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section is smaller than predicted by the OPEM by a 
factor of the order of 2. The same result has also been 
obtained by the CERN group8-10 at 3.0 and 4.0 GeV/c 
and by Baltay el al* at 3.25 GeV/c. 

(5) Double pion production in the reaction pp—> 
ppw+ir~ agrees perfectly with the OPEM for all values 
of the four-momentum transfer, if all possible one-pion-
exchange graphs are taken into account. In particular, 
this holds for da/dA2, for the distribution of the (anti) 
nucleon-pion effective mass, for the Treiman-Yang 
angular distribution and for the decay angular distri
bution of the pion-nucleon isobar. The main contribu
tion is given by the "double isobar diagram" [Fig. 7 (c)]. 
Similar conclusions were reached by Baltay et al.9 at 
3.25 GeV/c. The total cross section found is 3.80±0.22 
mb, the OPEM predicts 3.55 mb. 

1. INTRODUCTION 

A GREAT deal of attention during recent years has 
been devoted to the asymptotic region of the four-

point function, but by comparison the two- and three-
point functions have suffered neglect in this respect. 
Physically, the explanation is obvious: The scattering 
amplitude is directly accessible to experiment, whereas, 
the two- and three-point functions are not. Neverthe
less, even in practical 5-matrix theory calculations, the 
propagators A and vertex function T often make an 
appearance when the "pole approximation" is invoked, 
and since a knowledge of the asymptotic characteristics 
of A and T is more basic in many respects than that of 
the higher ^-point functions because A and T are the 
"building blocks" of field theory, we wish in this paper, 
by adopting the simplest possible set of assumptions, 
to make some more definite predictions regarding their 
high-energy behavior using as little information as pos
sible about many-particle 5-matrix elements. Essen
tially all that has previously been stated on this subject 
is that the complete propagator is more singular than 
the Feynman propagator1 and that V must fall off to 
zero at high-momentum transfer.2 

* Supported in part by the National Science Foundation. 
1 H. Lehmann, Nuovo Cimento 11, 342 (1954); O. Steinman, 

J. Math. Phys. 4, 583 (1963). 
2 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 

Cimento 2, 425 (1955). 
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Our method for deriving such asymptotic properties 
hinges on the unitarity equations for A and T where we 
restrict our attention to two-particle intermediate 
states (elastic unitarity). By approximating to the 
elastic scattering at large energy and momentum 
transfer by the one-particle exchange TAr, this leads to 
a set of relations among A, F, and their imaginary parts, 
themselves connected to A and V by dispersion relations. 
Our "simplest set of assumptions" consists in assuming 
power-law behaviors of the type sn for ImA(^) and 
Imr - - 1 ^) at large s, and demanding that in this region 
the propagator depend only on the spin of the particle. 
Then by requiring that these asymptotic forms re
produce one another when inserted into the unitarity 
equations we deduce the following self-consistent be
haviors in the (afl) Weinberg field representations.3 

AA(p)-Tra(p)s-1 Ins, r / - 1 ^ ) - ^ ^ Ins; s = p2. 
7ra(p) is a monomial of degree 2a in p and Tj(s) is the 
jth multipole form factor with B and C placed on the 
mass shell. Passing to the more familiar tensor represen
tation the above implies for the proper vertex function, 

On the above basis, the vertex and wave function re-
normalization constants must vanish (for renormaliza-

3 S. Weinberg, Phys. Rev. 133, B1318 (1964); 134, B882 (1964). 
Our metric is different from his and our states are normalized 
differently. 
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From a consideration of the elastic unitarity equations for the propagators A and vertex function r , it is 
argued that the following high-energy behaviors are self-consistent: 

T-l(s)^s^a+b+c-inns, AA(s)~sa~nns, ••• 

for the interactions among three particles A, B, and C (spins a, b, and c, respectively). 
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ble theories where such constants are definable), a con
jecture which has recently gained in favor since it is 
probably the field-theoretic statement that every par
ticle in nature is equally elementary.4 Neglecting 
logarithmic factors the above characteristics can be 
generalized to yield 

the stability criterion which guarantees the finiteness 
of a field theory based on the Dyson equations.5 As 
another by-product, Ward's identity, 

dAB-1/dp = T(p) , 

is automatically satisfied for the case of electrody
namics (B=C, A — photon), and as another theoretical 
consequence, we deduce (with reservations as explained 
in Sec. 4) that our results are in accord with Regge be
havior saW of the scattering amplitude providing 
a(0) = 1 and a'(0) = 0(g2), g being the magnitude of the 
ABC coupling. Also by examination of the Bethe-
Salpeter equation we find that the Fredholm kernel 
cannot lead to highly singular potentials. 

