xv-"-x+'*(«0- (2.H) 

( 7 + M ) ! ( / - M ) ! 

The expression (2.11) is rather complicated but still 
simple enough to allow an investigation into the 
analyticity and upper bound of G(s,z). We assume that 
F(s,z) is analytic and bounded by some fixed power of 
s in an ^-independent complex neighborhood of the real 
segment (—1, 1) except for its intersection with cuts 
from — oo to —x^s) and from x(s) to oo, x(s) being an 
arbitrary function of s with x(s)>l. From this assump
tion, using Eq. (2.10), it may be shown (see Appendix) 
that G(SjZ) is also analytic and bounded by some fixed 
power of s in a domain where | z\ < 1+e for some finite 
e>0, except for cuts from — oo to — x— (x2—1)1/2 and 
from +x+(%2—1)1/2 to oo. 

We divide G(s}z) in two parts, Gi(s,z) and G^is^z),7 

that, using this analyticity and the Cauchy integral, 
are 

1 f G(s/) 
Gi(s,z) = — / dzf, (2.12) 

2m J a z'~z 
where C\ plus Ci forms the boundary of the analyticity 
domain, and C2 is the part of the boundary along the 
cuts. From Gi(s,z), using Eq. (2.9), one defines Fi(s,z), 
and with these, using Eq. (2.1), or from Gi(s,z) using 
Eq. (2.8), one defines the "partial-wave amplitude" 
a/(s). Finally, in a similar way to that used for Eq. 
(2.4), we define Fiu(s9z) and Giu(s,z). Among these 
new quantities there are many relations, listed in part 
below: 

Fu(s,t)^Flu(s,t)+F2u(s,t), 

aJ(s) = aiJ(s)+a2
J(s), 

Gi(s,z) = Z (2J+l)a/(s)z'-\ 
J 

(2.13) 

(2.14) 

(2.15) 

7 This division of G(s,z) corresponds to that of T(s,z) in Eq. 
(30) and (31) of I, but this division is better than that of I. 
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and 

aiJ(s) = 

G. P A T E R G N A N I A N D K. Y A M A M O T O 

l r G(s,z') 

2Tri2J+lJCi(z
,y~x 

-dz\ (2.16) 
In Sec. I I we have proved that only / < const I n V 

sin0 contribute to F(s,co$d). Using this result, the 
unitarity condition 

Giu(s,z) = Z (2J+l)Zl-fj(s)-]a/(s)zJ-\ (2.17) 
j 

By virtue of Eq. (2.13), we can investigate Fw(s,z) 
and F%u(S)Z) separately in the proof of the inequality 
(2.6). First, for Fiu(s,z), from Eq. (2.9), because on the 
boundary Ci\G(s,z) | <sN', one has 

W(s)\<tl/(2J+l)y»'(l+e)-'+\ (2.18) 

an inequality corresponding to (34) of I. For Pj_xx_ / : , x+^ 
X (cos0) we have8 

(J-X+q)l 
iPj-^-^+Hco&d) < ~ / « (2.19) 

(J-X)lql 

where g = max(X—fi, X + / J ) . Therefore, we can prove 

\Fw(s,cos6)\<s-N (2.20) 

by the same technique used in Sec. I l l of I. For an 
upper bound to Fwis, cos0), it is sufficient to show 

T (2X) I 11/2 

L(X-ii)!(X+/i)lJ 

\G2uls,exp(±i0)J\<srN, (2.21) 

since there is a relationship identical to (2.9) between 
Gw(s, cos0) F2u(s, cos0); and to obtain the inequality 
(2.21) one needs only the analytic properties of <i2J(s) 
in the left-hand half-plane. From Eq. (2.16), we can 
easily see that if one writes 

a2
J(s) = a2J(s)+(-y-W,J(s), (2.22) 

where a^ J(s) and (—)J~*a2/J(s) are the contribution 
from left- and right-hand cuts, respectively, then 
a2J(s) and a^' J{s) are analytic in the left-hand half-
plane of / plane and Eq. (2.22) exactly corresponds to 
Eq. (50) in I. Although we do not repeat the discussion 
of I, the above discussion is sufficient to prove the 
inequality (1.10). 

3. UPPER BOUND ON THE SCATTERING AMPLITUDE 

Here we estimate the upper bound of the scattering 
amplitude. For this we already have a general theory.9 

However, in that theory only a weak bound for small 
angles was obtained, and also it was not possible to 
estimate the bound of the following scattering ampli
tude : 

N+N=7r+TT, (3.1) 

for example. Therefore, it is worthwhile to estimate 
here the upper bound of the general two-body scattering 
amplitude. 

8 G. Szego, Orthogonal Polynomials (American Mathematical 
Society, New York, 1939), p. 163. 

9 K. Yamamoto, Nuovo Cimento 27, 1277 (1963). 

. (A-AOKA+M)! 

X |(A3,A4| T
J(s)\X1\2)\ <const , (3.2) 

and the bounds of the Jacobi polynomial at n —» c© ^ 

f c o n s t a t sin-*-*0, 0 < 6 < r/2 
|P„«. ' (cos0)K ' (3.3) 

I const^-^ sin~0-~*0, w/2 ^O^T, 

we obtain 

| (0,^,A3,A41 T(s) 10,0,A!,A2) | <const lnVsin20. (3.4) 

These results are not satisfactory, however, since we 
have obtained a stronger bound for the case of scattering 
of scalar particles. 

