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than in the case of CuCl2 • 2H20, but still not large in 
comparison to the exchange energy. Thus, Date's 
theory offers no special advantage over the Nagamiya-
Yosida theory for MnCl2-4H20. Both theories, how
ever, are deficient, since microwave resonances occur 
at magnetic-field values which are comparable to the 
low exchange field in MnCl2 • 4H20 (~ 12 000 Oe at 1 °K). 
The only theory which is valid for large external fields 
is that of Gorter and Haantjes,16 but its applicability 
is limited to the case of T=0°K. Thus, there exists no 
theory at present which is suitable for all of our ex
perimental observations in MnCl2-4H20. 

The expectation that the Nagamiya-Yosida theory 
should be approximately valid in MnCl2-4H20 for low-
field resonances and should become increasingly poor 
at higher values of the external field was borne out. 

INTRODUCTION 

ACCORDING to the Born-Mayer theory of ionic 
crystals, all alkali halides should crystallize at 

normal pressures and temperatures in the sodium 
chloride structure (two interpenetrating face-centered 
cubic lattices), this configuration being favored over the 
cesium chloride structure (two interpenetrating simple-
cubic lattices) by as much as a few kcal/mole. However, 
all cesium halides, except its fluoride, show the cesium 
chloride modification, whereas all rubidium and potas
sium halides, except potassium fluoride, have been 
found to exhibit pressure transitions from the sodium 
chloride to the cesium chloride structure. Such transi
tions are indeed predicted by the Born-Mayer theory, 
but the calculated transition pressures for the heavier 

* Part of this research has been made possible through the 
support and sponsorship of the U. S. Department of Army, 
through its European Research Office. 

f On leave of absence from the Institute of Industrial Chemistry, 
Polytechnic Institute, Milano, Italy, 

An unexpected deviation from the theory in a region 
where it should be valid, however, occurred at very 
low temperatures. A low-field 6-axis resonance, which 
conformed very well to the theory in the temperature 
region of 0.6 to 1.6°K began to exhibit a marked 
deviation from the theory below 0.6°K. In addition a 
new resonance appeared in this low-temperature region 
which exhibited properties similar to the critical-field 
resonance as regards linewidth, temperature depend
ence, and resonance behavior upon rotation of Ho into 
the ac and be planes. We do not have an explanation 
of these deviations but the possibility of a change in 
magnetic structure such as the formation of additional 
sublattices ought not to be excluded. Low-temperature 
neutron diffraction studies would be highly desirable 
to complement this study. 

alkali halides are considerably higher than those ob
served. For example, rubidium chloride has an experi
mental transition pressure of 4900 atm, whereas the 
calculated value is 39 000 atm. 

This stability problem has received extensive atten
tion in the literature; for detailed reviews we refer to 
the excellent treatises by Born and Huang1 and by 
Pauling.2 Historically, the first analysis was carried out 
by Hund3 on the basis of a pair potential between the 
ions consisting of electrostatic interactions between 
point charges and a repulsive potential varying as the 
inverse nth. power with distance. It was found that the 
cesium chloride modification is only stable for values of 
n higher than 30, but such high values are incompatible 
with experimental results on compressibilities of the 

1 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Oxford University Press, New York, 1954), Chaps. I and III. 

2 L. Pauling, The Nature of the Chemical Bond (Cornell Univer
sity Press, Ithaca, New York, 1948), Chap, X. 

3 F. Hund, Z. Physik 34, 833 (1925), 
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By extending the theory developed in a previous publication for the stability of rare-gas crystals, it is 
shown that the stability of alkali-halide crystals can be explained in terms of three-body exchange inter
actions between the ions. As in the case of rare-gas crystals, the analysis is based on a first- and second-order 
perturbation calculation with a Gaussian effective-electron model. The different size of anion and cation of 
each solid is taken into account. The effect on stability of double-exchange contributions to the three-body 
energy (negligible for rare-gas crystals) is analyzed in detail. It is shown that the theory accounts for all ob
served regularities on a quantitative basis. In particular, cesium chloride, bromide, and iodide are found to be 
stable in the cesium chloride modification; furthermore, calculated and observed values for the pressure of 
transition from the sodium chloride to the cesium chloride configuration are in good agreement. 
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crystals. Born and Mayer4 analyzed the stability on the 
basis of an exponentially decreasing repulsive potential 
plus electrostatic interactions (Born-Mayer potential); 
they took into account also attractive second-order (van 
der Waals) interactions between the ions. The sodium 
chloride structure was consistently found to be the more 
stable configuration. 

A recalculation of the cesium chloride stability by 
May5 on the basis of careful new estimates of van der 
Waals interactions by Mayer6 gave essentially the 
same results. Jacobs7 then calculated for the different 
alkali halides the pressures at which a transition should 
occur from the sodium chloride to the cesium chloride 
structure, taking values for the van der Waals inter
actions as determined by Mayer. The calculated pres
sures for the heavier halides were considerably higher 
than those observed. 

I t appeared, therefore, that in calculating the differ
ence between the lattice energies of the sodium chloride 
and cesium chloride modifications on the basis of a 
Born-Mayer potential, the energy of the cesium chloride 
structure is wwderestimated by a few kcal/mole for the 
heavier alkali halides. This implies that the Born-Mayer 
potential must be made structure-dependent, i.e., with 
different parameters for different crystal structures, in 
order to explain the data. I t is obvious that the Born-
Mayer potential is in principle different for different 
structures since it represents a weighted average of 
interactions between a central ion and its first few shells 
of neighbors. However, in view of the short-range 
character of repulsive forces, such effects cannot lead to 
an energy difference as high as a few kcal/mole be
tween the cesium chloride and the sodium chloride 
modifications. 

In a recent phenomenological analysis of transition 
data for the alkali halides Tosi and Fumi8 have shown 
that a simple, two-term, structure-dependent Born-
Mayer potential can indeed account for the work in
volved in the pressure transitions for the rubidium and 
potassium halides and for the heat absorbed in the 
observed temperature transition of cesium chloride.9 As 
the only remaining possible explanation for the structure 
dependence we assume that this effect is induced by 
many-body interactions between the ions. Such inter
actions must be large, and highly sensitive with respect 
to crystal structure, i.e., they must be of short range 
(exchange type) and of low order of perturbation theory. 
We will consider three-body interactions only, i.e., 
simultaneous interactions between triplets of ions in the 
two structures. 

The first theoretical analysis of many-body inter-

4 M. Born and J. E. Mayer, Z. Physik 75, 1 (1932). 
5 A. May, Phys. Rev. 52, 339 (1937); 54, 629 (1938). 
6 J. E. Mayer, J. Chem. Phys. 1, 270 (1933). 
7 R. B. Jacobs, Phys. Rev. 54, 468 (1938). 
8 M. P. Tosi and F. G. Fumi, Phys. Chem. Solids 23, 359 (1962). 
9 At a temperature of 718°K and at normal pressure, cesium 

chloride goes over from the cesium chloride to the sodium chloride 
structure, 

actions in alkali-halide crystals was undertaken by 
Lowdin.10 He found from first-order perturbation theory 
a considerable many-body component of the inter
actions, amounting to 10-20 kcal/mole, with negative 
sign, for alkali halides with small positive and large 
negative ions. However, this many-body contribution 
decreases rapidly as the ions approach equal size and its 
magnitude is practically proportional to the Madelung 
energy of the crystal. Since the Madelung constants of 
the cesium chloride and sodium chloride configurations 
differ by only 1%, the structure sensitivity of this effect 
is much too small to account for stability. Other 
attempts have been made to introduce many-body 
components of the interactions, but these have no direct 
bearing on stability; they will be mentioned at the end 
of this paper. We will show how the stability of alkali 
crystals can be understood in terms of three-body ex
change interactions between the ions in first and second 
orders of perturbation theory. The following analysis 
bears close resemblance to that given in a previous 
publication,11 hereafter referred to as I, for the stability 
of rare-gas crystals. Preliminary results of the analysis 
have been reported earlier.12 

THREE-BODY INTERACTIONS BETWEEN 
CLOSED-SHELL IONS 

In I we have assumed that there exists a close 
similarity between the stability problems of alkali-halide 
and rare-gas crystals. This assumption is based on the 
fact that the alkali-halide ions are isoelectronic with 
rare-gas atoms and that both consist of closed electron 
shells. Consequently, their interactions must be of the 
same form if we subtract purely electrostatic forces 
between the ion charges and disregard polarization 
effects in view of the high symmetry of unstrained ionic 
crystals. 