Finally, we make a comparison of the predicted 
asymptotic behavior for the Sachs form factors6 of the 
nucleon, GE,M~aE,MS~1JrpEtM()xis)~~l) a, p constant, 
with the recent experiments of Chen et al.6 The term 
as~l represents the possible effect of resonance poles 
while the term /3(ln^)_1 is the behavior predicted on the 
basis of our simple theory, and is expected to dominate 
at sufficiently large s. This is not in conflict with the 
experiments (though small fi/a is suggested), nor is the 
further prediction that 

GE(S) 
lim - = constant, 
~»GM(s) 

although the individual form factors vanish in this 
limit. 

2. THE (y,0) REPRESENTATION OF THE FIELDS 

We are visualizing a theory for which there are only 
three particles A, B and C of spins a, b, c that interact 
via some Lagrangian L=gABC. Vertices such as BAB 
are excluded ab initio, and for extra simplicity we 
assume the fields real since this makes no essential dif
ference in what follows. The results to be given later 
depend crucially on the spins and in order to give a 
precise formulation to this aspect of the problem we 
specialize to the simplest possible representation for 

4 A. Salam, Nuovo Cimento 25, 224 (1962); S. Weinberg, Phys. 
Rev. 130, 776 (1963). More recent references are to be found in 
the preprint of B. W. Lee, K. T. Mahanthappa, I. S. Gerstein, 
and M. L. Whippman. 

5 A full discussion of this question is to be found in A. Salam and 
R. Delbourgo, Phys. Rev., 135, B1398 (1964). 

«R. G. Sachs, Phys. Rev. 126, 2256 (1962); K. W. Chen, 
A. A. Cone, J. R. Dunning, Jr., S. G. F. Frank, N. F. Ramsey, 
J. 'K. Walker, and Richard Wilson, Phys. Rev. Letters 11, 561 
(1963). 

our fields, the (j,0) representation of the Lorentz group. 
This has been extensively studied by Weinberg3 and, 
being irreducible, it does away with unwanted degrees 
of freedom which would have necessitated appending 
various subsidiary conditions. Only after solving the 
problem of asymptotic self-consistency do we translate 
our results into the more familiar (tensor, y matrix,. . .) 
representation of the Lorentz group. A resume of the 
essential properties of the (j,0) fields is therefore in 
order. 

The basic fields <£,(#) satisfy local commutativity 
£<I>P (%),<!> a (y)~}±=0 f ° r (x~y)2<® and under a homo
geneous Lorentz transformation A, 

c7 [A]0 , (x )^CA] = E DrlA-^iAx) . (1) 
p 

For a particle of spin j , the usual vector generators J 
and K of the Lorentz group are given in the (jfl) repre
sentation by J—> Ju) and K-^— i J u \ We generate a 
general helicity state (pj\) from a standard state | j\) 
(the rest state for massive particles or a state with 
specified momentum along the z axis for massless par
ticles) by application of a pure Lorentz transformation 
along the z axis, described by the hyperbolic angle x> 
followed by a pure rotation R: 

\pj\) = L{p)\j\)^R{^Bfi)e-^^\j\), (2) 

DpJlL(x>)-l = DpJ[_R]e~**. (3) 

I t is easily shown that for arbitrary A, 

^[A]|piX> = EMiApiMHWl>], (4) 

where r=L~1(Ap)AL(p) is the "little group rotation." 
Hereafter we write our formulas for massive particles 
when D[_r} is a simple rotation matrix. The massless 
particle case can be obtained on multiplication of the 
fields by the factor mj and taking the limit w —> 0. 

(i) To the general state | pj\) is associated the wave 
function ua(pj\) which transforms according to 

L p£><rP[A>p (pjX) - £ M u^ApjdDpxtr] . (5) 

In the 0*,0) representation the wave function is given by 

^(pjX) = ^ x C i ( p ) ] = ^ x ' ( ^ A O ) ^ x x (6) 

with tanh%= |p | /#o and p2=m2, since the particle lies 
on the mass shell. Suppressing the spin label j , we will 
write \p\), \—p^) when p is directed, respectively, 
parallel and antiparallel to the z axis. The (jfi) repre
sentation provides the explicit forms 

«,foX) = «cX*-Xx, * , ( - £ , XHS^-xC- lJ ' -V-** . (7) 

In the language of Feynman diagrams we associate with 
the line representing an incoming particle of momentum 
p and helicity X the wave function ua(pj\) while to a 
similar outgoing particle line is attached ua*(pj\). The 
a indices are, of course, characteristic of the Lorentz 
group representation and are to be contracted out on 
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indices of the "blob" representing all the possible inter- Analogously to the treatment for scalar particles, we 
action diagrams. may define a wave function renormalization constant 

