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A cluster expansion derivation of the Dirac vector model, which has important applications in the theory of 
ferromagnetic and antiferromagnetic materials, is given for the case of a solid with a wave function which is a 
linear combination of Slater determinants, each corresponding to a different spin configuration. It is assumed 
that the single-particle wave functions are nonorthogonal, with one particle per lattice site. It is shown that 
there is no "nonorthogonality catastrophe" and that Carr's condition for the validity of the vector model 
applies in this case, as he has conjectured. Expressions are given for the direct energy and exchange integral. 

I. INTRODUCTION 

ONE of the most useful techniques in the theory of 
ferromagnetic and antiferromagnetic substances is 

that of the Dirac vector model. In this formulation the 
energy of the solid is given by finding the eigenvalues 
of the effective spin Hamiltonian, 

i<3 
(i) 

The spin permutation operator for particles i and j is 

( iV% = itt+«*-ory); 

m and cry are the Pauli spin matrices. The "direct" 
energy EQ is the expectation value of the system Hamil-
tonian obtained without antisymmetrizing the wave 
function; / # is called the "exchange" integral. The 
eigenfunctions of Eq. (1) can be taken to be linear 
combinations of products of single-particle spin func­
tions. (Spin-wave theory, for example, approximates 
these eigenfunctions.) 

If the number of particles N is a very large number, 
and if the single-particle wave functions are not orthogo­
nal, there is difficulty involved in the justification of 
Eq. (1). Analyses of this problem have been made by 
Van Vleck,1 Carr,2 and Mizuno and Izuyama.3 In Sec. I I 
we will show that the energy is the ratio of two poly­
nomials in N. The resolution of the difficulty introduced 
by this apparent breakdown of the energy expression, 
the "nonorthogonality catastrophe," rests on the fact 
that these polynomials cancel one another in a way such 
that the energy is actually of order N. Van Vleck was able 
to demonstrate this in several special cases. Carr gave 
conditions under which the energy took the vector model 
form when the wave function was a single Slater deter­
minant. There is no apparent reason, as Carr argues, 
why similar conditions should not hold for a sum of 
Slater determinants. However, he did not show this 
explicitly. We will use a cluster expansion technique to 
demonstrate that Carr's conditions for the applicability 
of the Dirac vector model do indeed hold for a wave 

1 J. H. Van Vleck, Phys. Rev. 49, 232 (1936). 
2W. J. Carr, Phys. Rev. 92, 28 (1953). 
3 Y. Mizuno and T. Izuyama, Progr. Theoret. Phys. (Kyoto) 

22, 344 (1959). 

function which is a sum of Slater determinants. Mizuno 
and Izuyama show that no "nonorthogonality catas­
trophe" occurs in the general case, but do not give an 
explicit series development for the energy as we shall 
do. This problem has also been treated in a different 
way by Arai.4 

II. ENERGY EXPECTATION VALUE 

We consider a Hamiltonian of the form 

H=ZHi(y)+ E #2(T,5). 
7=1 i£y<8£N 

(2) 

The N particles described by this Hamiltonian may 
be the electrons responsible for the magnetic behavior 
of the solid, or they may be the nuclei which give 
rise to a nuclear magnetism, as in the case of solid 
He3. In either case each particle will be localized about 
a lattice site with one particle per lattice site. If Eq. (2) 
describes electrons, then #1(7) and H2(7,5) will each 
contain a dependence on the lattice site positions be­
cause of nucleus-nucleus and electron-nucleus Coulomb 
interactions. 

A suitable trial wave function for the Hamiltonian (2) 
is a linear combination of Slater determinants made up 
of single particle spatial wave functions, $i(xa) (i.e., 
particle a is localized about lattice site i), and single-
particle spin functions £Mi(a:), where \xi is + 1 or — 1 if the 
spin of particle a is up or down, respectively. Let the 
set m, H2, • • • VN be designated simply by £i, with no 
subscript. Then the wave function is 

*=E^«, (3) 

where normalization requires E M M M I 2 — !• The symbol 
x stands for the N space and spin variables. We have 

3vto = (4) 
*i(xi)fw( l ) • • • <Mxi)>„(l) 

Thus, the sum over JU is a sum over all spin configurations. 