To obtain a stronger bound we must work along 
similar lines to those taken by Kinoshita et al.4 G(s,z) 
has exactly the same analyticity properties and 
bounding conditions as in the scalar case. The only 
differences due to the spin are the factor 

! 1 + ) ( 3 - S ) 

\ 1-COS0/ \ 1 + COS0/ 

in Eq. (2.9) and the factor (2.5). The product of the 
factors (2.5) and (3.5) is 

[ ( 1 - C O S 0 ) 1 / 2 - ^ ( 1 + C O S 0 ) 1 / V ^ ] X - ^ 

X [ ( l + c o s 0 ) 1 / 2 + i ( l - c o s 0 ) 1 / V ^ ] ^ , (3.6) 

and we can easily see that this is finite over the inte
gration region of cj> in Eq. (2.9), however. Thus all 
effects due to the spin disappear, and we obtain the 
bound (2.11). 

Finally, we discuss the scattering amplitude in the 
forward or backward directions. In this case, the high-
energy behavior of the branch point x(s) in the z plane 
is necessary. Although it has not been explicitly re
marked in the paper of Kinoshita et ah, if we assume 

# ( s )^ l+cons t / . s , 

it is possible to prove that11 

\G(s,z) | <^ln2^ 

in |*| < 1 . Then we get (1.12). 

(3.7) 

(3.8) 

10 Reference 8, p. 164. 
11 The inequality (3.S) may be obtained by the three-circles 

theorem applied to G bounded by sN in its analyticity domain, 
and by C/(l— \z\)2 for \z\ < 1 . The theorem is applied by putting 
the center of the circles at |0| = (1—r2)y r2 = consts~ll2>ri, 
f3 = consU~1/2>f2, r2/Vi = l-r-const/Ins, in order to remain in the 
analyticity domain of G which has cuts starting from l+consU-172. 
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APPENDIX: ANALYTICITY AND UPPER 
BOUND OF G(syz) 

In this appendix we investigate the analytic proper
ties and the upper bound on G(s,z) defined by Eq. 
(2.10). For this purpose we consider 

?(s,z) = j K*(s,z G * ( J , S ) = / KHs^Fis^W, (Al) 

where 

K°(z,z') = ( l - s ' ) x _ / i ( l + s ' ) x + / i X ; s ' - ^ P j - x ^ ' M * ' ) 
j 

= (-^z-^R-^R+z-l)^ 
X(R-z~l)^ (A2) 

and 
K1(z)z

,)= (l-z')x-»(l+zf)x+fi 

/J+a\ 
x E — y-*Pj^-^(z') (A3) 

J \J+bJ 

with R= (l-2zzf+z2)112. In deriving Eq. (A2) we have 
made use of the generating function of the Jacobi 
polynomials. Using the closed expression for K°(z,z'), 
we see that G°(s,z) is analytic and bounded by some 
fixed power of s in a domain in which \z\ < 1+e , except 
for cuts from — oo to — x— (x2—1)1/2, and from 
x+(x2—1)1/2 to oo, where e is a finite positive constant 
determined by the analyticity domain of F(s,z). The 
relation between G°(s,z) and G1(s,z) is 

Gl(s9z) = (z~+a~\\~x~b j dz'z'^^G^s/). (A4) 

Therefore, G1 (s,z) has the same analytic properties and 
bounds as G°(s,z), provided that 

X + J - 1 £ 0 (A5) 

The condition (A5) always holds because of (2.3). 
Repeating the operation in Eq. (A4), we arrive at the 
conclusion that G(s,z) has the same analytic properties 
and bounds as G°(s,z). 
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We study the process of diffractive dissociation of a pion, -TT+TV" —> 37r-{-Nr, without assuming that the tar
get interacts coherently. We have found a general form of some angular correlations of the three pions when 
they are in a state of total angular momentum less than 3. It is shown that these angular correlations either 
depend solely on the dynamics of the crossed channel or, if they depend also on the dynamics of the 3ir 
system, they do so in a straightforward way. 

1. INTRODUCTION 

EX P E R I M E N T S are now being carried out by the 
heavy-liquid bubble chamber group of the Ecole 

Polytechnique as well as by other groups on the so-
called diffractive dissociation of pions interacting with 
nuclei: 

ir+N~>X+N' (1) 
\ 3 x , 

where the momentum transferred to the nucleus N is 

A<?n<l/£, (2) 

R standing for the nuclear radius, so that the pion in
teracts with the nucleus as a whole. In this paper we 
would like to discuss reaction (1), when X is an un
stable state of spin less than 3 which disintegrates 
rapidly into three pions. Our discussion will be kept 
quite general insofar as we shall not make any specific 
dynamical assumption about the target. 

We shall not enter into a detailed discussion of the 
properties of the process (1). Let us merely comment 
that although it appears that we understand the very 
general characteristics of diffractive dissociation, a more 