(ii) According to the usual definition, the complete by 
propagator is given by 1 f 

Z - ^ l i m sA(s) = l / ImA(x)dx 

^^(^^^^^[^(^^(-^JlO)^-^ (8) 
r 1 rImA~1(x)dxT1 

H1+c— -f S" • (i6) 

I IT J (x—m2)2 J 
and it is easily shown from Eq. (1) that it transforms as 

^ ' (iii) Now consider the three-point vertex ABC to 
which are associated the helicities X, p, v and the 

A rotation about the z axis proves that in the frame Lorentz indices a, ft y. Typically with B and C placed 
where pi=p2=:0J Aap(p0,ps)^d(rp. Indeed, if p2>0, we on the mass shell we are led to consider the quantity 
may proceed to the rest frame where we define 

A,p(£o,0) = M*f -y )>£(#*) (10) 

A(p2) is a scalar function and from Eq. (9) we deduce 
that in general 

where 
A*P(P)=**P(P)&W (11) 

7rffp(p) = ZD^L(V)2Dx^\:L(pmm~-2p2y (12) 

( O | 0 a ( O ) | i p + q , M ; i p - q , v ) 

r a /s7 is the proper vertex function and exhibits the 
transformation property 

XZ> y / (A-»] . 

. . With p2>0 we can, just like the propagator, deduce the 
is a well-defined function whose properties have been a l t i e s o f r b examining its features in the 
listed by Weinberg.' In particular, when ̂  = ̂  = 0, B r d t o r b r i c k w a l l f r a m e ( p = 0 ) w i t h B a n d c d i r e c t e d 

^ ( # e , # , ) = ( # o + # . ) - 8 ' ^ ' ( « - i ^ ^ p . (13) along the 2 axis. 

The positive definiteness of the spectral function for 
A is established in the frame p = 0 . There, 

n J 
(nr2f?yimA(p2) = Y< / dAxeip'*(0\4>ff(ix)\n) 

or 
X(n\4>,+(-hx)\Q) 

-ImA(p2)= Z (2iry(™-2p2)-j\(0\<t><r(0)\n)\2. 

= i(mA-2s)aAA(s)Ta^v(s)e~^B(- \y~ve-vXC ? ^ 7 ) 

where 

and 
smhXB)c=qmB)c

 1 

4:q2s= \j— {mB+mc)
2~\[_s— (mB—mc)

2~\ . (18) 

Hence A(p2) will possess the standard Lehmann-
K alien7 representation and 

r 1 I f Im.A(x)dx~\ 
Aap(p) = 7rffp(p)\——+-/ . (14) 

Lp2~m2 wJ SQ x—p2—t€J 

A(s) may develop a single real zero at Si in the range 
m2<Si<So. If this zero does exist, it must be explicitly 
inserted as a C.D.D. (Castillejo-Dalitz-Dyson) pole 
in the representation for A""1^), viz. : 

Noticing from Eq. (1) that </>«+(0) behaves as a spherical 
tensor operator Ta

a, we may make a multipole decompo
sition of the form factor in the manner of DeCelles, 
Durand, and Marr8 

<0|«x(0)|fflu, -qv) = i(mA-*s)*l(s) 

XE 
i \ —X a —v/ 

Us) • 

A~1(s)=(s-m2)\ 1-
c(s—m2) (s—m2) 

S~Si 

X 
Im A -1 (x)dx r l m / r ^ 

J (x—s)(x (x—s)(x—m2)2A 
(IS) 

7 G. Kallen, Helv. Phys. Acta 25, 416 (1952); H. Lehmann, 
Ref. 2. 

Performing a rotation we obtain the general form in the 
c. m. frame, 

(0\<t>a(0)\qix, -qv) = i(mA-2s)2A{s) 

XZDa^(q)(J b " W o . (19) 
/ \ —X fx —vJ 

In the limit as g—»0, Y:i{s)~q\j~~a\ and in the static 

8 L. Durand, III, P. DeCelles, and R. B. Marr, Phys. Rev. 126, 
1882 (1962). 
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Im A"' 
•kxxy- + ... 

FIG. 1. Contributions to the absorptive part of the A propagator. 

case the only nonvanishing coupling is the term 

(a b c\ 

\a fi y/ 

The perturbation diagrams suggest that T3 satisfies 
the dispersion relation 

1 rocImTj(x)dx 

ri(J)=ry(oo)+-/ — - — . (20) 
%J S X—S 

When jy^a, the threshold condition must be sepa
rately imposed to restrict the acceptable form of Imf y. 
Inverting the representation (20), with C.D.D. poles 
and their appropriate residues having to be explicitly 
added if real zeros of Ty are present, it follows that 

fr1W=rr1(«A2) l-
Tj(mA

2)(s-mA
2) 

X 
J (x 

ImTf1 (x)dx 

(x—mA
2)(x—s). 

