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APPENDIX: ANALYTICITY AND UPPER 
BOUND OF G(syz) 

In this appendix we investigate the analytic proper
ties and the upper bound on G(s,z) defined by Eq. 
(2.10). For this purpose we consider 

?(s,z) = j K*(s,z G * ( J , S ) = / KHs^Fis^W, (Al) 

where 

K°(z,z') = ( l - s ' ) x _ / i ( l + s ' ) x + / i X ; s ' - ^ P j - x ^ ' M * ' ) 
j 

= (-^z-^R-^R+z-l)^ 
X(R-z~l)^ (A2) 

and 
K1(z)z

,)= (l-z')x-»(l+zf)x+fi 

/J+a\ 
x E — y-*Pj^-^(z') (A3) 

J \J+bJ 

with R= (l-2zzf+z2)112. In deriving Eq. (A2) we have 
made use of the generating function of the Jacobi 
polynomials. Using the closed expression for K°(z,z'), 
we see that G°(s,z) is analytic and bounded by some 
fixed power of s in a domain in which \z\ < 1+e , except 
for cuts from — oo to — x— (x2—1)1/2, and from 
x+(x2—1)1/2 to oo, where e is a finite positive constant 
determined by the analyticity domain of F(s,z). The 
relation between G°(s,z) and G1(s,z) is 

Gl(s9z) = (z~+a~\\~x~b j dz'z'^^G^s/). (A4) 

Therefore, G1 (s,z) has the same analytic properties and 
bounds as G°(s,z), provided that 

X + J - 1 £ 0 (A5) 

The condition (A5) always holds because of (2.3). 
Repeating the operation in Eq. (A4), we arrive at the 
conclusion that G(s,z) has the same analytic properties 
and bounds as G°(s,z). 
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We study the process of diffractive dissociation of a pion, -TT+TV" —> 37r-{-Nr, without assuming that the tar
get interacts coherently. We have found a general form of some angular correlations of the three pions when 
they are in a state of total angular momentum less than 3. It is shown that these angular correlations either 
depend solely on the dynamics of the crossed channel or, if they depend also on the dynamics of the 3ir 
system, they do so in a straightforward way. 

1. INTRODUCTION 

EX P E R I M E N T S are now being carried out by the 
heavy-liquid bubble chamber group of the Ecole 

Polytechnique as well as by other groups on the so-
called diffractive dissociation of pions interacting with 
nuclei: 

ir+N~>X+N' (1) 
\ 3 x , 

where the momentum transferred to the nucleus N is 

A<?n<l/£, (2) 

R standing for the nuclear radius, so that the pion in
teracts with the nucleus as a whole. In this paper we 
would like to discuss reaction (1), when X is an un
stable state of spin less than 3 which disintegrates 
rapidly into three pions. Our discussion will be kept 
quite general insofar as we shall not make any specific 
dynamical assumption about the target. 

We shall not enter into a detailed discussion of the 
properties of the process (1). Let us merely comment 
that although it appears that we understand the very 
general characteristics of diffractive dissociation, a more 
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FIG.F 1. The angles are de
fined in the 2nr rest frame. Z 
is along the incident direction; 
the XZ plane is the production 
plane and the vectors p% de
termine the decay plane. AB 
is perpendicular to the decay 
plane. 

detailed description of the mechanism of interaction is 
still lacking. It is desirable to examine the properties of 
the many-pion system produced. It should also be in
teresting to see what one can say experimentally about 
the families of states exchanged in (1). It seems indeed 
that a description of (1) by means of Regge-pole ex
change is very plausible. In fact it turns out that the 
two questions raised above are closely connected in 
view of an interesting fact noted by Gottfried and 
Jackson.1 They have shown on very general grounds 
that the helicity of X in the cm. system of the crossed 
process N-\-Nf —> 7f -\-X is equal to the component of the 
spin of X along the direction of motion of the incident 
particle in the X rest frame, in the direct channel. 

This makes it possible to express the density-matrix 
elements describing the polarization of X in terms of the 
analytically continued helicity amplitudes for the 
crossed process. 