We use, therefore, the same method as in I for the 
evaluation of three-body interactions, namely, an 
effective-electron model with one such electron per ion. 
The charge distribution of the effective electron is 
chosen to be of Gaussian form, 

p(r)=((3/irU>yexp(-Pr*), (1) 

where r is the distance between the effective electron 
and its nucleus and where 0 is a characteristic param
eter, different for different ions. Since the Gaussian 
model is used only to evaluate three-body interactions 
(which we assumed to be of the same type as those be
tween rare-gas atoms with respect to their importance 
for stability), ions and atoms are treated on the same 
basis. In other words, we assume that, except through 
the Madelung energy, the net charges of the ions play 
no essential role for the stability of alkali-halide crystals. 

10 P. O. Lowdin, A Theoretical Investigation into Some Properties 
of Ionic Crystals (Almqvist and Wiksell boktryckeri AB, Uppsala, 
1948); Phil. Mag. Suppl. 5, 1 (1956). 

11 L. Jansen, Phys. Rev. 135, A1292 (1964). 
12 L. Jansen and E. Lombardi, Phys. Rev. Letters 12, 11 (1964), 
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We continue to use the names ion, cation, and anion, 
even though in the one-effective-electron model they are 
charged neutral. 

I t should also be remarked at the outset that the 
limitation to one effective electron per ion (atom) 
implies that we consider only contributions to the three-
body energy due to the exchange of one pair of electrons 
between the same pair of ions. This approximation holds 
for rare-gas crystals. However, the nearest-neighbor dis
tances in alkali-halide crystals are relatively con
siderably smaller because of strong compression of the 
lattice due to the Madelung energy. Therefore, the 
validity of this single-exchange approximation must be 
investigated for alkali-halide crystals. In a later section 
we will undertake a detailed analysis of double-exchange 
contributions to the energy as a function of interionic 
distances and ionic dimensions. In this section we discuss 
single exchange only. 

Consider a triplet (abc) of Gaussian ions with one 
effective electron per ion, counterbalanced by nuclear 
charges of plus one. The zero-order wave function is 
(Slater determinant) 

* » ) = [3!(1-A» o 6 . ) ] -w df i t{^a[ l ]^»[2]^[3]} , (2) 

where 1, 2, 3 number the electrons. The wave function 
for ion a is given by 

v.(r)=?i*a(r) = OVx1'2)3'2 exp(- /5W2), (3) 

i.e., by the positive square root of the Gaussian density 
(1). The quantity Aabc is a total overlap integral, 
defined by 

A2«&c- A
2

a6+ A\c+ A\c- 2AabAae&bo, (4). 

in terms of the overlap integrals Aab, etc., between the 
different pairs of ions. Further, I3a is the Gaussian 
parameter for ion a. The perturbation Hamiltonian, 
H'abc, can be written as 

H abc — H ab~\-H ac~\~H be , 

in terms of the perturbations between the different pairs. 
Each alkali halide can be represented by a pair (/3,|8') 

of Gaussian parameters. We adopt the convention/3'>/3, 
i.e., /3' represents the smaller ion and fi the larger ion. The 
total three-body energy for a given crystal structure is 
then obtained by summing three-body interactions over 
all possible triplets of ions. This total three-body compo
nent appears to be completely determined by the 
parameter y = (j3'//3)2> 1, by the dimensionless quantity 
f3R, where R is the nearest-neighbor distance in the 
lattice, and by the crystal symmetry. 

First- and Second-Order Three-Body Interactions 

For the first-order energy E\ of the triplet (abc), we 
have to evaluate 

£1= {H'abc)= (H'ah)+(H'ac)+(Hf
hc), 

with the zero-order wave function (2); Ei gives the 
closed-shell repulsion between the ions. The expressions 
are very similar to those concerning a triplet of rare gas 
atoms13; the only formal difference being that the ions 
a, b, c need not be identical. The result for (H'ab) is 

(H'ab)/e* 

= l / ^ a & + l / ( l - A 2
a & c ) - i { - ( l - A 2

b c ) G a a ( & ) 

— (1 — A2
aG)Gbb(a)-\~ (Aab— AacAbc)[Gab(a)-i-Gab(b)~] 

+ ( A a c ~ A 0 b A b c ) G 0 C ( b ) + (Abc~ AabAac)Gbc(a) 

+ (Aabab — Aaabb)-\-Aac(Aabbc — Aabcb) 

-\-Abc{Aaabc~Aabac)} • (5) 

Here the symbols G and A are abbreviations for the 
following integrals: 

/

<Pa<Pb r <Pa<Pa 

dr, Gaa(b)= I dr, . 
rc J rh 

etc., with rc=distance between an electron and nucleus 
of ion c, rb— distance between an electron and nucleus 
of ion b, and 

f f <pa(\)<Ph(2)<PaO)<Po(2) 
Aabac^ I I dridT2, 

J J ru 

f f <Pa(l)<Pa(2)cpb(l)<Pc(2) 
Aaabc^ / — d r i d r 2 , 

J J fl2 

etc., with fi2=distance between electrons 1 and 2. 
Table I contains the integrals occuring in the equation 

for Ei and their values for Gaussian charge distributions, 
for the case fia=Pf, /3&=/3c=/3. Methods for evaluating 
these integrals have been developed by Boys,14 Shavitt,15 

and Zimering.16 

The quantities which appear in Table I are defined 
as follows: Rab, Rac, Rbc are the lengths of the sides ab, 
ac, be; («&,Y) is that point on ab, whose distance from a 
is equal to (l/y+l)Rabl (#C,Y) is that point on ac, whose 
distance from a is equal to (l/y+l)Rac] Ra(bc) = dis
tance between a and the middle of be; Rc(ab,y) = distance 
between c and the point (ab,y), etc., R(ab,y) (aC,y) = dis
tance between the points (ab,y) and (ac,y), etc., 
R(ab,y)(be) = distance between the point (ab,y) and the 
middle of be. 

The integrals of Table I can also be used to calculate, 
in units of 0, the values of the different integrals for the 
case @a=P] /?b=/3c=/3/ provided that the following 
substitutions are made: (i) 7 is replaced by I / 7 ; (ii) jS is 
replaced by /3Y1/2; (iii) the resulting expression is 
multiplied by Y1/2. 

13 L. Jansen, Phys. Rev. 125, 1798 (1962). 
14 S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950). 
1 6 1 . Shavitt, Methods in Computational Analysis (Academic 

Press Inc., New York, 1963), Vol. 2, p. 1. 
16 S. Zimering (to be published). 
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TABLE I. List of integrals for Eh for the case pa^P', /36=/3c==y3, 

A N D L . J A N S E N 

in units of p, and their values for Gaussian distributions of charge. 

Integral 

Aab™ 

Gaa(b) 

Gbh(a) 

Gab(a) 

Gab(b) 

Gbc(a) 

Gae(b) 

•A abac 

Aabcb 

•A-aabc 

•Aabbc 

•Aaaab 

Aabbb 

Aac
(y) 

Gac(a) 

Gac(c) 

Gcb(a) 

(H'ab) 
Value for Gaussian distribution 

/ 2 7 i / 2 y / 2 r _ 7 / 3 2 £ 2 a 6 -

\ 7 + l / L 2(7+1) J 

1 

pRab 

1 

PRab 

7 + 1 
A a 6

( 7 ) - • erf | 
PRab 

erf(/37
1/27?ft6) 

erf(/fcR„6) 

PRab 

T + l j 
Aab™ erf] 

L21/2(7+l)1/2. 

pyRab 

pyRab 

1 
Abc~ 

pRa(bc) 

1 

21/2(y+l)1/2. 

erf(/3i?o(bc)) 

A a c ^ " 
PRb(ac,y) 

-erf! 