4 T . Arai, Phys. Rev. 126, 471 (1962); 134, A824 (1964), 
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We can also write (4) as a sum of permutations, nates. Thus we have 

where r 

« > ( x ) = n tiixdUi) • U~1)P' E , A*A" \ *»o*(x)(P,3y0(x)y* 

The operator Pv interchanges the particle states, i.e., X X — 1 ) P " / <t>Q*H(PVQ<j>o)dx(Pvs) 
the indices. It can be written as a nroduc.t of a snatial v •> the indices. It can be written as a product of a spatial 
permutation operator P„0, and a spin permutation (6) 

operator Py/s. The sum over v is a sum over all possible Y(— l)Pv 16 *(P 6 )dx(P s) 
permutations of the N states, pv being the "parity" of v J 

' rj! ' We have separated Pv into spatial and spin parts 
The energy expectation value is P,= P*P,a; *o=ILfc(*); and <P,a) is the expectation 

value of the spin permutation operator, i.e., 

E= [ y*(x)HV(x)dx / (**(x)¥(x)dx. (P-s) = £ [ { £ A„ U $«(*)} W s { E ^ ' 1 1 M-?)}] • 
J I J spin n i n' j 

From Eq. (6) it can be seen that E is the ratio of two 
We have let dx= dxx- • • dxx. The integration also implies polynomials in N. This is clear from the numerator of 
a summation over all spin coordinates. Using Eq. (3), Eq. (6) if, as an example, we consider the following: 

There is one term in which no particle states are ex-

/

changed; there are ^N terms in which the states of two 

$M*(x)#<iy(x)rfx particles are exchanged; there are ~N2 terms in which 
two particle states are exchanged and simultaneously 

/ ' the states of two other particles are exchanged; and so 
<£>M*(x)<iy(xyx on. It is this apparent breakdown of the energy expres­

sion for large N which Van Vleck, Carr, Mizuno, and 
Izuyama, and Arai have discussed, and which was 

we can show that mentioned in Sec. I. 

E= 

/$/(x)#<ly(x)</x Nli <£>M*(x)#<ly(x)</x Nl / ^*(x)H^(x)dx 

j V ( x ) ^ ( x y x Nl /^0*(x)<Iy (x)Jx 

III. THE CLUSTER EXPANSION 

We follow the procedure of Iwamoto and Yamada5 

and introduce a "generalized normalization integral," 
which we define by 

/*03) = L ( ~ Dp* i 4>^H(Pv^)dx(PpS), 

As is stated in Ref. 2, this follows because each of s o t h a t 

the Nl permutations of $M0 in $M gives the same result E=s (d/d& m / ^(^ ) 10-o. (7) 
since H is assumed symmetric in the particle coordi- Define the "subnormalization integrals," 

/<=GI/(i)IO, 

In= HJI /(D/(2)g(l,2){| if)- | mPi/'h)}, 

/«*= (ijk| /(l)/(2)/(3)g(l,2)^(2,3)g(3,l){ | ijk)- | jik){{P^)s)- |kji){{Pik«i)s) 

- I «*j)<(iV0a>+ I Jki)((Pmiki)s)+1kij){(Piik^-)s)}, (8) 

/« i -* .=i ; ( - l ) ' ' (* i - - -« . | / ( l ) - ••/(») I I g(y,S)Pra\ivin)(P,s), 

where 

. _ / ( D - e x p ^ F ^ l ) ) , g(l,2) = expC8H,(l>2)), 

5 F. Iwamoto and M. Yamada, Progr. Theoret. Phys. (Kyoto) 17, 543 (1957); 18, 345 (1957). 
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and, for example, 

( f i l / ( i ) / ( 2 ) * ( i ^ 

((iV l ')s)> is the expectation value of the spin permutation operator for particles i and j . 
Using the subnormalization integrals, we define the cluster integrals,5 

Xi=li, Xij~lij X{Xj, Xijk~ 1 ijk XijXk XikXj—XjkXi• XfXjXk> e tc. 
We find 

X , = ( * | / ( l ) | t ) , 

Xi,= (ij |/(1)/(2)A(1,2) | ij)- (ij I /(1)/(2)A(1,2) | ji){(Pi/
i)s)- (ij\f(Df(2) | ji)((Pi/

i)s), 

Xm=(ijk\f(l)f(2)f(3)k(l,2)h(2,3)h(3A)\iJk) 

