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In the presence of anisotropic interactions the spin-wave dispersion parameter 3D(T) acquires an aTzn de
pendence in addition to the bT512 dependence due to isotropic exchange. We have used Van Vleck's anisotropic 
exchange, and the largest effect consistent with the magnetocrystalline anisotropy of a cubic ferromagnet is 
found to come from the pseudodipolar coupling. While the anisotropy appears only in the second order of 
perturbation theory, there is a first-order contribution to 33 ( r ) which varies as the third power of the mag
netization, itself a function of temperature. Thus a ~C{g(3HAD/kBTc)

ll2
i where C is the coefficient in the 

Bloch law, HAD is the pseudodipolar contribution to the anisotropy field, and Tc is the Curie temperature. 
The coefficient a depends upon the direction of spin-wave propagation and averages to zero over a sphere. In 
a first approximation, then, there is no T3 term in the magnetization. In an experiment dealing with selected 
propagation directions, such as spin-wave resonance or inelastic neutron scattering, since b « C/Tc, an effect 
important when T/Tc< {g$HAD/kBTc)

112 is predicted. 

I. INTRODUCTION 

SPIN-WAVE interactions are most conveniently 
studied by measuring the temperature dependence 

of the spin-wave energy.1 For long wavelengths this 
energy varies quadratically with wave vector k; the 
departure at temperature T of the constant of pro
portionality or exchange parameter £)(r) from its value 
at T=0°K measures the average interaction of the 
mode under study with the thermal population of 
elementary excitations (magnons, phonons, conduction 
electrons). The interpretation of experimental results 
relies upon the existence of an inventory of behaviors 
(dependences on temperature) predicted for various 
models. The purpose of this paper is to call attention 
to an item which should be included in this "catalog" 
and to show that it might be very important. 

The catalog of possible contributions to the tempera
ture dependence of S)(T) is reviewed in the next section, 
where particular attention is drawn to the occurrence 
of terms proportional to T'312. At sufficiently low tem
peratures such terms are the dominant ones, but in 
that region the difference between £>(T) and 33(0) is 
often immeasurably small. This situation is illustrated 
by consideration of the magnetocrystalline anisotropy, 
whose influence is usually obscured unless knT ~ 12 gj3H A , 
where HA is the effective anisotropy field, kn is Boltz-
mann's constant, g the spectroscopic splitting factor and 
13 the Bohr magneton. In Sec. I l l we discuss 33(r) for a 
model in which there is an underlying interaction 
"inefficient" in producing the magnetocrystalline aniso
tropy ; a cubic ferromagnet with anisotropic exchange as 

* A report of this work was given at the meeting of the American 
Physical Society, January 1964 [Bull. Am. Phys. Soc. 9, 112 
(1964)]. 

1 Experimental techniques include spin-wave resonance; R. E. 
Weber and P. E. Tannenwald, Phys. Chem. Solids 24,1357 (1963), 
inelastic neutron scattering; M. Hatherly, K. Hirakowa, R. D. 
Lowde, J. F. Mallett, M. W. Stringfellow, and B. H. Torrie, 
J. Appl. Phys. 35, 892 (1964) and Proc. Phys. Soc. (London) (to 
be published), parallel pumping; R. C. LeCraw and L. R. Walker, 
J. Appl. Phys. 32, 167S (1961) and discussion by C. W. Haas, 
Phys. Rev. 132, 228 (1963). 

A 

a perturbation to the isotropic exchange.2 Here a J"3/2 

term arises in the temperature dependence of £)(T) 
which is important if T/Tc'§(gpHAD/kBTc)

112, where Tc 

is the Curie temperature and HA
D originates in the 

pseudodipolar part of the perturbation. We conclude in 
Sec. IV with the suggestion that the behavior predicted 
by this model may be worth looking for whenever a T3/2 

dependence of £>(r) is observed. 

II. TEMPERATURE DEPENDENCES OF THE 
EXCHANGE PARAMETER 

In a pair of classic papers Dyson3 proved that the 
interaction between spin waves in an ideal three-
dimensional Heisenberg ferromagnet has an extremely 
small effect on the low-temperature thermodynamic 
behavior. Long-wavelength magnons pass almost un
disturbed through the thermal excited spin system, and 
the interaction yields a correction to the Bloch law for 
the magnetization, M(0)-M(T) = CM(0)T^2, whose 
leading term is proportional to T4. Equivalently, the 
exchange parameter decreases with increasing tempera
ture as T5/2 because of the interaction. A clear physical 
interpretation of Dyson's result has been presented by 
Keffer and Loudon,4 who explained that for an isotropic 
nearest-neighbor exchange coupling the spin-wave 
energy depends on the average angle between neighbor
ing spins rather than on the average angle between the 
spins and the magnetization. The latter dependence is 
the interpretation of the spurious Tz term [equivalent 
to 2)(r) oc Tm2 obtained by many authors.5 '6 