/3i?a6 
-erf 

A T + I / 

( T + 1 ) 1 ' 

21/2 

(3Rab 

-(3Rb(ac,y) 

7 + l \1 / 2 

-erf 
Abe 

pRa(bc) 

~A. beba 

Ao6 ( < y ) A 0 c < 7 ) 

7 \1 / 2 

I PRa(bc) 
. 7 + 1 / 

-erf 
PR(ab,y)(ac, y) 

— Ahbca 

A«6W(7+1) 

'(7+1)1 ' 

A a b ^ ( 7 + 1 ) 

-erf | 

-PR(ab,y)(ac,y) 

yll2PRab 

L(7 + l)1/2(37+l)1/2 

7/5i?a6 1 
-erf • 

7iSi?a& L(7+l)1 / 2(7+3)1 / 2_ 
yP2R2acl 

(7 + DJ 

2 7 l / 2 \3 /2 

7 + 1/ 

1 

exp 

erf(/37
1/2i?«c) 

erf(/3i?ac) 
1 

pRac 

7 + 1 
A a c ^ ) erf! 

pRac 

7 + 1 
ACc(7) erf I 

pRat 

pyRa, 

— Gbc(a) 

21 /2(7+l)1 /2J 

pyRac ' 

_21/2(7+l)1/2_ 

Integral 

ab(c) 

Aaacc 

Aacah 

•n-aebe 

•&aacb 

•A-accb 

J* accc 

Abe 

Gbb(c) 

Gcc(h) 

Gbc(b) 

Gbc(c) 

Gca(b) 

Gba(c) 

^i 6c6c 

A beba 

Abcac 

Ahbca 

"• beca 

A bbbc 

A bece 

{H'ab) 
Value for Gaussian distribution 

AabW-
1 

-erf 
pRc(ab,y) L 21'2 

"(7 + DL 

-PRc(ab,y) 

-erf 
PRa 

y y y/2 
[ — J PRa, 

A 7 + 1 / 

7 + l \ 1 / 2 

— Aabac 

A a b ^ 
erf I 

PRc{ab,y) 

==J^-aabc 

Aac^Abc 

Aac^'1 

-erf 
PR(ac,y)(bc) 

A«c^>(7+1) 

PRa, 

A a c ^ ( 7 + 1) 

-erf 

7 + l \1 / 2 

1 PRc(ab,y) 
7+3/ 

/ 7 + l \ 1 / 2 

\ 7 + 3 / 

yll2pRa 

-erf 
PRac 

L(7 + l)1/2(37 + l)1/2 

yPRac 

L(7 + l)1/2(7+3)1 ' 

exp 

eri(pRbc) 
pRbc 

^Gbb(c) 

2 fpRbc 
Abe erf 

PRbc \ 2 

= Gbc(b) 

~~Gac(b) 

=^Gab(c) 

1 
-erfj 

'PRbc 

PRbc L 21/2 

<2\112 

Aae™ 
-erf 

PRb(ac,y) 

— A-acbc 

Aab^Abc 

PR(ab,y)(bc) 

~S*-accb 

7 + iy/2 
I PRb(ac.y) 

LVy+3/ 

-erf ( 1 PR(ab,y)(bc) 
. \ 7 + 3 / 

2A6 
-erf 

PRbc 

— Abbbc 

"pRbc 

23/2 
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I t is also easily verified that by putting 7 = 1 the 
integrals are reduced to the same form as that for rare-
gas atoms.13 

The first-order energy between a and b without c 
present, (H'ab){0\ is obtained from (5) by removing ion 
c to infinity. The result is 

(H'ai>yov*= -{~a aa(b) ~ Tbb(a) 

Rab 1 —A2
0& 

+ AabZGab(a)JrGab(b)']Jr {Aabab~Aaahb)} . (6 ) 

Again, the corresponding equations for (fir/
ac)

(0) and 
(Hfbc)

m are obtained from (6) by obvious substitutions. 
The three-body component of (H'ab)/e2, namely, 

{{H>ah)-(H'abyv}/e>, 

is obtained by subtracting (6) from (5). In the same 
manner we form the total three-body first-order energy 
for the triplet (abc). Finally, the relative first-order 
three-body energy, which we denote by AEi/Ei{0\ is 
given by 

AEi/Ei ( 0 ) : ' { ( i f W - W ^ l / W ^ (7) 

where 

E l ( 0 ) = < £ T , a 6 c > W = <J? ,a6>») + <i? ,ao> (0 ) + <flr,5c> (0) 

is the sum of first-order pair interactions (6) for the 
triplet. 

The three-body energies for the cesium chloride and 
sodium chloride configurations are obtained by summing 
over all triplet interactions in the two structures. In 
either lattice a central cation is surrounded by a first 
shell of anions, followed by a second shell of cations; for 
a central anion the situation is, of course, just the re
verse. Since the three-body interactions are of short 
range, the main contributions arise from triangles of 
smallest dimensions. We indicate these triangles by the 
triplet of Gaussian parameters for the ions, where the 
first parameter represents the central ion. Thus, the 
smallest triangles are denoted by (00f0r) and (0'00), 
followed by (0/3/3) and 03'/3'/3'). The first two types refer 
to isosceles triangles formed by a central ion and two of 
its nearest neighbors; the last two types refer to 
isosceles triangles formed by a central ion and two of its 
weatf-nearest neighbors. We note that the contributions 
from the triangles (000) and (0'0'0r) to the three-body 
energy can be evaluated directly as for rare-gas crystals. 

The values of the parameter 0 for rare-gas atoms can 
be determined from pair potential functions, both at 
large and at small interatomic distances.13 From these, 
the values of 0R can be calculated; they lie between 2.0 
(solid xenon) and 3.4 (solid neon). For alkali-halide ions 
we do not know such pair potentials; therefore, 0 and y 
must be determined in a different manner. In a later 
section, these values will be estimated from diamagnetic 
susceptibilities of the ions. I t is to be noted that the 
precise values of 0 and y are not of direct importance 

l EJ 0 ' 

FIG. 1. Relative 
first-order three-body 
energy AEi/Ei™ as 
a function of the 
opening 9 of isos
celes triangles (jS'jSjS), 
i.e., those with the 
smaller ion at the 
center, for 022 = 1.8 
and7 = (j8V0)2=l.OO, 
1.25, 1.50, 1.75, and 
2.00. 
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since we are primarily interested in their range of values 
for the alkali halides. For 0R this range extends from 
1.3 to 2.1 and for y from 1 to 20 or higher. 

For the stability problem we are essentially interested 
in those alkali halides which exhibit the cesium chloride 
structure under normal or moderate pressures, i.e., in 
the cesium and rubidium halides except the fluorides. 
For these halides 0R lies in the neighborhood of 1.8 and 
7 assumes values between 1 and 2. We will find that in 
these cases the three-body component of the lattice 
energy is determined essentially by contributions from 
the triangles of types (0f00) and (00'0'), whereas the 
triplets (000) and (0'0'0') are relatively unimportant. 
On the other hand, the more dissimilar the ions are in 
size, i.e., the larger the value of 7, the more important 
contributions from triplets (000) of the larger ions to the 
three-body energy become. 

In Figs. 1 and 2 we give the results for the relative 
first-order three-body energy AEi/Ei ( 0 ) as a function of 
the opening 6 of the isosceles triangles (ft'00) and 
(00'0f) for 022=1.8, a n d 7 = 1 ; 1.25; 1.50; 1.75; and 2.00. 
The results were obtained from (7), (6), and (5) on an 
IBM-1620 computer. We draw the following conclusions: 

(1) A E I / J E I ( 0 ) as a function of 0 exhibits the same 
general behavior as for rare-gas crystals11: the relative 
three-body energy is negative for triangles with small 
opening; increases rapidly with 0 until 0^120° and then 
flattens off very markedly, assuming positive values for 
triangles with large opening. 

(2) For triangles (0'00), i.e., those with the smaller 
ion at the center, increasing 7 has a negligible effect for 
small 0, whereas the three-body energy is quenched con
siderably for large values of 0. 

(3) The opposite behavior from (2) is exhibited by 
triangles (000'), i.e., those with the larger ion at the 
center. 
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FIG. 2. Relative 
first-order three-body 
energy A£i/i?i(0) as 
a function of the 
opening 6 of isos
celes triangles Wfi), 
i.e., those with the 
larger ion at the 
center for /Si? = 1.8 
and7=(iSy/3)2 = 1.00, 
1.25, 1.50, 1.75, and 
2.00. 