+ (iJk\f(l)f(2)f(3)Lh(l,2)K^)+h(l,2)K2,3)+h(2,3)h(3,l)-]\ijk) 

-(ijk\f(l)f(2)f(3)g(l,2)lK2,3)h(3,l)+h(2,3)+h(3,l)-]\jik){(Pi/')s) 

- (ijk | /(l)/(2)/(3)g(2,3)[A(l,2)A(3,l)+A(l,2)+A(3,l)] | ikj){(Pjk^)s) 

-(*J*l/(l)/(2)/(3)g(3,l)[A(l,2)A(2>3)+A(l,2)+A(2,3)]|ft/0<(i>«*')«> 
+ (ijk | / ( l ) / (2) / (3)g(l ,2)g(2,%(3, l ) | jki)((PiJk**)s) 

+ (ijk | /(D/(2)/(3)*(l,2)s(2,3)«(3,l) | kij)((Pijk"^3), (9) 
where 

*(7,8) = g ( 7 , « ) - l . 

We note that terms containing more than one factor of h(y,5) = exp(j3H2(7,<)))— 1 will not contribute to the final 
result whose derivation will involve taking the (3 derivative of each term followed by setting {3=0. Thus, we keep 
only terms which are zeroth and first order in f3, and we have 

Xm= - (ijk I / ( l) /(2)/(3)[A(2,3)+A(3,l)] | jik)((Pti»)s)- (ijk | / ( l ) / (2) /(3)[A(l ,2)+A(3, l)] | ikj)((Pjk"')s) 

- (ijk I / ( l) /(2)/(3)[A(l ,2)+A(2,3)] | kji)((Pik
hi)s) 

+ (iJk\f(l)f(2)f(3)ll+h(l,2)+h(2,3)+h(3,l)l\jki)((Piik^)s) 
+ (iJk\f(l)f(2)f(3)ll+h(l,2)+h(2,3)+h(3,l)2\kji){(Piik^)s). (10) 

Note that Eq. (10) contains no direct energy terms. 
Indeed, we can prove a theorem stating that a general 
^-index cluster integral Xiv..in (n>2) contains only 
terms which are ^th and (n— l ) th order in the "overlap 
integral" S# = /\fo*(l)0y(l)^Xi if we consider only terms 
of zeroth and first order in /?. We will also show that the 
terms which are in— l ) th order in Sy are also first order 
in /3. If the wave functions <£;(xa) are sufficiently local­
ized, the overlap integral 5# will be small (15* j) and the 
cluster integrals will form a converging sequence. We 
will use this theorem in the remainder of this section, 
but delay proof of it until Sec. IV. 

Iwamoto and Yamada,5 and also Wu,6 show that 

/tf(/3) = n x » e ° , ( ID 

where 

(i J) (i J) HJ,k) 

1 
+ 1 H xw\— E %iw-\— 1 (12) 

(t\/,A) 24 dJ,k,l) 

and Xij=Xij/XiX3; etc. The parentheses on the sum-
6 F. Y. Wu, J. Math. Phys. 4, 1438 (1963). 

mation indices in Eq. (12) mean omit those terms from 
the sums for which two or more indices are equal. To 
find the order of magnitude of the terms in this series 
we must demonstrate two points: (a) All indices in a 
term of the cluster expansion (12) are "linked" or "con­
nected" to one another. This "connectedness" means 
that the sums over the indices of an expansion term are 
not independent of one another. When summed over all 
indices the term will then be of order N, and there will 
be no "nonorthogonality catastrophe." In the next 
section, while demonstrating the theorem mentioned 
above, we will prove a lemma which states that all 
indices of a given cluster integral X, or equivalently, of 
an x, are connected either by exchanges or by an h(y,8). 
However, many terms in the cluster expansion are 
products of a number of #'s. Wu6 has shown that the 
indices of these product terms are connected by having 
indices in common, as the index j is common to both x's 
111 XijXj k • (b) From the derivation of Iwamoto and 
Yamada (or of Wu) it is evident that succeeding groups 
of terms in the expansion (12) have increasing numbers 
of indices. Hence, they are of increasingly higher order 
in the overlap integral S. For example, Xij has a term of 
order 5° (which is also first order in ft) and terms of 
order S2; ##2, which is considered to have four indices, 
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has terms of order S2 and S4 (dropping terms in £2); 
Xijk has terms of order S2 and S3, etc. In general, then, 
using our theorem, a term having n indices is of order 
Sn~2 or higher (dropping noncontributing terms of order 
/32 or higher). 