Mattis and Horwitz6 have, on the other hand, re
cently shown that the excitation of spin waves shields 
the effects of the transverse components of the spin 
vectors beyond a temperature-dependent "Debye 
length" R 0 ( r ) ( « T^1'2). Thus Dyson's result must be 

2 This is a well-known special case of the anisotropic exchange 
introduced by J. H. Van Vleck, Phys. Rev. 52, 1178 (1937). 

3 F . J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
4 F. Keffer and R. Loudon, J. Appl. Phys. 32, 2S (1961). 
6 See preceding references and references cited therein. 
6 See D. C. Mattis and L. P. Horwitz, Phys. Rev. Letters 10, 511 

(1963) and references therein. 
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modified if there is appreciable exchange between 
distant spins. For the long-range part of the exchange, 
a T3/2 dependence of the spin-wave energy obtains, 
because it depends on the average angle between the 
spins and the magnetization. 

But if attention is restricted to short-range exchange, 
a r3/2 dependence of the spin-wave energy will still exist 
because of the magnetocrystalline anisotropy energy, 
which is sensitive to the average angle between the 
spins and the magnetization. It has been noted4,7 that 
this is the nature of the power-law dependence of aniso
tropy on magnetization which may be written8 

Kn(T)rM(T)-i 

Kn(o)~lM(o)i 
w(n+l)/2 

(1) 

where Kn is the anisotropy coefficient associated with 
spherical harmonics of degree n. The result expressed 
by Eq. (1) deals only with the ^-independent part of the 
spin-wave energy which originates in the anisotropic 
part of the Hamiltonian. Of course, it is only the 
k-dependent part of this energy which can be regarded 
as modifying £>(r). A relation like Eq. (1) may be 
expected to be valid for this part too, and, at least for 
the case treated here, this is so (see the Appendix). 
Perhaps it is appropriate to emphasize here that the 
k-independent part competes only with the internal 
magnetic field and that this competition is part of our 
everyday experience with magnetic materials. On the 
other hand, the k-dependent part of the anisotropy 
energy is surely eclipsed by the exchange and only be
cause its temperature dependence is expected to be more 
important than that of the exchange energy is it treated 
here. 

To be complete, the temperature dependence of 
3D(r) due to interaction of spin waves with phonons and 
with conduction electrons should be mentioned. These 
were recently discussed by Izuyama and Kubo,9 who 
found that 3D(r) has a term proportional to T2 as the 
leading effect of the conduction electrons and one 
proportional to TA as the leading effect of the phonons. 
If no Tm term arises from magnon-magnon interactions, 
then the magnon-electron interactions should dominate 
in metals at low temperatures. 

III. ANISOTROPIC EXCHANGE IN A 
CUBIC CRYSTAL 

The model which we discuss is that of anisotropic 
exchange introduced by Van Vleck.2 He showed that 
such anisotropic interactions as arise in a multipole 
expansion of the coupling between local spins could be 
responsible for the directional dependence of the energy, 

7 T. Oguchi and A. Honma, J. Phys. Soc. Japan 16, 79 (1961). 
8 C Zener, Phys. Rev. 96, 1335 (1954); J. H. Van Vleck, J. 

Phys. Radium 20, 124 (1959); H. B. Callen and E. R. Callen, 
Phys. Chem. Solids 16, 310 (1960). 

9 T. Izuyama and R. Kubo, J. Appl. Phys. 35, 1074 (1964). 

i.e., magnetocrystalline anisotropy, in a cubic crystal. 
The various terms in such an expansion are named 
pseudodipolar, pseudoquadrupolar, and so on, with 
obvious reference to their form. These are treated as 
perturbations to the isotropic exchange. The range of 
interaction is, as for the isotropic exchange, commonly 
limited to nearest neighbors, and the strength of the 
interaction is essentially left to be determined by com
parison of the calculated and experimental values of the 
Kn. The model surfers in a number of respects when 
confronted with the properties of real metals.10 It never
theless survives because it could apply to some non-
metallic materials and also as a mathematical model 
whose properties have been subject to considerable 
theoretical investigation in order to enhance our 
understanding of the behavior of real materials. 