Since £ i ( 0 ) > 0 , we conclude that in all cases first-order 
three-body interactions favor triangles with small opening 
6, as in the case of rare-gas crystals. 

If, on the other hand, the cation is much smaller than 
the anion, i.e., if T ^ > 1 , then we expect more drastic 
changes in the behavior of AEi/Ei^K This is shown in 
Figs. 3 and 4, where AEi/Ei ( 0 ) is given for triplets (fi'pp) 
and O W ) as a function of 0, for pR= 1.5 and 7 = 2; 4; 
10; 20 and an extreme value 7=100 . For comparison, 
the values for 7 = 1 are also reported. From Fig. 3 and 4 
we draw the following conclusions: 

(10 In the case of triplets (p'pp) we see (Fig. 3) that 
AEi/E\{0) becomes practically independent of 7 for 
0> 150°, whereas the values for small 6 increase rapidly 
with 7. 

(2') In the case of triplets (0$), with a much larger 
ion at the center, we see (Fig. 4) that the three-body 
interactions are independent of 6 for 7 ^ 10. For 7 ^ 4 
the values increase very sharply for the smallest 
openings and then remain practically constant. 

Generally, we see that with increasing 7, the three-
body energy is quenched considerably and loses its 
sensitivity with respect to the crystal structure. From 
this we anticipate that in the case of very dissimilar ions 
the main three-body contribution will arise from tri
angles (flSjS), i.e., those formed by a large ion at the 
center and two of its ^^ -nea re s t neighbors. 

In addition to the types of isosceles triangles con
sidered above, we will later also evaluate contributions 
to the three-body energy from nonisosceles triangles 
in the sodium chloride and cesium chloride configu
rations. 

Next, we consider three-body interactions between 
the ions in second order of perturbation theory. In this 
case we have to evaluate, for an arbitrary triplet (abc) 

(H.*'O&C)OJC(-£T'abc) *0 

EQ—EK 

EI 
-(LH'atc-<H'a>c)y), (8 ) 

where Eav is an average excitation energy defined by the 
averaging procedure. The index K numbers the excited 
states of the system (energy EK); EQ is the unperturbed 
ground-state energy. The brackets denote again an 
expectation value for the ground-state wave function (2). 

The quantity of direct interest is again the relative 
three-body energy for the triplet, defined by 

AE2/E2W=(E2-E2(0))/E2 (0) (9) 

where E2(0) denotes the sum of second-order energies 
between the three isolated pairs of ions which form the 
triangle. In I, AE2/^2(()) was analyzed for rare-gas 
crystals; detailed numerical results were given for solid 
argon (J3R=2A). It was found that the relative first- and 
second-order three-body interactions are practically the 
same at all values of the opening 6 of isosceles triangles 
formed by a central atom and two of its nearest neighbors in 
the crystal, 

The analysis of second-order three-body interactions 
between alkali-halide ions can be carried through with
out detailed calculations in two limiting cases. First, we 
consider 7 values between 1 and 2; I3R^1.8. In the 
present section we found that for such values the first-
order energies AE\/E\m are very similar to those for 
rare-gas atoms. I t must be expected that this similarity 
extends to second-order interactions. Specifically, we 
assume that in this range the relation AEi/Ei ( 0 ) 

^AE2/E2(0) holds also for three-body interactions between 
ions. Secondly, for values of 7^>1 we found that the 

Isosce 

N 

X 
/ N 

16 

les triangles P'(3(3 

(i R = 1.5 

100 

7L-.. 

2 - ^ 

—4 

*"' 
FIG. 3. Relative 

first-order three-body 
energy AEi/Ei^ as 
a function of the 
opening 6 of isos
celes triangles (P'(3(3), 
i.e., those with the 
smaller ion at the 
center, for 0R = 1.5 
andT= 03'/W = l, 2, 
4, 10, 20, and 100. 
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three-body interactions are strongly quenched; the 
three-body component of the crystal energy is then 
mainly due to triplets (/3/3/3) and the relation AEi/E^ 
~ AE2/E2

m is again valid. By interpolation the relative 
first- and second-order three-body energies will be taken 
as equal over the whole range of values for (3R and y of 
alkali halide crystals. 

Since the second-order pair energy J32
(0) for any triplet 

is negative, the symmetry properties of second-order 
three-body interactions are just the reverse of those in 
first order in that triangles with large opening 0 are now 
favored. Accordingly, the stability of alkali-halide 
crystals will be found to depend on pair interactions 
(including the Madelung energy) and on a balance 
between first- and second-order three-body interactions 
for the different triplets in the cesium chloride and 
sodium chloride configurations. 

DOUBLE-EXCHANGE CONTRIBUTIONS TO 
THREE-BODY ENERGY 

The results of the previous section for the relative 
three-body interactions were obtained on the basis of a 
one-electron model for the ions. This implies that we 
take into account only contributions to the three-body 
energy due to exchange of a single pair of electrons be
tween the same pair of ions. As the interionic distances 
decrease, it must be expected that effects due to multiple 
exchange become more important. Consequently, we 
must verify that the results of the previous section are 
not essentially changed if double exchange is taken into 
account. In particular, the symmetry properties of 
three-body interactions should be stable against double 
exchange. 

To calculate double-exchange contributions it is 
sufficient to investigate the case 7 = 1. Consider a triplet 
(abc) of identical Gaussian ions or atoms with two 

effective electrons per ion (opposite spins), counter
balanced by nuclear charges of plus two. The zero-
order wave function is (Slater determinant) 

^ w = [6! ( l -A 2
a & e ) ] - 1 / 2 det{ < p a [ l> 1 ^C2]f t 

X ^6[3>8^b[4]/J4^[S>6^[6]/S 6}, (10) 

where 1-6 numbers the electrons and where a and ft are 
spin functions (symbol 0 not to be confused with the 
Gaussian parameter). The atomic wave functions <p(f) 
are again of the form (3), and A2

abc is defined by (4). 
The perturbation Hamiltonian H'abc is again a sum of 
perturbations between the three pairs of atoms, in this 
case with two electrons per atom. 

The resulting expression for {Hr
ab)/e

2 is more compli
cated than the corresponding equation (5) for the single-
exchange approximation; it can be written, noting that 
for identical atoms 

Gaa(b) — Gbb(a), Gab(a)~Gab(b) 

as 

(H'ab)/e
2 

4 1 

a n d Aaaab=Abbba> 

= = . — + {-4tGaaio)P+SGaHa)Q 

Rab (i~A*abcy 

+4(l+ZabJ)GacWR+2AababS 

+2(l+Zab2)AaeabT+2AahbaU 

+2(l+tabJ)AaaabV+2(l+Zab-])AachaW 

+2AabccX}, (11) 
where the symbol [_ab~\ stands for the operation of 
permuting a and h, and where the symbols P to X are 
defined as follows: 

P -2 -2A 2
a 5 -3A 2

a c ~3A 2
6 c +4A a 6 A a c A & c 

+ A2
abA2

&c+A2
a6A2

ac+2A2
acA

2
bc+A4

ac+A4
&c 

- 2 Aa&AacA
3

&c- 2 AabAbcA
s
ac; 

Q= Aab~ A a c A 6 c - A3
a &- AafoA2

&c- Aa5A2
ac 

+AacA3
5c+AbcA3

ac+3A2
a&A 

ac&bc 

2Aa&A2
acA

2
&c; 

R=Aac~ Aa 6A& c- A2
a&Aac- A2

&cAac-~ A8
ac 

+ Aa6A3
&c+A3

abAbc+3Aa6A2
acAbc-2A2

a&A 

S^2~2A\c-2A\e-A\b+2AabAacAbc+A*acAhc; 

T= -2Abc+AabAac+2Ahc+A2
ahAbc 

+ A2aCAbc-3AabAacA2
bc', 

U^-l + A2
ac+Ahc+2A\b--4AabAacAbc+A\cAhc; 

V= -Aab+AacAhc~-AacAhc+AabA
2
bc; 

W= Aac+ AabAac~- 2 A2
abAGC-~ 2AacA2

&c- A3
GC 

+3AabA&cA
2

ac; 
and 

X=AacA&c~Aa6A2
&c-Aa6A2aC+A2

a&AacA fec. (12) 
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The equations for {H'ac)/e
2 and {Hf

hc)/e
2 are obtained 

from (11) and (12) by cyclic permutations. 
The first-order energy for the pair (ab), without c 

present, is then given by (11) with atom c removed to 
infinity. The result, corresponding to (6), is 

(H'ah)^/e2 

Rah 

(1-A2
a j ) 

( l -A 2
a J ) 

{2Gaa(b)~"2AabGab(a)~(^abab~"Aaabb)} 

-£A2
abAabab+Aaabb+2AabAaaab]- ( 1 3 ) 

By comparing (6) and (13) we see that the first two 
terms of (13) represent four times the single-exchange 
first-order energy between a and b; the remainder con
stitutes an interference effect between the electron pairs 
on the different atoms. The interactions between a and 
c, or those between b and c, follow again from (13) by 
cyclic permutations. 