From (a) and (b) it is clear that when summed over 
all values of the indices, an ^-index term will be at least 
of order NZxZ2

n~2Sn~2, where Zx is the number of 
particles in the range of #2(7,$) ,and Z2 is the number 
of neighboring wave functions which have appreciable 
overlap with a given single-particle wave function. 
There is only one factor of N because the sums over the 
indices are not independent. There is only one factor of 
Zi because h(y,5) is first order in /3 so each expansion 
term can contain at most a single h(yy8), or, equiva-
lently, a single #2(7,5). The factor Z2

n-2Sn~2 is a result 
of the discussion in (b). If Z2S< 1, the expansion for G, 
and hence for E, will converge. If Z23<^1, then the 
vector model (1) is valid. These are essentially the con­
ditions of Ref. 2. 

An expression for the exchange integral Jy can be 
gotten from Eqs. (7), (11), and (12). Denoting differ-

(a)(ilf(i)H) 

(b)('Jlf(l)f(2)h(i,2)|ij) 

(c)(i]|f(l)f(2)lj i) . 

= Oj 

= i° oj 

= j a = D j 
FIG. 1. Examples 

i S a S S " ? Z : W(iji«i)«aMi.aiii) 
trix elements. , 

(e)(ijMf(l)f(2)f(3)|jkl) - . ^ 

ia===pj 
(f)(ijk!lf(l)f(2)f(3)h(2,3)|jilk) 

(g)(ijk|f(l)f(2)f(3)|jik) 

k(f: n, 
ki »j ©k 

entiation with respect to p by a prime we have 

tL— \_2s •&•% 1 ~2 2-/ %ij 2" L-i %ij %ij 2w VCij %jk 

+ i E Xijk'-i ]/J=0 

If we keep terms of order no higher than S2, 

E^[Z(i\IUl)\i)+i E (iJ\H2(l,2)\m+lY, SMVlHMliMPM 
(U) (*,y) 

E SjiiiiHiWlMP^s)-]} E ^^i^ilSaCi^liiXC^P^')^- 2: (fil^r2(i,2)| ji)<(i>^o^> 
UJ) (t.i) (».y) 

+ E SikSki(ij\H2(l72)\ij)((Pik
ki)s)~ E SH{ikW^2)\jk){{P^)s)-]. (13) 

(i.y.fc) <*•'*•*> 

The first term in square brackets is the direct energy E0, 
the second is — Et<y J ij({P ijji) s) > This result, which is 
valid for any linear combination of Slater determinants, 
is identical with Carr's result for a single determinant 
[Ref. 2, Eq. (29)]. In comparing the two results note 
that our definition of H2(y,8) differs by a factor of 2 
from Carr's. 

IV. PROOF OF THE THEOREM OF SEC. Ill 

In Sec. I l l we used the following theorem: a general 
w-index cluster integral Xiv..in (n>2) contains only 
terms which are ^th and (n— l ) th order in the overlap 
integral £ # = ,/\£i*(l)<fo(l)</xi, if we consider only terms 
of zeroth and first order in f3. Furthermore, the terms 
(n— l ) th order in S are also first order in p. 

The proof of this theorem is facilitated by intro­
duction of a graphical representation of the terms in the 
cluster integrals. Those indices of a matrix element 
connected by exchange, as i and j in (i\ / ( I ) | j), will be 
joined by a solid line; indices connected by a,nh(y,8), as 
i and j in (ij\f(l)f(2)h(l,2)\ij), will be joined by a 
dashed line. The number of solid lines in a graph is the 
order of the matrix element in the overlap integral S. 
Examples of matrix elements and the graphs represent­
ing them are shown in Fig. 1. 

Note that in matrix element (/) of Fig. 1 there is 
ambiguity as to whether it is indices j and k or i and I 
which are joined by h(2,3). We define, as being joined 
by an h, those indices which were joined previous to 
the permutations. 