• (21) 

The dispersion relation can alternatively be 
stated in terms of the multipole moment functions 
Q3'(s) = (Tli~alTj(s) with no particular boundary con
straint at s= (mB+mc)2. These Qj are related to the 
various static moments and correspond to the presence 
of fundamental derivative couplings in the interaction 
Lagrangian for j^a. Of particular interest is the 
"charge moment" j — a which plays the role of the basic 
(nonderivative) coupling. Since all the fields have been 
accorded the dimensions of a mass, Ta(mA

2) = gM where 
g is dimensionless and M is a typical mass, say 
1 ( W A + W B + W C ) . For conventionally renormalizable 
theories the vertex renormalization constant is asso
ciated with just this form factor and the bare Qj(mA

2) 
are supposed to vanish for J9^a in a "minimal inter
action" theory. Since field theory gives Ta (co ) = gMZi, 
Eq. (20) may be recast as 

(s—mA
2) f ImTa(x)dx 

Ta(s) = gM+ / , (22) 

with 

Z i = l -
1 r l m r a 

TTgMJ X — 

w J (x—s)(x—mA
2) 

ImTa(x)dx 

mA
L 

-=lim(gM)^Ta(s) 

r gM rImTa-
l(x)dx* 

1 — 

(23) 

x—rnA" 

(iv) Finally, we compute the EC scattering diagram, 
in which particle A is exchanged, for later reference. 
Working in the over-all cm. frame with the final par
ticles directed along the z axis, we must discuss 

M ^ ^ ^ ( g ) = (gM|0a (O) | -q / )A« a , ~ 1 ( - ^ | ^+ (O) |q i u
/ ) . 

q is related to the total energy s1/2 as before in Eq. (18). 
Vertex functions with t (the squared momentum 
carried by line A) spacelike made their appearance and 
these can again be related to the brickwall frame func
tions by suitable Lorentz transformation—a simple ro
tation will not suffice. Letting A+ be that transformation 
which carries q into q' and — q into — q\ A_ that trans
formation which q into q' and — q into —q', we obtain, 
after some straightforward manipulations from basic 
Eq. (5), that 

M^ v> (q) = £ Dfil* (rB+)D^^ (rB-.)Dy* (rc~) 
jafiyj'a'fi'y' 

j b c 
X | )TaaDaa.«+ 

0 - V 
{' ' ' ) -
\~-a & -y'J 

I f b c \ 
X[A_-*AJ (24) 

rB,c± denote the appropriate little group rotations of B 
and C states corresponding to A± and we have used the 
crossing property of the Weinberg fields to write 

<gV|*«(O)|-^) = iEA«x(0( J C W) 
'J \ — XlJL—V/ 

and furthermore that Aaa/ = 7raadaa' in the Breit frame. 

3. THE SELF-CONSISTENCY RELATIONS 

Having set up the basic spin formalism in Sec. 2, we 
now attack the problem of obtaining the asymptotic 
characteristics of A and T in the optimistic hope that it 
is indeed possible to extract such information purely by 
examination (in the asymptotic limit) of the elastic 
unitarity equations connecting A and T with their 
imaginary parts. (That the ensuing results receive 
qualitative support at the experimental level and have 
reasonable theoretical repercussions does perhaps 
justify this hope.) In the same spirit we propose the 

..+ • ± 0 3 3 = 
ImT 

from Eq. (21). 
FIG. 2. Contributions to the absorptive part of the 

ABC form factor, 
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simplest possible set of assumptions to establish this 
asymptotic self-consistency since nothing definite is 
known in this respect at present. Our cause becomes 
hopeless unless we do so. 

Referring to Figs. 1 and 2, and to Eqs. (10) and (19) 
the absorptive parts of A and V are given in the usual 
way by the relations: 

ImAA(s)=-
qmA 

16^*+° / 
d<pd (cosd) 

X Z |<0|̂ x(0)|qM, ~q^>|2+-

Im<O|0x(O)|g/*,-^> = 
qRe 

16irV'2 / 
d<pd(cosd) 

Z(0\4n(0)\<m', -qx'>* 
\x'v' 

or 

qRe f 
l m r , 0 ) = / d<pd(cos9) 

(25) £ 

X 
_ Dxva(q)/ j b c \ 

E —; ( W^, 
•'/»'»' 2j-\-l \—X M —vl 

X 
/ / b c \ 

\ - X ' v! ~v'J 
Tr*(s)+- (26) 

and M is to be approximated by the Born amplitude for 
BC scattering, viz., the exchange of A with complete 
propagator and vertices. 