In Fig. 5 the results for AEi/£i ( 0 ) are given for 
fiR=-1.0; 1.6 and 2.0, as a function of the opening 0 of 
isosceles triangles, both for one and for two effective 
electrons. We draw the following conclusions: 

(a) No qualitative changes occur for AEi/Ei(0\ as a 
function of 6, if double exchange is taken into account. 
In particular, the symmetry properties of the three-body 
interactions remain the same even for values as small 
asjff£=l. 

(b) Double exchange quenches AE\/Eim both at 
small and at large openings of the triangles, but the 
quenching effect decreases rapidly with increasing (3R. 

These results confirm validity of the single exchange 
approximation for rare-gas crystals (/3R^2). 

(c) The double-exchange analysis supports the as
sumed similarity between stability of rare-gas and 
alkali-halide crystals. 

In view of these results, it is justified to carry out the 
stability analysis on the basis of a single-exchange 
approximation. 

DETERMINATION OF GAUSSIAN PARAMETERS 
FOR ALKALI HALIDES 

The values of the Gaussian parameter j3 for rare-gas 
atoms can be determined from pair potential functions13 

at large and at small interatomic distances. For alkali-
halide ions such a method cannot be used, since pair 
potentials between the ions are unknown. Therefore, a 
different procedure for estimating the Gaussian param
eters j8, /3' or /?, 7 must be followed. We expect that the 
fi value for each cation will be somewhat larger than 
that for the corresponding isoelectronic rare gas atom, 
and for each anion that it is somewhat smaller than 
this value. 

To estimate such differences, experimental values for 
the molar diamagnetic susceptibilities of alkali-halide 
ions and rare-gas atoms17 were used to evaluate fi param
eters of the ions. Since the susceptibility x of an atom 
or ion with one effective electron is proportional to (r2), 
i.e., proportional to fi~2 for a Gaussian distribution, we 
have the following relation 

\fi ion/fi&to m ) 2 
"^•atom/'M< (14) 

The fi values for ions were calculated from (14) by 
comparing each ion with its corresponding isoelectronic 
rare gas atom, using for the atoms the fi parameters 
obtained from pair potentials.18,13 The resulting values 
are given in Table I I together with those of the rare-gas 
atoms. In addition, we give in Table I I I values of y and 
fiR for the alkali-halide crystals; R denotes the nearest-
neighbor distance in the lattice and fi represents the 
larger ion. 

The values in the two tables should be viewed 
primarily in relation to each other and to the rare-gas 
crystals, for which the values of fiR are 2.0 (xenon), 
2.1 (krypton), 2.4 (argon), and 3.4 (neon). We have 
included the calculated parameters for lithium halides, 

TABLE II. Values obtained with (14) for Gaussian parameter £ 
in units 108 cm"1, for alkali-halide ions, and compared with those 
of rare-gas atoms. 

He 
Li+ 

1.59 
2.60 

Ne 
Na+ 

F~ 

1.07 
1.162 
0.936 

A 
K+ 
ci-

0.623 
0.718 
0.558 

Kr 
Rb + 

Br~ 

0.532 
0.600 
0.479 

Xe 
Cs+ 
I -

0.454 
0.503 
0.419 

17 C. Kittel, Introduction to Solid State Physics (John Wiley & 
Sons, Inc., New York, 1957), Chap. 9. 

18 L. Jansen and R. T. McGinnies, Phys. Rev. 104, 961 (1956). 
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TABLE III . Values obtained with (14) for the dimensionless 
parameters (3R and 7 = (0V/3)2 for alkali-halide crystals; R denotes 
the nearest-neighbor distance and /3 represents the larger ion. 

Alkali 
halide 

LiF 
NaF 
KF 
RbF 
CsF 

LiCl 
NaCl 
KC1 
RbCl 
CsCl 

0R 

1.88 
2.16 
1.91 
1.69 
1.51 

1.44 
1.57 
1.75 
1.83 
1.79 

y 

7.72 
1.54 
1.70 
2.43 
3.46 

22 
4.34 
1.66 
1.16 
1.23 

Alkali 
halide 

LiBr 
NaBr 
KBr 
RbBr 
CsBr 

Lil 
Nal 
KI 
Rbl 
Csl 

(3R 

1.325 
1.43 
1.58 
1.64 
1.78 

1.26 
1.35 
1.48 
1.54 
1.66 

7 

29 
5.88 
2.25 
1.57 
1.10 

38 
7.69 
2.94 
2.05 
1.44 

although it is only relevant to mention that their 
7 values are high. 

THE STABILITY OF ALKALI-HALIDE CRYSTALS 

We will now apply the results of the previous sections 
to the stability of alkali-halide crystals. As a simplifica
tion, we limit ourselves to the absolute zero of tempera
ture and neglect the effect of zero-point energy on 
stability, so that we only have to compare the static 
lattice energies of the cesium chloride and the sodium 
chloride configurations for the different alkali halides. 

Consider a crystal of N cations and N anions; the 
static lattice energy, E(rhr2y- • - ,r2N), is defined as the 
difference between the energy of the crystal, for a fixed 
configuration ri, r2, • • •, r%N of nuclei, and the energy 
of the 2N constituents at infinite separations and at 
absolute zero temperature. We write the lattice energy 
formally as a series of terms depending upon the position 
coordinates of increasing numbers of ions, as follows 

£ ( * W ' •,r2^) = £ { 2 } + £ { 3 } + £ { 4 } + . • • , (15) 

where E{2) contains all terms of E which depend on the 
coordinates of only two ions; in E{3} all terms are 
collected which are simultaneously functions of the 
coordinates of three ions, etc. We assume that this 
expansion may be terminated with the three-particle 
function E{3} for molecular crystals and ionic solids. 

Expressions for the components E{2), E{3}, etc., of 
E in terms of the interactions between the ions can 
easily be given. Evidently, E{2} is just the sum of inter
actions for the isolated pairs of ions in the crystal. 
Further, £{3} is the limiting value of E-E{2) if all 
simultaneous interactions between more than three 
ions are discarded, i.e., 

£{3}= £ lE(abc)~{E^(ab)+E^(ac)+E^(bc)}2 
a<.b<c 

= £ AE(abc), (16) 
a<b<c 

where E{abc) denotes the total interaction energy for the 
isolated triplet (abc) and Em(ab) the interaction for the 
isolated pair (ab); the summations extend over all 

possible triplets. The pair interactions Em(ab) and the 
triplet interactions AE{abc) are evaluated in first and 
second orders of perturbation theory. We write E ( 0 ) 

= Ei ( 0 ) +E 2
( 0 ) and AE=AE1+AE2 for any pair or 

triplet of ions; the subscripts 1 and Z denote the orders 
of perturbation, as in the previous sections. 