By studying the angular correlations between the 
pions in (1), one can get information not only about the 
spin of X, but also about the nature of the exchanged 
objects, and more generally about the interaction 
mechanism. These correlations were studied by Berman 
and Drell2 and by Zemach3 who, however, made use of 
more or less restrictive conditions. It was assumed by 
these authors, for instance, that the target acts only as 
a spectator, and thus possible effects of a nuclear spin or 
of nuclear excitations were ignored. 

We may note, however, that the condition (2) used 
by experimentalists to select events guarantees that the 
nucleus acts as a whole, although not necessarily elas-
tically. In fact, experimental results of Fretter and 
Huson4 indicate there may be an appreciable amount of 
nuclear excitation. From an examination of the ex
perimental correlations one cannot deduce whether 
deviations from theoretical predictions are due to the 

1 K. Gottfried and J. D. Jackson, CERN, 1964 (to be published). 
2 S. M. Berman and S. D. Drell, Phys. Rev. Letters 11, 220 

(1963). 
3 C. Zemach, Phys. Rev. 133, B1200 (1964). 
4 W. Fretter and R. Huson, Berkeley, 1964 (to be published). 

mixing of several spin states of X or to the influence of 
the target. It seems to us worthwhile to write down the 
most general form of certain angular correlations in
volving the elements of the density matrix describing 
the polarization of X, without making any a priori 
assumptions. The empirical determination of the struc
ture of this density matrix will probably throw some 
new light on the details of the interaction. The com
parison of the structure of the density matrix for differ
ent targets (including the free nucleon) and for differ
ent classes of events may be particularly instructive. 

The angular distribution of the normal to the plane 
determined by the momenta of the three produced pions 
in the X rest frame is, for obvious reasons, the least 
dependent on the details of dynamics of the three pion 
system; for that reason we shall focus our attention on 
it. In Sec. 2 we give these angular distributions. Section 
3 contains a general discussion of the results. 

2. ANGULAR CORRELATIONS 

The notation used is explained in Fig. 1. We work in 
the X rest frame. Axis z is chosen along the momentum 
of the incident pion. The momentum of the incident 
nucleon lies in the xz plane—we shall call this plane the 
production plane. p»- are the momenta of the produced 
pions and AB is a line perpendicular to the plane de
fined by the vectors p%—hereafter this plane will be 
called the decay plane. 0 and <p are the polar and the 
azimuthal angles defining the direction AB in the xyz 
frame; in order to avoid ambiguity we assume5 

0 ^ <p^7T. 

(3) 

Let pmm> denote the element of the density matrix de
scribing the polarization of X. Since parity conserva
tion requires invariance for reflections with respect to 
the xz plane, 

= ( - ! )" 1 n , 
P—m—m' 

(4) 

The differential probability for finding the produced 
pions in a particular energy-momentum state (in the X 
cm. system) is 

dP~ £ mm' Mm(pi)Mmf*(pi)89(£ Py) 
3 

Xd(W-Xa>m,-d>Ps/<*s, W 

where Mm is the amplitude for the X —> 3ir transition 
when the z component of the spin of X equals m, J and 
W are the spin and the mass of X, respectively, and coy 
are the pion energies. 

The rules for writing the amplitudes M in tensor form 
have been given by Zemach.3 The Mm's can be obtained 
from these M's by using the well-known linear relations 
between the components of a spherical tensor and the 

5 We shall calculate the probability that either piXp2 or 
P2XP1 has the coordinate <p^ir. 
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components of a symmetric, traceless, Cartesian tensor 
of rank J.Q After performing the necessary integrations 
one obtains from Eq. (5) a probability distribution 
P(©,<p)dcos©d<p. Let us consider separately the different 
spin-parity assignments for X. 

M has the form 

(9) 

0~ case 

This is indeed a trivial case: 

P(&,<p) = const. 
1~ case 

M has the form 

M ^ q ^ , q=p iXp2 . 

(6) 

(7) 

I t turns out that Fi enters only as a multiplicative 
factor. 