Further progress is impossible unless we make the 
above-mentioned simple (though drastic) assumptions. 

(i) We suppose the AA(s) depends , / ^ large s, only on 
the spin a, and that the character of this dependence is 
universal. Since the spirit of this work implicitly pre
sumes that the higher (than two) particle intermediate 
states give the same (or more convergent) asympotics 
than the elastic terms and that their inclusion results in 
a matching of coefficients as well as of high-energy char
acteristics, it immediately follows from Eq. (25) that 
Yj is then independent of b and c. As to the nature of the 
spin dependence, we place our faith in the conven
tionally renormalizable theories where (s—mA

2)AA(s) 
diverges logarithmically. This suggests that we take 

I m S ( j ) = 0 ( j " - 1 ) , 

ImA-1(s) = 0(s(\ns)-2) 
and 

AA(p)^7ra(p)s-llmr (27) 

i.e., all the spin dependence is carried in the monomial 

T and Z = 0 is an automatic consequence of Eq. (16). 
(See the Appendix for the details concerning the 
asymptotic behaviors of dispersion integrals.) 

(ii) Likewise assume that ImTf~1(s) = 0(s'Y) with y 
integral ^ 0 as suggested by lowest order perturbation 
theory. Barring pathological oscillations (which we 
hope to be physically nonexistent), 

TrKs)^sy]ns and ImTy(s)«s-*(liu)-2 (28) 

as shown in the Appendix. From Eq. (23), Z i = 0 . 
Notice that power-law behavior has been assumed for 
Imf*/"1, not for ImTy, and the necessity for this will be 
immediately apparent. 

(iii) We now ask that substitution of Eqs. (27) and 
(28) into the elastic terms of Eqs. (25) and (26) be self-
reproductive. A detailed evaluation of the integral over 
the Born term is not in fact necessary; we only need to 
recognize that M^^^ may be written as some product 
of dJ matrices times Tj(f)2L(t)Vj>(t) and a polynomial 
Pa(s,t) of degree a in s and t, arising from the complete 
A propagator. Due to the asymptotic nature of 
YAfPa^t~l-^{\Tit)~lPa{syt), the leading behavior9 of the 
integral in (26) gives 

and 
^~^ ( lm) - 2 «^ -^ ( lm) - 1 X5 a - 2 ^ 1 (M~ 1 + *' 

^( lm)- 2«5 a -^( lm)- 2H 

from Eq. (25). Thus, rather surprisingly, both propa
gator and vertex equations are satisfied if 7 = | (a—1), 
so that we finally have as our self-generating functions, 

AA(^) = 7ra(^)5-1 l m , Tj(s)^s^l-^(lns)-K (29) 

Recall that fy is the jth multipole form factor with B 
and C placed on the mass shell.10 

To translate these results into the more familiar 
tensor representation of the Lorentz group (times a y 
matrix in case the spin is half odd integral), we observe 
that the Feynman propagator invariably takes the form 
A(p) — w(p)(p2—?n2)~l, where w(p) is a monomial of 
degree 2j in the momentum p, and as in Eq. (12), 
ir(p) = Y,\U\(p)u\+(p). We may therefore imagine a 
monomial in p of degree j associated with each free-
particle solution u(p) in so far as computations of high-
energy behavior are concerned. Since 

T(p2)~uB+(±p+q)T(pyq)uc(hp-q) , 

9 The asymptotic behavior of the logarithmic integral 

f° dt t~ « (In/)"1 « ^ - '(Ins)-1; e < 1 

may be established by partial integration. Making use of the dif
ferential properties of the d3' matrices, a parallel procedure leads to 
the desired result. 

10 When a— 1 is odd the final result contradicts the initial 
assumption that y is integral. However, to the extent that loga
rithms can be neglected, (29) remains valid. Verification of the 
Regge behavior in the next section then only entails that 
Imr/1T | «(Ins) -1 , as for integer y. We shall discuss such ques
tions fully in future publications by examining some special 
theories where the spins a, b, c are fixed at some low values. 
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~F^Rr 
FIG. 3. Typical ladder diagram for 

BC scattering. 

we deduce from Eq. (29) that for large values of p the 
proper vertex function behaves as 

and as before, 

r ( M ) « ^- ( a + 6 + c~1 ) (ln^2)-1, 

AA(p)-p2a-~2(^P2)~1' (30) 

4. THEORETICAL CONSEQUENCES 

While the simple-minded assumptions which have 
led to Eq. (30) are not free of defects and are certainly 
wide open to criticism, the final formulas possess at 
least the following redeeming virtues: 

(i) They are in agreement with the well-known Regge 
behavior of the scattering amplitude saW at large s and 
small t. To effect this demonstration, we note from 
Eq. (28) the important information that ImT(^)/ \T(s) \ 
« (Ins)-1, (for all partial waves in fact) so that if we 
insert this into the elastic unitarity equation for T we 
deduce that 

s 

Ins « ) 
\M(s,t)\dt; l + b + c = a . 