We first consider the pair energy E{2) for the crystal. 
Since accurate theoretical expressions for the pair inter
actions between ions are not available, we use the 
empirical information that the total pair energy of alkali-
halide crystals may be calculated with a model of 
electrostatic interactions between point charges for the 
ions, supplemented by first-order repulsions between 
the closed shells. We remark that the van der Waals 
(second-order) interactions between the ions are only 
indirectly represented in this model. Since we have 
ascribed the structure dependence of the repulsive 
parameters, analyzed by Tosi and Funi,8 to the effect of 
three-body interactions, we write, accordingly, the total 
pair energy E{2) for each alkali halide and either crystal 
structure as a sum of Madelung energy M and of the 
total first-order repulsion between the ions, i.e., as 

E{2}=M+j: E1«»(ab). (17) 
a<b 

Further, let AE=AEi+AE2 represent the three-body 
energy for an arbitrary triplet and AEi/Eii0\ AE2/E2

(0) 

the relative first- and second-order three-body inter
actions. With the assumption AE±/'£i(0) ~ AE2/'E2

(0) we 
can now write 

AE= (AE1/E1^)E1^+ (AE2/E2^)E2w 

~(A£ 1 /£ 1 W)(£ 1 w+£ 2 <°>) , (18) 

where £ i ( 0 ) + £ 2
( 0 ) = £ ( 0 ) is the total (first-plus second-

order) pair energy of the triplet. I t is important to note, 
from (18), that in this case the van der Waals pair 
interactions E2

W must explicitly be taken into account. 
The three-body crystal energy E{3) is the sum of (18) 
over all possible triplets of ions. 

TABLE IV. Numbers and types of triangles per ion in the 
sodium chloride configuration. The sides of the triangles are in 
units of nearest neighbor distance; 0 is the angle between Rab 
and Rac> 

Type 

AoCid 
(CoAiAt) 
AoA2A2 

(Co C% C2) 

A0C1A2 
(CVUC2) 
A0CIC3 

(CoAiAt) 
AQA2Cz 

(CoC*4«) 

Number 
per ion 

12 
3 
8 

12 
24 

6 
24 
24 
24 

48 
24 

R\b 

1 
1 
2 
2 
2 
2 
1 
1 
1 

2 
2 

R2ac 

1 
1 
2 
2 
2 
2 
2 
2 
3 

3 
3 

Rhc 

2 
4 
2 
4 
6 
8 
3 
5 
6 

5 
9 

COS20 

0 
1 

1/4 
0 

1/4 
1 
0 

1/2 
1/3 

0 
2/3 

e 
90° 

180° 
60° 
90° 

120° 
180° 
90° 

135° 
125° 15' 

90° 
144° 447 
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FIG. 6. Relative 
first-order three-body 
energy AEi/£i<°> for 
the special case 7 = 1 
as a function of (3R, 
for nonisosceles tri
angles. In the nota
tion of Tables IV and 
V, curve (b) refers 
to triangles (1, 2, 3; 
0=90°), curve (c) 
to (1, 8/3} 11/3; 
0=90°), curve (d) to 
(1, 2, 5; 0=135°), 
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and curve (f) to 
(1, 8/3, 19/3; 0= 
144° 44'). For com
parison with isosceles 
triangles, curve (a) 
refers to the type 
(1,1, 2; 0 = 90°). 

/3R 

To evaluate E{3} for the cesium chloride and the 
sodium chloride structures, we first classify the different 
triangles formed by a central ion and two neighbors of 
the first few shells in the two configurations. Before, we 
have indicated such triangles by the corresponding 
triplet of Gaussian parameters, but for what follows a 
more specific notation is needed. We denote a cation by 
C, an anion by A, and add subscripts 0, 1, 2, to dis
tinguish between different shells around the central ion. 
The subscript zero refers to the central cation or anion. 

In Tables IV and V, the numbers per ion and the 
types of different triangular configurations are given 
for the sodium chloride and cesium chloride structures. 
The sides Rab, Rac, and Rbc are expressed in units of 
nearest-neighbor distance R; 0 is the angle between 
Rab and Rac* The type of triangle A^C\A2, for example, 
denotes a triangle formed by a central anion, a cation 

TABLE V. Numbers and types of triangles per ion in the cesium 
chloride configuration. The sides of the triangles are in units of 
nearest-neighbor distance; 0 is the angle between Rab and Rac> 

Type 
Number 
per ion R2

ab R\, Rh cos20 

A0CiCi 
(CQA1A1) 

AQA2A2 

(C0C2C2) 
A0A ZA3 

(Co C3 CB) 

A0A 2^3 
(C0C2C3) 
AQCiA2 

( C 0 ^ I C 2 ) 

A0CiAt 

(Co^iCs) 

12 
12 
4 

12 
3 
8 

12 
24 

6 
24 
24 
24 

48 
24 

1 
1 
1 

4 / 3 
4 / 3 
8/3 
8/3 
8/3 
8/3 
4 / 3 
4 / 3 

1 

1 
1 

1 
1 
1 

4 /3 
4 / 3 
8/3 
8/3 
8/3 
8/3 
8/3 
8/3 
4 / 3 

8/3 
8/3 

4 / 3 
8/3 
4 

8/3 
16/3 
8/3 

16/3 
8 

32 /3 
4 

20 /3 
11/3 

11/3 
19/3 

1/9 
1/9 

1 
0 
1 

1/4 
0 

1/4 
1 
0 

1/2 
1/3 

0 
2 /3 

70° 32 ' 
109° 28 ' 
180° 
90° 

180° 
60° 
90° 

120° 
180° 
90° 

135° 
125°15 ' 

90° 
144° 44 ' 

of the first shell and an anion belonging to the second 
shell of neighbors. As is seen from the tables, the first 
two types of triplets in the sodium chloride structure 
and the first three types of triplets in the cesium chloride 
structure form isosceles triangles. The remaining types 
of triangles have three different sides; we will first 
verify that the contributions to the three-body energy 
due to these nonisosceles triangles are small, so that we 
then may restrict ourselves to isosceles triangles only. 

We have determined the relative first-order three-
body energy AEi/Ei(0) as a function of PR for the con
gruent types of triangles A0CiA2 (sodium chloride) and 
AQA2AZ (cesium chloride) as well as for the types 
AQCIA2 and AQCIAZ (cesium chloride). For simplicity, 
we considered only the case 7 = 1. The results are given 
in Fig. 6. For comparison, curve (a) of Fig. 6 refers to an 
isosceles triangle with 0=90°. We draw the following 
conclusions: 

(i) A£i /£ i ( 0 ) is quenched for 0=90° as the third ion 
is moved away from the other two; this is apparent 
from curves (a), (b), and (c). Also, A£i/Ei ( 0 ) decreases 
rapidly with increasing PR. 

(ii) Contributions from nonisosceles triangles in 
either structure tend to cancel each other. For example, 
consider the type A QCIA 2 (sodium chloride); there are 
24 such triangles with 0=90° [curve (b)] and 24 with 
0=135° [curve (d)]. These two contributions are 
practically equal and of opposite sign over the whole 
range of values of PR. In the same way, considering the 
types A0C1A2 and AoCiAz (cesium chloride), we note 
that there are 24 triangles with 0== 125° 15' [curve (e)], 
and 24 with 0=144° 44' [curve (f)], which practically 
cancel against 48 triangles with 0=90° [curve (c)]. 
The same considerations apply to the types A0C1C3, 
AQA2C%, (sodium chloride) and to the type AoA2Az 
(cesium chloride). 

I t is thus seen that the contributions from nonisosceles 
triangles are small, of the same order in the two structures 
and, moreover, that they tend to cancel each other in either 
structure because of symmetry properties of three-body 
interactions. 

We will now undertake the stability analysis, restrict
ing ourselves to the isosceles triangles of Table IV 
(sodium chloride structure) and of Table V (cesium 
chloride structure). A number of qualitative features of 
the differences between the two structures with respect 
to stability can already be obtained by comparing 
triangles of Tables IV and V and applying symmetry 
properties of three-body interactions. However, we will 
postpone a more general discussion until after the 
complete numerical results have been presented. 