The complete Hamiltonian is 

H=HVIL+HZ+HD+HQ+ • 

The exchange energy is given by 

17*3 

(2) 

(3) 

where 2J is the exchange integral, St- is the spin vector 
attached to site i, and the sum is restricted to nearest-
neighbor pairs (n.n.). The energy associated with the 
applied field H is 

ffs=-43H-L<S<. (4) 

Only the first two anisotropic terms of Van Vleck's 
multipole expansion have been explicitly included, the 
dipolar term 

BD=i E Ai{S i.S i-f<y-»(r<i.S<)(r</.S i)}, (5) 

and the quadrupolar term 

3Q=iQ En-n- r ^ f a - S ^ f a - S y ) ' . (6) 

Here r,-,- is the vector connecting sites i and j . The 
coefficient in the dipolar term is 

Ay=gWn-/+z>5(|r.vl -0, (7) 

where I is the nearest-neighbor distance. The r~z de
pendence of Dij is the contribution of the magnetic 
dipolar coupling. The anisotropic exchange between 
nearest-neighbor spins is measured by the pseudodipolar 
and pseudoquadrupolar coupling constants D and Q. 

The calculation of the low-lying states of this 
Hamiltonian is most conveniently made by first neglect
ing the long-range magnetic coupling. The spin-wave 
energy levels, to first order in the quadrupolar and 
second order in the dipolar coupling constants, may be 

10 F. Keffer and T. Oguchi, Phys. Rev. 117, 718 (1960); R. J. 
Joenk, Phys. Rev. 130, 932 (1963). 
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expressed as 

E=F(fi)+VK1(0)ri+'£* nkek(T), (8) 

where F{H) is a field-dependent ground-state energy, V 
is the sample volume, Ki(0) is the first cubic anisotropy 
constant with contributions proportional to Q and D2/J, 
n^ is the number of spin waves excited of wave vector 
k, and e^(T) is the energy per spin wave, in whose tem
perature dependence may be embodied the effects of 
spin-wave interactions. The anisotropy constant multi
plies a function of the direction cosines of the magnet
ization with respect to the crystal axes; 

Y^cdW+azW+azW-l. (9) 

Inclusion of the magnetic dipolar coupling modifies 
these results in a way first discussed by Holstein and 
PrimakofL11 In particular, the spin-wave energy be
comes, at r=0°K ? 

«k,(0) = [ek(0)-gPiVJIf(0)] 
X(1-{g^M®)/[e±(0)-&NM (0)]} sin20k)

1/2, 
(10) 

where Nz is the demagnetizing factor of the sample and 
0k is the angle between the direction of M (z) and k. For 
ksT^>gP4wM, Eq. (10) is also valid at finite tempera
tures with M(0) replaced by M(T).7 Hereinafter, the 
effect of the magnetic dipolar coupling in the radical 
will be disregarded. It is to be noted, on the one hand, 
that it has a calculable effect and, on the other hand, 
that it should be unimportant in the present context for 
kBT»zP4irM. 

The quantities appearing in Eq. (8) have been 
evaluated by various authors,12 and, including the 
surface demagnetizing energy, they are, at T=^Q°K, 

F(H) = F0-g(3NSl3~-NzM(0)']-NJZS2, (11) 

1 15 NSD2 

VK1(0) = —NS4QS2(S-i)2-^St——, (12) 
15 16 ZJ 

ek(0) = gl3ZH-N2M(0)2+2SJZ(l~yk) 

V 
— i T 1 ( 0 ) [ 1 0 - 4 ( l - 7 k ) ] r 4 

NS 

+ 2 5 E i ^ i c o s k . l . (13) 

Here, N is the total number of atoms in the sample, each 
with spin S, 

S4=6/5, 16/15,3/5 (14) 

for the simple cubic (sc), body-centered cubic (bcc), 
and face-centered cubic (fee) lattices, respectively, Fo 

11 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
Also see C. Herring and C. Kittel, ibid. 81, 869 (1951). 

12 See Ref. 10 and references therein; also an excellent review of 
the entire subject of spin waves which has been prepared by F. 
Keffer for publication in the Handbuch der Physik, edited by 
S. Flugge (Springer-Verlag, Berlin, to be published). 

is just a constant, Z is the coordination number of the 
lattice, 

Yk^Z^Eicosk - l , (15) 

where the Ps are the nearest-neighbor vectors and 

£ 1 =-iZ)Cl~3( / 2 /0 2 ] . (16) 

We hasten to point out that the term involving T4 in 
k̂ has actually been calculated for k ^ 0 in the quad-

rupolar case only. It is the k-independent part of this 
term which has been used in proving the application of 
Eq. (1) to these anisotropics (n—4). For the pseudo-
dipolar case we have estimated that the k-dependent 
part will be approximately the same as in the quad-
rupolar case and since only the order of magnitude is 
significant, we have assumed that result in Eq. (13). 