For simplicity, consider the s-wave projection (what we 
have to say applies equally well to all / waves near 
/=0 ) when 

/ _ 
dt\M(s,t)\dt* 

Ins 
(31) 

Now for large s and large t (i.e., near the limit of inte
gration —s) we have shown in Sec. 3 that if M is repre
sented by the complete Born term, relation (31) is 
satisfied; however, at the upper limit ( /«0) , where one 
should not really place any faith on the Born term, we 
must make sure that the asymptotic result is not vio
lated if we replace M(Born) by I f (Regge). In fact, it is 
not, for if we suppose that in this region of large and 
small /, M is well represented by 

\M(s}t)\™0(f)s° (0)+fo'(0) 

we derive from the upper limit in Eq. (31) the totally 
unexpected result that 

a(0) = l and a'(0) = 0(g2) (32) 

if we are to have asymptotic self-consistency. 
Some serious consequences arise if we follow through 

the above calculation more closely and examine the 
approximation of elastic unitarity.1 In actual fact, it is 
known that M is almost absorptive at high energy, so 

if we employ elastic unitarity alone,. we deduce that T 
is purely absorptive by Watson's theorem; but this is 
hardly likely for a function having a single cut as shown 
in the Appendix; therefore we are forced to step outside 
the framework of elastic unitarity and include many-
particle intermediate states into our discussion in at
tempting to use the asymptotic form of M. Now result 
(32) follows from a Regge amplitude y(t)sa(t) which is 
almost real for / < 0 . Such an M could arise from the 
ladder diagrams of Fig. 3,'whereas the complete M 
(which is almost imaginary) comprises the crossed 
ladder diagrams of Fig. 4 as well. Consequently, if we 
presume that (32) is more than a lucky coincidence, we 
deduce that the Fig. 4 contributions to ImT must be 
canceled in some way by the many-particle intermediate 
state contributions. The situation has a parallel in the 
Amati-Fubini-Stanghellini11 theory of Regge cuts, 
where it has been shown by Polkinghorne and 
Mandelstam12 that pure elastic unitarity used in con
junction with complete scattering amplitudes can be a 
very misleading procedure, and moreover, that these 
particular cuts do not in reality exist when inelastic 
intermediate states are added. 

(ii) T can be a highly convergent quantity with con
vergence improving as the spins of the participating 
particles are increased. Indeed, if we attempt to extend 
formula (30) by anticipating that with all particles off 
the mass shell, 

r (#,g)« *-<•+• w - ^ , (33) 

for large k (in any direction in the hyperplane of p and 
q, and aside from logarithmic factors), then we obtain 

This last condition is sufficient to ensure the success of 
any approximation scheme based on the Dyson equa
tions for computation of 5-matrix elements.5 In par
ticular, for the electrodynamics of scalar and vector 
mesons, a detailed and independent verification of re
lations (30) was directly obtained5 (as a consequence of 
gauge identities) and an actual scheme for finite com
putation was proposed to replace the Feynman rules. 

We may examine (33) further with a view to re-
normalizability. In conventional theory, renormaliza-
tion of Ao and To is possible providing that 

A0
1/2Ao1/2Ao1/2r0 « k-1' e^0 

and if this condition is met (e.g., scalar and spinor 

7-Q-Q--0-7 
FIG. 4. Typical crossed ladder 

diagram for BC scattering. 

11 D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29 
(1962); Nuovo Cimento 26, 896 (1962). 

12J. C. Polkinghorne (to be published); S. Mandelstam, 
Nuovo Cimento 30, 1127 (1963). 
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FIG. 5. Bethe-Salpeter equation for BC scattering. 

electrodynamics, meson-nucleon interactions, etc.) T 
behaves at infinity like the bare vertex r0, apart from 
logarithmic factors. However, for theories that are con
ventionally unrenormalizable we have an entirely dif
ferent situation in that V is more convergent than To. 
Therefore, in setting up an iteration scheme for calcula
tion of Feynman diagrams based on Dyson's equations, 
it is imperative to provide an initial T that does behave 
like (30), as otherwise the k dependence is funda
mentally unstable. That is, the "lowest order" T must 
be chosen to exhibit the behaviors indicated in the 
following typical cases: 

(a) Vector electrodynamics: A = Photon, B=C 
= spin-l meson. T~&-1 although To—k. 

