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The calculation of the charge density or spin density at an impurity in a metal is conveniently performed 
using a suitably weighted density of electron states. Working in the Wannier function representation, we de
rive this function making use of two Green's functions, one denned for the pure metal and the other for the 
metal containing the impurity. The former is directly related to the usual density of states of the pure metal, 
the latter to the weighted density of states we require. The attractive feature of the derivation is that there is 
a simple relationship between the two Green's functions, as was shown by Waller for the analogous problem 
in lattice dynamics. The weighted density-of-states function has a continuous part coming from the band and 
may also have isolated parts coming from bound states which have been pulled out of the band by the per
turbation. The contribution of each to a number of physical properties is discussed for the simple case of a 
single band of conduction electrons and a well-localized impurity potential. 

THE effects which an impurity in a crystal lattice 
has on the distribution of phonon frequencies 

and on the distribution of electron states has been 
emphasized by Lifshitz.1 In a recent paper concerned 
with the lattice vibration problem for an isotropic im
purity, Waller2 has derived and made use of a very 
simple relationship between the Green's function for 
the general lattice (containing the impurity) and the 
Green's function for the unperturbed lattice. In this 
paper we show that Waller's method also has attractive 
features for the electronic side of the impurity problem. 

The effect of an impurity on the electron states in a 
crystal was investigated by Koster and Slater3 who 
determined the existence of bound states of electrons 
associated with the impurity. The energies of these 
bound states were determined for several models of 
increasing complexity.3,4 Wave functions for electronic 
impurity states were obtained for the bound states and 
for states with energies in the allowed bands (called 
scattering states4). These authors made use of a Green's 
function method in solving for the electron wave func
tions. The normalization and completeness of the 
perturbed electron wave functions were not explicitly 
obtained by these authors. One also would like to 
determine the electron charge density (or spin density) 
in addition to the wave functions, and one needs to know 
the normalization factors of the impurity electron wave 
functions. For the density problem it is far more 
convenient to use a more general Green's function for 
the density where normalization and completeness of 
the wave function are automatically taken into con
sideration. It happens that the more general Green's 
function relies heavily on the Green's function for the 
wave function as expected. In the following, we obtain 
an expression for the electron density making full use 
of the previous work of Koster and Slater. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f Visitor from the University of Pittsburgh during the summer 
of 1963. 

1 1 . M. Lifshitz, Nuovo Cimento Suppl. 3, 716 (1956). 
2 I . Waller, Arkiv Fysik 24, 495 (1963). 
3 G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954). 
4 G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954). 

A convenient set of basis functions3 for electron wave 
functions are the Wannier functions of the pure host 
metal. If $nk(t) is the Bloch function describing an 
electron of wave vector k in the nth band of the pure 
metal, the Wannier function an(r— Ry) of the nth band 
centered on the site R/ is defined by 

(1) 

For simplicity, we consider a crystal of N atoms 
arranged on a Bravais lattice. 

We shall approach our problem by first setting down 
a general description in which it does not matter 
whether the system we have in mind is the pure metal 
or the metal containing the impurity. In either case, if 
the one-electron Hamiltonian for the electrons has 
eigenfunctions ^p(r) and one-electron energies, EP1 then 
we can expand ^/p in terms of the Wannier functions of 
the pure metal 

¥„(r) = iV-w E U,(n,j)an(t- R,). (2) 

The Wannier functions are orthonormal and since the 
function SPp(r) must be also, the transformation 
coefficients Up(nJ) form a unitary matrix: 

N-1'LUp*(n,j)U,(.n,j) = dp,, 

iV~l £ Up*(n,j)UP(n',f) = 8n,,8ir • 
P 

The Green's function which we work with is 

1 „ U*(n'J)U9(n,j) 
Gnj,n'j' (E) — ~~22 

N v Ev—E 

(3) 

(4) 

(5) 

Using H to denote the matrix of the Hamiltonian in the 
Wannier function representation, it is easy to show 
using (4) that the matrix G(E) whose elements are 
given by (5) satisfies the equation 

(H-EI)G(E) = I9 (6) 
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where / is the unit matrix 5W>,»'/' = £«»»'$#'. We now 
introduce a weighted density-of-states function,5 

ngnj,n'AE) = N-iZ Up*(n',j')Up(n,j)8(E-Ep), (7) 
V 

in terms of which Gnj,n'y(E) can be expressed as 

rtogni,n'AE')dE' 
Gnj,n'j'(E)= / . (8) 

J—oo E —E 

Here, Q is the atomic volume. From Eq. (4), which 
ensures that the eigenfunctions \pp(r) possess the 
closure property, we find the useful equation 

/ " 
«/ —o 

Qgni.n'j' (E)dE= S„„>Sj. (9) 