We note that every index must have zero or two solid 
lines ending on it. This rule occurs because permutations 
never occur singly; for example, i—*j always requires 
j —» (some index 5^ j). 

Except for that of matrix element (g) of Fig. 1, all 
graphs shown are said to be "connected." That is, it 
is possible to get from an index to any other index by 
following either solid or dashed lines. The graph of 
matrix element (g) in Fig. 1 is "disconnected." 

We now show the following lemma which was men­
tioned in Sec. I l l : the w-index cluster integral Xiv..in 

contains all matrix elements of n indices whose graphs 
are connected, and only those matrix elements. The 
lemma is true for Xi, Xy, and Xijk by inspection of 
Eqs. (9). We proceed by induction. Assume the lemma 
is true for all w-index cluster integrals with m<n. We 
form cluster integrals according to the formula 

•&iV"in~livi\ 

zL XiV..imXi„ . . . . IT. (14) 
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X p * "t 

l°-—-Sk 

I . 

+ 
i* *k 

+ \ 
=bk 

+ 

+ 

+ 

+ 

if 

FIG. 2. The graphical 
representation of Eq. 
(15). 

If we use g(y,S) = h(y,5)+l and write 

II #(7,5)=1+ Z Ky,s) 
1 ^ 7<5 ^ n 1 <J 7<8 <C n 

+ZKy,8)hM+---
in Eq. (8), we see that Iir.*in contains all diagrams, both 
connected and disconnected, of n indices. Since a cluster 
integral Xiv..im (m<n) is assumed to contain all the 
m-index connected diagrams and no more, then the sum 
X) X^...im- • -Xiq+V..in in Eq. (14) contains all possible 
;z-index disconnected diagrams, and no more. Thus, on 
the right-hand side of Eq. (13), only the w-index con­
nected diagrams do not cancel. Since the lemma holds 
for the one-, two-, and three-index cluster integrals by 
induction, it holds for the general one. 

"°i 

-ok 

p»——~oi 

-ok 

i 
i 
i 

FIG. 3. Examples of four-index connected graphs which violate the 
rule that zero or two solid lines must end on every index. 

All terms in 

I I g ( 7 , « ) = l + £ A(7 ,*)+- - - , 
l<y<8<n l<7<8<n 

which are signified by the dots, are at least second order 
in fi and will not contribute to the final result. They can 
then be dropped. However, the only kinds of connected 
diagrams of n indices (n>2) which have only a 1 or a 
single h(7,5) in them, and which satisfy the rule that 
only zero or two solid lines end on an index, are of order 
n or n— 1 in the overlap integral. For n>2, they are 
one of the following forms: (1) n indices connected by 
n solid lines only—of order n in the overlap integral; 
(2) n indices connected by n solid lines with a single pair 
of them also connected by a dotted line—of order n in 
the overlap integral; (3) m indices all connected by m 
solid lines, n—m indices all connected by n—m solid 
lines, with the two sets connected together by only a 
dashed line—of order n in the overlap integral; (4) n—\ 
indices all connected by n—\ solid lines, one index con­
nected to the rest by only a dashed line—of order n—\ 
in overlap integral and. first order in /3. This completes 
the proof. 

As an illustration we consider Xijki. The theorem gives 

Xw= (ijkl\f(l)f(2)f(3)f(A) I jkU)((Pim>™*)s)+ • • • + (ijkl\ /( l)/(2)/(3)/(4)A(l,2) | jkli){{Pim
mi)s)+ • 

+ (W\ /(l)/(2)/(3)/(4)A(l,3) I jilk)((Pijkl^
k)s)+ • • • 

+ (ijkl\ /(D/(2)/(3)/(4)A(l,4) I jkil)((Pm^)s)+ • (15) 

where the dots represent other terms of the same type 
as preceded them. The graphical representation of Xijki 
is shown in Fig. 2. In Fig. 3 we illustrate some four index 
connected graphs which are not present because they 
violate our rule that zero or two solid lines must end on 
every index. 

The one- and two-index cluster integrals are special 
cases for which the theorem does not hold; the one-index 

integral has only a term of order S°, and the two-index 
integral has terms of order 5° (which is also first order 
in 13) and S2. We have taken this into account in the 
discussion of Sec. I I I . 
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