The stability analysis is carried out in the following 
four steps: 

(A) For each alkali halide and for both structures we 
determine the total three-body energy {16) for N cations and 
N anions. The values of 7 and PR are taken from 
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Table III. To determine AE for each triangle from (18), 
we must know its total pair energy, including contribu
tions from van der Waals interactions. For rare-gas 
crystals (see I) a pair potential function is taken as 
basis, e.g., a Lennard-Jones (12,6) potential, placing 
nearest neighbors at a distance where the potential 
has its minimum. For alkali halides such pair potentials19 

are not known with precision. We estimate that, on the 
basis of a Lennard-Jones (12,6) potential, the nearest-
neighbor distance may be taken between 0.85cr and 
0.90o-, where er is the distance for zero potential. The 
ratio between repulsive and attractive interactions for 
such a pair varies between —2.7 and —1.9. This 
implies that Ei (0)+E2

(0) for a pair of nearest neighbors 
varies between 0.63 Ei(0) and 0.47 £i (0). We will write 
for the total pair energy of the triplet Ei(0) (1 — b), with b 
between 0.4 and 0.6, approximately. 

On the other hand, if next-nearest neighbors are at 
distances comparable to the nearest-neighbor separation 
in rare gas crystals, then the relation £2

(())~—2£i(0) 

holds, so that E1w+E2
{0)~~~E1

(-0) in this case. Con
tributions from triangles at much larger distances will 
be neglected. 

On the basis of these estimates we can evaluate AE 
for each triplet in terms of its total first-order pair energy 
i£i(0). To sum over the different triangles we must 
relate their first-order energies. Let a\ denote the pair 
repulsion between nearest neighbors, a2 the repulsion 

TABLE VI. Total pair repulstion (column 1), total three-body 
energy involving nearest neighbors (column 2), total three-body 
energy involving next-nearest neighbors (column 3), for the alkali 
halides in the sodium chloride configuration. All results are 
expressed in units of nearest-neighbor repulsion ai, except those 
in column 2, where the unit is 0:1 (1—6). The parameter 6 stands 
for the ratio between first- and second-order pair interactions for 
a triplet of nearest neighbors; b^0.5 approximately. 

Alkali 
halide 

LiF 
NaF 
KF 
RbF 
CsF 
LiCl 
NaCl 
KC1 
RbCl 
CsCl 
LiBr 
NaBr 
KBr 
RbBr 
CsBr 
Lil 
Nal 
KI 
Rbl 
Csl 

Sodium chloride configuration 

Pair 
repulsion 

11.68 
6.30 
6.82 
8.09 

10.21 
37.23 
11.06 
7.20 
6.96 
7.03 

55.33 
14.56 
8.31 
7.55 
7.16 

75.50 
18.49 
9.65 
8.30 
7.47 

Three-body 
A0C1C1; 
< V M i 

-4 .46 
-1 .91 
-2 .41 
-3 .07 
-3 .88 
-7.37 
-4 .44 
-2 .81 
-2.92 
-2 .96 
-8 .10 
-5 .40 
-3 .23 
-3 .18 
-3 .13 
-8 .48 
-6 .21 
-3 .64 
-3 .37 
-3 .22 

• energy 
A0A2A2; 
Co C2 C2 

4.36 
0.24 
0.64 
1.48 
2.64 

18.46 
3.32 
0.83 
0.72 
0.53 

27.47 
5.06 
1.47 
1.04 
0.83 

37.59 
7.13 
2.20 
1.39 
1.00 

TABLE VII. Total pair repulsion (column 1), total three-body 
energy involving nearest neighbors (column 2), total three-body 
energy involving next-nearest neighbors (column 3) and third 
neighbors (column 4), for the alkali halides in the cesium chloride 
configuration. All results are expressed in units of nearest-neighbor 
repulsion «i, except those in column 2, where the unit is ai(l—b). 
The parameter b stands for the ratio between first- and second-
order pair interactions for a triplet of nearest neighbors; b^O.5 
approximately. 

Alkali 
halide 

LiF 
NaF 
KF 
RbF 
CsF 
LiCl 
NaCl 
KC1 
RbCl 
CsCl 
LiBr 
NaBr 
KBr 
RbBr 
CsBr 
Lil 
Nal 
KI 
Rbl 
Csl 

Pair 
repulsion 

24.60 
10.07 
10.78 
12.60 
15.53 
61.20 
17.55 
11.16 
10.75 
10.83 
86.41 
22.41 
12.59 
11.44 
10.94 

115.02 
28.17 
14.45 
12.46 
11.33 

Cesium chloride configuration 

A 0 Ci Ci; 
C V M i 

-10.87 
-7 .84 
-8 .53 
-9 .47 

-10.60 
-15.12 
-11.19 
-8 .90 
-8 .78 
-8.82 

-16.30 
-12.44 

-9 .58 
-9 .15 
-8 .91 

-16.88 
-13.50 
-10.27 

-9 .59 
-9 .11 

Three-body energy 
A QA 2A2; 
Co C2 C2 

5.47 
0.44 
0.82 
1.81 
3.44 

24.91 
4.20 
1.14 
0.92 
0.96 

37.47 
6.68 
1.95 
1.34 
1.06 

51.58 
9.55 
2.90 
1.91 
1.29 

A0AzAr, 
Co Cz Cz 

0.30 
0.39 
0.98 
8.05 
1.10 
0.19 
0.09 
0.11 

13.22 
2.15 
0.49 
0.27 
0.11 

18.78 
3.31 
0.88 
0.50 
0.24 

19 Cf. Y. P. Varshni and R. C. Shukla [J. Chem. Phys. 35, 582 
(1961)] for detailed references. 

between next-nearest neighbors and a 3 that between 
third neighbors in the crystal. We equate a2/ai and a3/«i 
to the corresponding ratios between first-order inter
actions in the Gaussian model. Since Ei(0) for any triplet 
considered is a function of ai, a2, and 0:3, we can express 
in this way Ei(0) for each triplet as a function of ax only. 

(B) The total first-order pair energy E{2) is then 
evaluated from (17) by adding to the Madelung energy 
the sum of all pair repulsions as a function of a\, using 
Gaussian ratios for distant neighbors. 

(C) From (A) and (B) we obtain the sum of all pair 
and triplet interactions as a function of a\ for the two 
structures. This sum, for the stable structure, is put 
equal to the experimental value of the lattice energy as 
determined by the Born-Haber cycle. We use this 
equality to determine the nearest-neighbor repulsion a\. 

(D) With the value of a\ obtained from (C), we 
calculate the lattice energy of the other structure. The 
energy difference between the two structures is then 
used to evaluate also transition pressures from the 
sodium chloride to the cesium chloride structure. 

The results of steps (A) and (B) for all alkali halides 
in the sodium chloride and cesium chloride configura
tions are reported in Tables VI and VII, respectively. 
The first column of either Table gives the total pair 
repulsion in units of the nearest-neighbor repulsion ai. 
In the second column we list the total three-body 
contributions from A0C1C1 and C0A1A1 triangles, 
whereas the third column gives the total three-body 
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TABLE VIII. Difference in lattice energy, AE, in kcal/mole be
tween the cesium chloride and the sodium chloride configurations 
for the alkali halides. Also given are calculated transition pressures, 
P*(calc) in kbar compared with the results of the Born-Mayer-
Jacobs theory Pt(B-M), and experimental values P*(exp). The 
first column gives the values for the parameter b. 

Alkali 
halide 

TiF 
NaF 
KF 
RbF 
CsF 
LiCl 
NaCl 
KC1 
RbCl 
CsCl 
LiBr 
NaBr 
KBr 
RbBr 
CsBr 
Lil 
Nal 
KI 
Rbl 
Csl 

b 

0.6 
0.6 
0.6 
0.4 
0.4 
0.6 
0.6 
0.5 
0.5 
0.4 
0.6 
0.6 
0.5 
0.5 
0.4 
0.6 
0.6 
0.6 
0.5 
0.4 

AE 
kcal/mole 

33^3 ~ 
7.5 
6.0 
2.2 
3.2 

14.4 
8.1 
2.1 
1.05 

- 0 . 6 
11.0 

7.8 
2.3 
0.94 

-0.82 
6.9 
5.7 
2.8 
0.9 

-0 .95 

P«(calc) pt(B-M) 
kbar 

1.060 
158 
83 
25 
31 

221 
95 
18 
7.7 

140 
78 
17 
6.1 

67 
44 
17 
4.8 

kbar 

300 
200 
88 
68 

P<(exp) 
kbar 

9-15a 

35 (not observed)a 

140 
74 
74 
39 

(not calc) 
105 
53 
59 
30 

(not calc) 
68 
44 
49 
22 

(not calc) 

19.6 
4.9 

18 
4.5-5.0 

17.85 
4.0 

a See Ref. 21. New experiments on cesium fluoride have been announced 
by these authors. 

interactions for triangles C0C2C2 and A0A2A2 in either 
structure. Finally, in the fourth column of Table VII 
we list the contributions from triangles AoA%Az and 
C0C3C3 in the cesium chloride configuration. From 
Tables VI and VII we draw the following main 
conclusions: 

(I) The three-body interactions for triplets involving 
nearest neighbors (AQCICI and C0A1A1) increase the 
attractive forces in either structure. The contribution is 
larger for the cesium chloride configuration, which is thus 
favored by these types of triangles. 