We shall refer to this as the closure relationship. 
In the limit of an infinite lattice gnj,n'j

f(E) will have 
a continuous part gc(E) corresponding to the bands, 
but there may also be a number of isolated states 
gi(E)=ci5(E—Ei), lying between the bands. For con
venience, the Green's function (8) can be split into 
corresponding parts GC(E) and ]T Gl(E). Using the 
well-known symbolic identity, 

1 

E'-E-i •A—) 
\E'-EJ 

+iirS(E'-E), (10) 

in which P denotes the principal value of the integral, 
one can write irQgc(E) = ImGc(E+ie). I t is also easy to 
show from (8) that tic* is equal to minus the residue of 
Gl(E) at E=E\ Hence, 

®gnj,n>j' (E) = 7T-1 ImGc
n3',n'j' (E+ie) 

- E [K.esG*nj.n'AE)lB-.B'd(E-E<). (11) 
i 

For the pure metal the eigenfunctions of the un
perturbed Hamiltonian H° are the Bloch functions 
^nk(r) and the IPs are simply eik'RK We shall denote 
the corresponding unperturbed functions gn3)n>/(E) 
and Gnj,n>j'(E). There are no isolated states i in this 
case. One can therefore use (10) to write in the usual 
way 

Gnj, n'f (E) — SlFnj, n'? (E) + ITT&gnj, n'j' (E) , ( 1 2 ) 

where Fnjtn>3-'(E) is the principal value integral 

aPnjt»'AE)=p[ 
J o E'-E 

(13) 

Suppose that an impurity is introduced at Ro, and 
henceforth take the unbarred notation in (2) to (11) as 
referring to the perturbed problem with H—HQ-\-Hl. 

5 For simplicity, spin indices are omitted. As the index p labels 
space states only, gnj.n'j'iE) should be interpreted as belonging to 
states of only one spin. 

In a metal the perturbation due to the impurity is 
localized in some degree and only a small number of 
bands play an important role. Thus, we may consider 
the problem in various approximations corresponding 
to allowing different number of nonzero matrix elements 
Hlnj,n'jf- We suppose that these nonzero elements are 
contained in a vXv matrix, where, for example, in the 
case of one band, v is 1 or 3 + 1 , z being the number of 
nearest neighbors. Then, multiplying (6) on the left 
by 6(E) and using the fact that 6(E) is the inverse of 
the matrix (H°-EI), one obtains 

G(E)+6(E)H1G(E) = 6(E), (14) 

Defining (I+GHl)~l as the inverse of the vXv matrix 
(I+6(E)Hl) whose elements correspond to the nonzero 
elements of H1, one can manipulate (14) to obtain 

G(E)^6(E)-6(E)H1(I+GH1)-16(E). (15) 

In the second term on the right the inner vXv matrices 
are enclosed by 6(E) matrices with appropriate rectan
gular shapes. I t is this important expression for the 
perturbed Green?s function in terms of the unperturbed 
Green's function which is central to Waller's treatment 
of the lattice vibration problem.2,6 We note that 
Gn3,n'r(E) has poles at the unperturbed energies En^ 
and also at energies Er such that (I-\~GHl)~l is singular. 
For an energy Er which is inside one of the bands, there 
occurs resonant scattering of conduction electrons 
having this energy, a phenomenon corresponding to the 
idea of a "virtual bound state" introduced by Friedel7 

to describe the behavior of transition metal impurities 
dissolved in normal metals. On the other hand, those 
energies El lying outside any of the bands are associated 
with electron states localized about the impurity. The 
properties of these electron impurity levels have been 
studied extensively by Koster and Slater3'4,8 who were, 
however, mainly concerned with the asymptotic form 
of the wave functions in the scattering problem. More 
recently they have been studied by Seeger, Stehle, 
Mann, and Bross9 using only the Green's function for 
the unperturbed system. 

If there is only one band of conduction electrons 
(allowing us to drop the band indices), and if the 
perturbation is confined entirely to the impurity atom, 
i.e., jSrlyJv=F5yo5yo, then the j=j'=0 equation of (15) 
gives us a simple relation 

Goo(E) = 6oo(E)/l+VGoo(E). (16) 

This can also be seen immediately from (14). A reso-

6 1 . Waller (to be published). 
7 J. Friedel, Can. J. Phys. 34, 1190 (1956); J. Phys. Radium 

23, 692 (1962) [English transl.: Metallic Solid Solutions, edited by 
J. Friedel and A. Guinier (W. A. Benjamin, Inc., New York, 
1963)]. 

8 G. F. Koster, Phys. Rev. 95, 1436 (1954). 
9 A. Seeger, J. Phys. Radium 23, 616 (1962), and in Metallic 

Solid Solutions, edited by J. Friedel and A. Guinier (W. A. 
Benjamin, Inc., New York, 1963). 
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nance state or a localized state arises if there exists an 
energy £° such that Re [ l+FGoo(£°+ te ) ]=0 . 