P(©,^)~Poo sin 2@+p 1 1( l+cos 2@)+P l„ 1 sin2© 
Xcos2<?+v2 Repio sin2© cos^, (10) 

poo=l — 2pn. 
2+ case 

One gets 

P(@,<p)~poo cos2@+pn sin26—pi_i sin2© 
Xcos2<£—V2 Repio sin2© cos<p, (8) 

M has the form (we use Zemach's notation) 

M^F1T(lq)+F2T(2q)+FzT(3q), 

where 
poo=l — 2pn. 

with 

and 
Tij(nq) = hipmqj+pnjqi) 

All the parameters are real, owing to the Hermiticity of 
the density matrix. Here again the dependence on F{ factorizes: 

P(©,<p)~ipoo sin 22@+(v / i ) Repio sin4© cos<p- ( \ / i ) Rep20 sin22@ cos2<? 
+ip11(cos2@+cos22@)+|p1_1(cos2@-cos22@) c o s 2 ^ - f Rep12 cos2© sin2© coscp 

— | Repi_2 sin2© sin2© cos^(4 s i n V - l ) + | p 2 2 sin2@(l+cos2©) —|p2_2 sin4© cos4<?, 

poo= 1 — 2pn— 2p22. 
Z~ case 

In this case the dependence of P(@,<p) on form factors is no longer trivial. M can be written as 

M - P i P ( l l ) + P 2 P ( 2 2 ) + P 3 P ( 3 3 ) , 
where 

Tij(nn) = pnipnj—l^ijpn2 • 
The angular distribution is 

P(©,*0~poo[(f s i n 4 © - 2 sin2@+f)+fce(3 s i n 2 © - 1 ) ] + ( > / ! ) R^Pio sin2© cos<? 
X [ l - 3 cos 2 ©+2aQ+( v

/ ! ) Rep20sin2@ cos2<?[3 c o s 2 @ - l + 4 a ] + 2 p 1 1 s in2©[cos2©+a] 
— 2pi_i sin2© cos2<£>[cos2©—a~\—Repi2 sin2© cos<p[sin2© — 4af|—Repi_2 sin2© sin2@ cos<p 

X [ 2 cos2^- l ]+ |p 2 2 [ s in 4 @+8Q: cos2©]+Jp2_2 sin4© cos4<?, 

poo= 1 — 2pn—2p22, 

where 
a = ( 0 + Y ) / ( 3 0 + 7 ) , 

j8= / duxduzYL Fnpn2\2, 
J n 

0 £ a ! s l . 

(ID 

(12) 

(13) 

(14) 

(15) By straightforward algebra one can show that 

(18) 

In order to get a more precise prediction for the value of 
«, one has to make rather specific assumptions about 
the dynamics of the three-pion system. 

When X has a spin of 3 or more, the angular distribu
tions become vastly more complicated, owing to the 
appearance of a much large number of elements of the 
density matrix and of form factors. We feel that the 

(17) improbability of the occurrence of such large-spin states 

7 = 4 / duxduz Re{ £ FmFn*(pmpn sinxm«)2} , (16) 
J m<.n 

where Xmn<^ and 

Xmn= \cOS-1[$m*fin/pmpn']\ • 

e L. D. Landau and E. M. Lifschitz, Quantum Mechanics ° f X> coupled wi th t he fact t h a t t he s ta t is t ics of reac-
(Pergamon Press, Inc., New York, 1962), p. 202. t ion (1) are Still too poor to allow a n unambiguous de-
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termination of all the parameters involved, justify our 
limiting ourselves to spins of X less than 3. 

3. DISCUSSION OF RESULTS 

We may note that all of the above angular distribu
tions have one characteristic in common: they contain 
terms that are antisymmetric with respect to the trans
formations 0—»7r—-0 and <p—>?r— <p. This means 
that if, for a given @ (or for a given <p), one sums over 
events at angles <p and T— cp (or 0 and ir— 0 ) , one can 
eliminate from the angular distributions a certain num
ber of parameters of the density matrix. Thus for the 
spin-1 case there will remain 2 parameters after sym-
metrization, instead of 3, and for the spin-2 case, there 
will remain 5 parameters instead of 8. In the latter case 
this means a considerable simplification. 

Let us now note some immediate implications of the 
Gottfried-Jackson result. Assume that a state with spin 
5 is exchanged in (1). If the parity of this state is (— l ) s 

we have, as has been observed by these authors 

Poi=0(i=zLl} 0) in the case 1~, 

P(h.= 0 ( i = ± 2 , ± 1 , 0) in the case 2+, 

because if states | rrX) have total angular momentum ^ 
and if the helicity of X, Ax = 0, then their parity is 
(—l) s+1 . In the cases 1+ and 2~ one gets the (experi
mentally) uninteresting result: 

P o » = 0 ( i = ± l , 0) in the case l+ , 

Poi=0(i=zL2) ± 1 , 0 ) in the case 2~, 

when only the exchange of states with parity (— l ) s + 1 is 
allowed. 