(b) Scalar meson-lepton interactions: A — meson, 
J3=C=lepton. T « l although TQ^k. We might add 
that from our point of view the convergence of 
r (« l / l n s ) justifies the Goldberger-Treiman theory of 
7r —> / + v decay. 

(c) Vector meson-lepton interactions: yl = spin-l 
meson, £ = C=lepton. T^k~l although r 0 ~ l . 

(iii) Ward's identity is automatically satisfied 

dAB~\p)/dp~Y{p) , 

if the numerical factors which characterize the asymp
totic behavior of A and T are in the correct ratio.13 We 
have let B=C be the charged particle and made A the 
photon (a scalar particle from the point of view of high-
energy properties, as its propagator ^hr2). 

(iv) The kernel to the Bethe-Salpeter equation (see 
Fig. 5), 

K=Ac(pB+k)T(pB, pB+k)AA(k) 
XT(pc, pc-k)AB(pc-k)~k^k-^»-c-» 

Xk2a~2k-^a+h+c~1)k2h~'2^ k~\ 

is independent of the spins a, b, c. Consequently, the 
effective potential will never be highly singular so that 
a solution to the equation must exist and can in principle 
be obtained by directly summing the ladder diagrams— 
the extra logarithmic factors tend to improve 
convergence.5 

5. EXPERIMENTAL CONSEQUENCES 

Impossible though it is to say anything about the 
asymptotic behavior of A in experimental terms, there 
are reasons to suppose from the recently published data6 

that the asymptotic region of the electromagnetic form 
factors of the nucleon may have been reached, so that 

13 The gauge properties of the photon amplitudes are powerful 
tools that can be manipulated to obtain explicit expressions for 
A and r satisfying Eq. (33). See Ref. 5. 

experimental verification of our predictions about V 
may be feasible. Noting that the Sachs form factors 
GE,M(S) are given in our notation essentially by 
T(s), formula (30) states r($)« (lay)"*1. For moderately 
large s one may hope to see the influence of some reso
nance poles, so that over a large part of the measured 
range we expect the behaviors 

GE,M{S) ~aE,MS-l+$E,M{lns)-1, (34) 

where a and ft are some constants. 
Over the greater part of the range, the dependence 

s -1 is indeed clearly visible, but the presence of the 
second term, (Ins)-1, which is expected to dominate at 
sufficiently high s and to cause a flattening of the 
curves, is hard to detect. However, although the term 
(Ins)-1 could well exist, it is impossible to measure /3 
with any precision, owing to the large experimental 
errors of the high-energy data. In any case, regardless 
of direct measurement of the a and ft parameters, 
Eq. (34) predicts that both GE and GM vanish as 
s—> co, while their ratio tends to a constant. This is 
quite consistent with the present available data. 

Turning to the strong interactions, there are indica
tions that the vertex function is a strongly convergent 
quantity from an analysis of the differential cross 
section da/dt at large energies (s1/2) and large momentum 
transfers ((—t)112). The experiments on high-energy pp 
scattering seem to follow the Serber law, da/dt~0(t~5) 
for \t\ —» oo. If the Regge pole model has any validity 
at all, then in view of the absence of shrinkage in irp 
scattering,14 the strong t dependence of da/dt should be 
given by the residue function in this asymptotic region. 
Now on the Regge pole model da/dt should be propor
tional to the fourth power of the residue function, and 
this residue function very probably corresponds to the 
vertex function T(t) in terms of field theory. Since 
T(t)~(tl!2 In/)-1 from (30), assuming the exchange of a 
vector meson [which would correspond to a(0) = l ] , 
our prediction would be that15 da/dt« | V (t) | 4 ^ r2(lnO~4 

for large /. This lack of agreement with the experimental 
behavior should not be taken very seriously since most 
of the assumptions that have been fed into the theory 
to derive Eq. (30) are certainly oversimplified. How
ever, what we wish to emphasize very strongly is that, 
naive though the theory is, it does indicate that T can 
be a highly convergent quantity, and we claim that this 
feature is probably retained is more exact theories. 
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14 B. R. Desai, Phys. Rev. Letters 11, 512 (1963). 
15 Field theoretically the scattering of B and C by exchange of 

A (momentum tm) at energy s112 is represented at large / by 

M(s,t) *>rl*+*+°-» (\nt)~2Pa(s,t) (In/)// « r <6+c> (lnO'Vo (*,*), 

where Pa is the Legendre polynomial of degree a in cos0* = s/t. 
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APPENDIX j s there are m vanishing moments, 

Given that for x>s (real) A(s) = 0(\s\~m~1)+is-a6(s) (m<n) , 

(I) \ImA(x)\<Ax~% a>0, A(s)~0(\s\~«)+is~«6(s) (w=») . 