As an illustration of the use of (16) we calculate a 
first approximation to the charge density from the band 
of conduction electrons at the nucleus of the impurity. 
If E° is inside the band, then by putting (12) into (16) 
to obtain Goa(E+ie), one obtains from (11) the weighted 
density-of-states function, 

goo(£) = 
<7oo(£) 

[ 1 + Vmo(E)J+[jrV2goo(E)J 
(17) 

where gao(E) is one-half the usual density of states of 
the band in the pure metal.5 If, on the other hand, E° is 
outside the unperturbed band so that goo(E°) = 0 as 
well as l+FOFoo(£°) = 0, then one must evaluate the 
residue in the second term of (11), giving 

WV2 / 5(E-EQ), 
L J^(E'-E>)*J 

(170 

which must be added to (17). Then summing over all 
occupied states of both spins and making use of (7) we 
obtain for the conduction electron charge density at 
the impurity nucleus 

2 E l ^ ( R o ) | 2 « 2 i V - M ^ O ) | 2 E l ^ ( 0 ) | 2 = 2 | a ( 0 ) | 2 

V V 

X f 
J —C 

Qgoo(E)dE 

[ 1 + Vmo(E)J+ZwVQgGO(E)J 

20oo ( 

(E'-E0)2 
+ V2 / . (18) 

This expression provides a plausible basis for inter
preting isomer shifts such as those recently measured 
by Mozer and Segnan10 for iron impurities in a number 
of nonmagnetic metals. The second term is to be in
cluded only if E° lies outside the band and below EF-
An interesting illustration of the contributions of both 
terms may be found in a paper on the x-ray emission 
spectrum of lithium, a situation involving essentially 
the charge density around an atom in an excited K 
state.11 

One can also write down an expression for the spin 
density at the impurity nucleus. If the host lattice is 
nonmagnetic so that the energy bands for spin | and 
spin i electrons are the same in the absence of a mag
netic field, then in a weak field the contributions to the 
spin density from spin pairs (including possible bound 
states) cancel to a good approximation and one is left 
with the contribution from unpaired spins at the Fermi 
energy. Explicitly, summing over occupied states in 
the band as in (18), the spin density at the impurity 

10 B. Mozer and R. Segnan (to be published). 
1 1B. Mozer and D. A. Goodings (to be published). 

nucleus is12 

P(RO)=E l\MRo)|2-£ |fe(Ro)|2~k(0)l2 

Pt Pi 

KJ —00 

X{ / QgooCE+kMsHKE- I Fgm{E-\gfJ.BE)dE 
J —oo 

~\a{Q)\*glxBHQgm(EP). (19) 

The corresponding hyperfine field at the nucleus is 
AH= (87r/3)/«p(Ro). Hence, the Knight shift Kimp 

= AH'/His 

Kimp= (8x/3)gM521 <*(0) 1Klgm(Er). (20) 

A similar argument gives for the Knight shift at an 
atom in the pure host metal 

Khost= (&r/3 W k ( 0 ) 12Vgoo(EP). 

Hence, from (17), 

(21) 

i W # i m P = [ 1 + Vmo(EF)J+[rVQgoo(EF)J, (22) 

which is equivalent to an expression obtained by 
Clogston.13'14 Measurements15 of Al in a 5 % Al 95% Cu 
alloy give a value of 2.0 for this ratio, whereas for a 5 % 
Cd 95% Ag alloy the value is O.9.16 

I t is important to note here that the "strongly 
localized" approximation made in the second step of 
(19) prevents (20) and (21) from displaying the follow
ing physical effect. If one imagines shifting the Fermi 
level slightly in either direction, the Knight shift should 
change according to the number of states of s symmetry 
only, whereas (20) and (21) change according to the 
total number of states. A similar failing occurs in Eq. 
(12) of the future paper on x-ray emission which does 
not exhibit the expected dependence on the amount of 
p symmetry. However, the Green's function approach 
leading to (22) has the merit that it is easy to under
stand the approximations which have been made, in 
contrast with earlier considerations.17 

To extend (18) or (22) to treat more than one band 
or to include contributions from Wannier functions on 
nearest neighbors, one must use Eq. (15) with 
(I+GHl)~l a matrix of order greater than unity. The 
complexity of the calculation is increased accordingly. 
Seeger9 describes the results of a calculation by Mann 
for a vacancy in a monovalent metal in which the 
Wannier functions of nearest neighbors are taken into 
account. The main difficulty, apart from increased 
complexity, is that one must know a great deal about 

12 For a similar development, see C. Kittel, Introduction to Solid 
State Physics (John Wiley & Sons, Inc., New York, 1956), p. 260. 

13 A. M. Clogston, Phys. Rev. 125, 439 (1962). 
14 It should be noted that (22) would be drastically changed in 

the situation considered by Anderson (Ref. 18) in which a reso
nance state E° of one spin only lies just below the Fermi energy. 