Consider now the relation between our results and 
those of Zemach, and of Berman and Drell. When the 
target acts merely as a spectator, the exchanged states 
have parity (— l ) s , and hence, taking into account (19), 
one gets for the cases 1~~ and 2+ (after integrating with 
respect to <p) the distributions given in Ref. 3. One also 
finds that the @ distribution for the case 1+ given in that 
reference is in fact quite general. 

In the case of forward production, the collision has 
complete cylindrical symmetry with respect to rota
tions about the z axis. Consequently the p matrix is 
diagonal. As is well known, the scattering amplitude for 
the process TT+N—» X+N' can be written in terms of 
helicity amplitudes as7 

^ - Z / ( 2 / + l ) ( X ^ , X x | ^ | X ^ X i „ x ^ _ x x
J ( ^ ) . ( 2 1 ) 

Let AX be the helicity change of the target. 
F o r # - > 0 , 

DXNM>-IX
J(»4)~»^A". (22) 

Thus in the case of forward production in which the 
target acts only as a spectator (A \=0) , the allowed 
transition with the smallest \\x\ will dominate. Unless 
(\N>,\X\TJ\\N) vanishes, one can set equal to zero in 

7 M. Jacob and G. C. Wick, Ann. Pliys. (N. Y.) 7, 404 (1959). 

P(@,<p) all elements of p with the exception of 

Pn= ( - l)Sx+1'pi-i in the cases 1~, 2+,8 . . 
Poo in the cases 1+ , 2~. 

The situation may be different, however, either if 
there is a nuclear excitation, or if the target undergoes a 
spin flip. As an illustration, consider the case of C12. The 
ground state of C12 is 0+ . The low-lying excited states 
of_C12 have spin-parity assignments 2+, 0+, 1~\ All states 
\CfC) of spin s, where C" is one of the above excited 
states of carbon, such that AX=0, have parity (— l)8 . 
According to (22), if the target undergoes a AX = 0 
transition, then Xx = 0 is the most probable helicity of 
X in near-forward production. But by (19), Xx=0 can
not be excited if X is in either of the states 1~ or 2+ . 
Therefore, for these spin-parity values of X, only pn 
is nonzero when C is 1~~ or 0+, while pn and p22 are non
zero when C is 2+ . The appearance of p22 when C is 2+ 
is a feature characteristic of incoherent production. 
Analogously, when the spin of X is 1 + or 2~, we have the 
following predominant elements of p: 

Poo, Pn, (p22) when C is 2+ , (24a) 

Poo w h e n C ' i s 0 + , (24b) 

Poo, Pn when (7 is 1- . (24c) 

Of course, no distinction can be made at forward angles 
between coherent production and incoherent production 
in which the nucleus is left in the state 0+ . A difference 
does occur, however, if the nucleus is left in the excited 
states 2+ or 1", that difference being manifested by the 
presence of terms proportional to pn and p22. 

Consider now fluorine as a target. The ground state 
is | + . In the event that F undergoes a spin flip, we can 
have AX=0, ± 1 . But because F is a fermion, no state 
\FF') in which F and F' have given helicities, is an 
eigenstate of parity.7 Therefore there is no selection 
rule as in the C12 case; all that can be said here is that 
for near-forward production the excitation of | \x \ = 2 
is improbable.9 The three-pion state with [ \x \ = 2 can 
be produced, however, if one has an excitation of 
fluorine. In fact F19 has many low-lying excited states 
whose excitation may lead to | \x \ = 2, even for near-
forward production. 
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8 Sx is the spin of X. When the nucleus is not excited or does 
not spin-flip, the production in the exactly forward direction is 
forbidden for these spin-parity assignments of X. Thus the sym
metry argument fails and one gets the indicated nondiagonal 
terms in p, which, for # —> 0, may easily be calculated from (21). 

9 The same is true for a free nucleon. 