(II) The three-body interactions for triplets involv
ing next-nearest neighbors (A0A2A2 and C0C2C2) in the 
sodium chloride structure, and next-nearest as well as 
third neighbors in the cesium chloride structure 
(A oA 2A 2, C0C2C2, A oA zA 3 and C0C3C3) increase the 
repulsive forces in either structure. The contribution is 
smaller (less repulsive) for the sodium chloride configura
tion, which is thus favored by these types of triangles. 

(III) When the ions become more dissimilar in size, 
i.e., when 7 increases, the three-body interactions 
involving next-nearest neighbors become increasingly 
more important with respect to those involving first 
neighbors. 

(IV) In addition to the difference in Madelung 
energy between the two structures, the stability is deter
mined by a balance between pair repulsions, three-body 
attractive and three-body repulsive forces; these different 
components of the crystal energy depend on the values 
of (3R and 7. For large values of 7 we predict the sodium 
chloride structure to be the stable one. As will be shown, 
this influence of 7 explains the difference in crystal 

structure between cesium fluoride (7^3.5) and that of 
the other cesium halides (7 between 1.1 and 1.4). 

(V) All the above conclusions are independent of ah 

the pair repulsion between nearest neighbors, and of the 
parameter b which measures the ratio between second-
order and first-order pair interactions for a triplet of 
nearest neighbors. 

Finally, following steps (C) and (D) of the analysis, 
we determine the difference in static lattice energy be
tween the sodium chloride and the cesium chloride con
figurations for the alkali halides. In addition, we esti
mate the transition pressures for those halides which 
exhibit sodium chloride structure at normal pressure, 
following the simplified treatment given by Born and 
Huang.20 

In Table VIII, the numerical results are given for the 
difference in lattice energy AE between the cesium 
chloride and the sodium chloride structures. A positive 
value of AE implies that the sodium chloride structure 
is the stable one. Also included in the table are values 
for the transition pressure, Pf(calc), the corresponding 
results of the Born-Mayer-Jacobs theory Pt(B-M), and 
the experimental21'22 values, P f(exp). The precise 
numerical values for the paramber b are not of impor
tance for the sign of the difference in lattice energy. 
However, the transition pressures are a sensitive func
tion of b. The values listed in Table VIII give the best 
agreement with experimental results on transition 
pressures. I t is important to observe that b varies 
regularly and in the same manner for all the alkali-
halide crystals. 

DISCUSSION OF RESULTS 

I t is seen from the results reported in Table VIII that 
by introducing three-body exchange interactions be
tween the ions, all the main aspects of the stability problem 
for alkali-halide crystals can be derived on a quantitative 
basis. Specifically, the theory accounts for the stability 
of the cesium chloride configuration for cesium chloride, 
bromide, and iodide. Moreover, the theory reproduces 
the pressure values of experimentally observed transi
tions from the sodium chloride to the cesium chloride 
configuration. Further, it is of particular interest to note 
that the theory agrees with recent experimental in
formation22 according to which rubidium fluoride is less 
stable in the sodium chloride structure than cesium 
fluoride. 

Considering the values of the parameter b, which 
stands for an average ratio between second- and first-
order pair interactions for a triplet of nearest neighbors, 
it is seen that these vary regularly and in the same 
manner for all alkali halides; the limiting values of 0.6 

20 Reference 1, Chap. I l l , Eqs. (13.18) and (13.19). 
21 P. W. Bridgman, The Physics of High Pressure (G. Bell and 

Sons, Ltd., London, 1952). 
22 G. J. Piermarini and C. E. Weir, J. Chem. Phys. 37, 1887 

(1962). 



S T A B I L I T Y O F A L K A L I - H A L I D E C R Y S T A L S A 1023 

and 0.4 can be explained by analogy with potential 
functions between rare-gas atoms. To illustrate the 
sensitivity of the results with respect to changes in b, we 
find that, taking 6 = 0.5 instead of 0.6 for potassium 
fluoride and iodide, the values for AE and Pt change 
to 3.8 kcal/mole, 53 kbar, 2.2 kcal/mole, 13.5 kbar, 
respectively. 

The relative magnitude of the total three-body inter
actions, with respect to the crystal energy of the stable 
structure, lies between —1.6 and + 3 . 3 % for the 
fluorides, between —2.8 and + 3 . 6 % for the chlorides, 
between —2.2 and + 3 . 5 % for the bromides, and 
between —2.6 and + 2 . 3 % for the iodides. The total 
pair repulsion varies between 7 and 18% of the crystal 
energy, in good agreement with the Born-Mayer theory. 

Other attempts have been undertaken in the litera
ture to introduce many-body interactions in alkali 
halide crystals; these have, however, no bearing on 
stability. Apart from Lowdin's first-order calculations,9 

which we have already discussed, we mention a semi-
classical analysis by Dick and Overhauser,23 and by 
Dick,24 based on electrostatic interactions involving 
"exchange charges" in terms of which the first-order 
repulsion between two closed-shell atoms was inter
preted. Four-body interactions are then introduced by 
considering electrostatic forces between two exchange 
charges associated with two nonoverlapping pairs of 
atoms or ions; three-body interactions arise from forces 
between an exchange charge and distant ions. Finally, 
Colwell25 has attempted a detailed analysis for the 
specific case of cesium chloride in terms of the various 
possible contributions to the crystal field, starting from 
explicit expressions for the electron wave functions. 
Unfortunately, it is impossible to estimate the reliability 
of such a calculation. 

There are two aspects of the theory of alkali-halide 
stability, presented in this paper, which we like to 

23 B. G. Dick, Jr. and A. W. Overhauser, Phys. Rev. 112, 90 
(1958). 

24 B. G. Dick, Jr., Phys. Rev. 129, 1583 (1963). 
25 J. F. Colwell, thesis, Cornell University, 1960 (unpublished). 

emphasize. First, the essential simplicity of the original 
Born-Mayer theory, which has been so successful in 
interpreting many properties of alkali-halide and other 
ionic solids, is retained. The reason why the Born-Mayer 
theory fails to account for stability of the cesium 
chloride structure is that the gain in Madelung energy 
in going from the sodium chloride to the cesium chloride 
configuration is overcompensated by an increase in 
pair-repulsion energy for all alkali halides. Three-body 
exchange interactions for triplets of smallest dimensions 
in the two structures introduce a net attraction in favor 
of the cesium chloride structure, which effect in some 
cases suffices to render this configuration the stable one. 
The three-body interactions are of short range, strongly 
structure-dependent, and they exhibit simple symmetry 
properties. Second, the stability problems of rare-gas 
crystals and of alkali-halide crystals are resolved on the 
same physical basis. For ions of comparable size, i.e., for 
values of y not too different from one, the ions can be 
replaced by the corresponding isoelectronic rare-gas 
atoms. Because of the compression of the crystal due to 
the Madelung energy, nearest neighbors repel each 
other. Compared with rare-gas crystals, the sign of the 
three-body interactions is now reversed. For ions of very 
dissimilar size, i.e., for values of y much larger than one, 
we can, in the limit, replace the smaller ion by a point 
charge and the larger one by the corresponding rare-gas 
atom. The sign of the three-body interactions for the 
larger ions, which dominate stability, in then the same as 
in the case of rare-gas crystals. I t must be expected that 
the stability of other classes of ionic solids, e.g., the 
zincblende-wurtzite relative stability, can be explained 
on the same basis. 
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