15 W. D. Knight, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press, Inc., New York, 1956), Vol. 2, p. 93. 

16 L. E. Drain, Phil. Mag. 4, 484 (1959). 
17 E. Daniel, Phys. Chem. Solids 10, 174 (1959). 



A 1096 D. A. GOO D I N G S 

the unperturbed host metal and also about the matrix 
elements of the perturbation. In the "strongly localized" 
approximation there is only one matrix element V, 
which can be conveniently treated as a parameter, and 
the band structure of the host metal enters only through 
the density of states. For the "moderately localized" 
case, Mann found it useful to use the tight-binding 
approximation to describe the band structure. However, 
this is unnecessarily restrictive. The Green's function 
method offers the possibility of performing calculations 
for energy bands of arbitrary form. Unfortunately, 
because of difficulties connected with the calculation of 
certain principal value integrals, these have not yet 
been performed. 

Finally it is worth mentioning that the Green's 
function approach described here can be used in study-

I. INTRODUCTION 

THE effects of open-orbit electrons on the various 
transport properties of metals are well recog

nized.1 In a preliminary communication, a resonant 
absorption of ultrasonic waves by conduction electrons 
moving along open orbits in cadmium was reported.2 

The present study is concerned with a detailed analysis 
of the absorption of ultrasonic waves by open-orbit 
electrons in cadmium and zinc, the phenomena having 
been investigated experimentally with compressional 
and shear waves as a function of temperature from 1.0 
to 4.2°K at frequencies from 10 to 110 Mc/sec. 

* This work was supported by the General Dynamics Corpora
tion, the National Science Foundation, and the U. S. Office of 
Naval Research. 

1 The Fermi Surface, edited by W. A. Harrison and M. B. Webb 
(John Wiley & Sons, Inc., New York, 1960). 

2 J. D. Gavenda and B. C. Deaton, Phys. Rev. Letters 8, 208 
(1962). 
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ing the phenomenon of localized magnetic moments 
associated with iron atoms dissolved in various 4d 
elements and alloys.18-20 For example, Wolff's "self-
consistent equations" for the existence of a localized 
moment [Eqs. (18) and (19) of Ref. 19] follow at once 
from (18), introducing a simple spin dependence into 
the matrix element V. As Wolff does not consider the 
case in which a bound state separates from the band, 
the second term of (18) does not appear in his equations. 

This study was stimulated by a series of lectures on 
the lattice impurity problem by Professor Waller, to 
whom we are grateful for many interesting discussions. 

18 A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, 
E. Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962). 

19 P. W. Anderson, Phys. Rev. 124, 41 (1961). 
20 P. A. Wolff, Phys. Rev. 124, 1030 (1961). 

The possibility of resonant absorption of ultrasound 
by open-orbit electrons was first discussed by Galkin, 
Kaner, and Korolyuk3 who showed that the open-orbit 
electrons would absorb energy resonantly from the 
sound field when the period of the open orbit is a 
multiple of the sound wavelength. Initial observations 
on a tin single crystal allowed the pertinent Brillouin 
zone dimension corresponding to the open orbit elec
trons to be selected. 

The Fermi surfaces for cadmium and zinc proposed 
by Harrison4 and corrected by Cohen and Falicov5 to 
include spin-orbit coupling effects are connected in the 

8 A. A. Galkin, E. A. Kaner, and A. P. Korolyuk, Dokl. Akad. 
Nauk SSSR 134, 74 (1960) [English transl.: Soviet Phys.— 
Doklady 5, 1002 (1961)]; Zh. Eksperim. i Teor. Fiz. 39, 1517 
(1960) [English transl: Soviet Phys.-—JETP 12, 1055 (1961)]. 

4 W. A. Harrison, Phys. Rev. 118, 1190 (1960); 126, 497 (1962). 
5 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544 

(1960). 
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An experimental investigation of the frequency and temperature variation of ultrasonic resonance absorp
tion by open-orbit electrons moving parallel to [0001] in Cd and Zn is presented. The observations indicate 
conclusively that the Fermi surfaces of Cd and Zn are open parallel to [0001]. The Brillouin zone dimensions 
along [0001] calculated from the experimental data are 1.20±0.005X10-19 g cm/sec for Cd and 1.36±0.01 
X10~19 g cm/sec for Zn. These values agree very well with x-ray data and provide experimental evidence 
against the possibility of there being an effective charge carrier e* different from the electronic charge e. The 
frequency dependence of the resonance is found to agree quite well with theory, and no evidence for magnetic 
breakdown is seen up to 2000 G. The width of the open-orbit resonance is directly related to the electron 
mean free path /, thus allowing a determination of / for the open-orbit electrons from sample to sample or as 
the temperature varies in a particular sample. 