(II) | ImA'(x) \<g(x) where g.(#) ^ Ex'"-1, Here w is the nearest positive integer to a. 

then if ImA(#) is integrable, it has been rigorously (ii) I f a = l , A(s)^0(\s\"1 l n | ^ | ) + ^ ~ 1 ^ W . 
proved by Lanz and Prosper!" that ( i i i ) I f 0<a<lj A(s)~0(\s\-<*)+is~«d(s) . 

. ImAQx)^ N o t e that for a = | , A(*)« is-^2d(s)+0(\s\--1). 
A \S) f 

1 rQ0ImA(x)d: 

TJ sn x—s—ie (iv) I f a ^ O , put a=a' — n, where 0 < a ' ^ l and w is 
• T_ • j j • .1 r n . i i i ^ ^ - integral. Making w subtractions at £ O o , we obtain 
is bounded in the following manner when | s\ >S\>s: ° ° ' 

/•N Tr 4 i w N i ^i i r-i i ., / x i , -i n~1 (s—s)n r lmA(x)dx 
(i) I f a < l , l A ^ K C ^ I - l l n l ^ l W I + c ] ; A(s)= Z Ar(s~sY+- - / — , 

( i i ) i f a = l , \A(s)\<Cs-1l2ln\s2g(s)\+lns+c']; r-o TT J ( * - S H * - s ) 
(hi) if a> 1, certain moments of the spectral function 
may vanish if it oscillates suitably. Putting a=n+a' a n d u s i n g GO a n d (ni) f o r t h e finite integral on the 

with n, a nonzero positive integer, and 0 < c / ^ l , and right-hand side, 

allowing for A(s) = 0(\s\-<* \n\s\)+is-«d(s) (-a integral) , 
r r A{s) = 0(\s\-a~%)+is-a6(s) (~a § odd integral) , 
/ ImA(x)dx= I xImA(x)dx= - -' A / \ r\t\ i ~\ \ • ^ / \ / n î \ 

J w J w A(s) = O(|s]-a)-Hs~a0OO (all other —a) . 
= / xm~2 ImA(x)dx=0 T n u s > except for very pathological cases [when 

J " fCO^gOO and lnjs""*-1^)! is unbounded], and pro
viding a + J is not a positive integer, A(s) cannot become 

then when m<n, \ A(s) \ < the greater of purely absorptive at large s when it possesses a single cut. 
This is especially true for the propagator where ImA (x) 

C)sj~ m _ 1 and C|.s|"~a[2 ln| j " 0 ^" 1 !^ ) | +5ia> I m + c ] , cannot be negative. Only when A(s) possesses two cuts 
is it a simple matter for ImA(s) to predominate over 

while when ReA(s). For example, the high-energy scattering ampli
tude M (sfi) becomes purely imaginary for large s because 

m=n, | A(s) | <C\s\~a[2 l n j ^ " - 1 ! ^ ) | +5ia> lns+c~] . of the inclusion of the crossed channel so that 

In these expressions C represents suitable positive Cdx/ 1 1 \ /l+eiTU\ 
numbers and g(s) is the maximum of g(s) in the interval M(s,0)~ / I I — I ~s a[ — 1. 

( 5 - e ^ ^ ) ] - 1 , s+e lVgCO]- 1 ) . T h i s equality of spectral functions for both cuts, the 
^ r . . . . , . ,, J , Pomeranchuk result, is of course what is needed to get 
Of special interest to us is the case where the spectral d o m i n a n t a b s o r p t i o n . 
function exhibits the srmple behavior F r y e a n d W a m o c k h a y e i n v e s t i g a t e d t h e p o s s i b i l i t y 

ImA(x)~Ax- and ImA'(x) ~ Ax~^, x>s. that the spectral function is bounded by powers of 
v J logarithms, viz., 

The above theorem states that all sufficiently large \s\\ | imA(x) \ (C(lnx)~P for x>s. 
(i) If a>l, and there are no vanishing moments, 
w They find that A(s) = OQn1-P\s\)+ie(s)hrf>s. If, 

A(s)^0(\s\~1)+is~a6(s); instead, | Im A (x) | < Cx~a ln~%, it is true that when 
a < 0 , the powers of x by and large dominate the high-

16 L. Lanz and G. M. Prosperi (to be published). energy behavior of A(s). 