Because of the cubic symmetry 

L i £ i = o , (17) 

so that the last term in Eq. (13) contributes only to the 
k-dependent spin-wave energy. In the long-wavelength 
approximation, with a the lattice constant, 

Z ( l - 7 k ) « * * * 2 . (18) 

The spin-wave exchange energy becomes 

ek
EX(0)«2S/W=£>(0)&2. (19) 

Compared with this term, the other k-dependent spin-
wave energies are commonly neglected. Defining the 
anisotropy field 

2V 2^ (0 ) 
HA(0) = £ i ( 0 ) = — - -

gPNS M(0) 

the total spin-wave energy for ka<Kl is 

ek(o)«a8Cfl-^jf(o)-SBrJl(o)r4] 

gpHA(0) 

(20) 

+ 0(0) 1 
ZJS 

•r« tf-sEifiiCk-l)*. (2i) 

In the last term, cos k• 1 has been expanded to 1 — | (k-1)2 

and Eq. (17) invoked. At finite temperatures, but with 
constant volume, e^{T) is given by Eq. (21) and M(0) 
replaced by 

M(T)=Mm 1-0.306 IV V /knTA^/T^ 

NSIAZJS \T) J' 
2D(0) replaced by 

» ( r ) = » ( 0 ) 1-0.234 
V /kBTo\",/T\ti*-i 

NsAzjS/ \TJ J ' 

(22) 

(23) 
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and HA(0) replaced by 

BA(T)=HA(0)IM(T)/M(0)J 

=2^(0) 1-9X0.306 ( —) , 
L NSlAzJSJ \TCJ J 

(24) 

where Tc may conveniently be defined by the molecular 
field result 

kBTc/J=iZS(S+\). (25) 

Surely, gj3HA(0)/ZJ$«l. Still the temperature de
pendence of the coefficient of k2 in Eq. (21) will be 
dominated by that of HA if kBT^l2g/3HA(0), which 
usually occurs for temperatures below a few degrees 
Kelvin. This is a rather insignificant effect. 

No calculation of the temperature dependence of the 
last term in Eq. (21) has been given. We notice first 
that, if averaged over an isotropic distribution of k 
directions, this energy vanishes. This means that, to a 
first approximation, it has no thermodynamic con
sequences. It also follows, then, that this energy can be 
positive or negative depending on the direction of k. 
However, since the sign of D is unknown, we cannot 
predict for what directions the energy is, say, positive. 
On the other hand, a means for determining the sign of 
D is, in principle, available here. We define 

(K^a^k^+aikY'+a^kz2, (26) 

where X} F, and Z are the crystal axes. Then we 
calculate, 

SD 
= — a2X 

4 

2(3(K2)-k2), sc 

4:(kz
2-(K2)), bcc (27) 

lU6kz
2-k2-3(K2)), fee, 

which depends on both the directions of k and M. It is 
more convenient to discuss Eq. (27) as evaluated for 
the magnetization along an easy axis of the anisotropy 
((001) or (111)). Then 

with 

S E i £i(k}l)2= 5(50/4)(3 cos20k- l)k2a2 (28) 

(001) (111) 

5 -
2 
0 
i 
2 

0 
4 
3 
1 

sc 
bcc 
fee. 

(29) 

If we define the pseudodipolar contribution [see Eqs. 
(12), (20)] as 

NSD2 

K1
D(0)^-*fS4 and HA»(0)-

VZJ 

2KiD(0) 

M(0) 
(30) 

then 

- S E i £ i ( k - l ) 2 = « | 
1 

-(kBTc)gPHA
D(0) 

1/2 

.20|S4| 5 + 1 

X(3cos20k- l )JW, (31) 

where the radical has the sign of D and we have used 
Eq. (25) to define Tc. By analogy with the k-inde-
pendent terms, it may be expected that the temperature 
dependence of this energy is as the third power of the 
magnetization since its angular dependence is that of 
the spherical harmonic of second degree. That this is 
indeed so is shown in the Appendix. We now multiply 
Eq. (31) by 

[M(D/M(0)]» 

«1-3X0.306 
V /kBTe\*i*/T\ 

NsAzJS/ \TC) 

3/2 

(32) 

Comparing the temperature dependence of this energy 
with that of the exchange, we find for the ratio of the 
T^2 to the T^2 terms 

S(3cos%-l) 
»Z(S/S+l)kBTcgpBA»yi* 

where 

1.95Z 

(20|54|) 1/2 

kBT 

2.4 sc 

3.4 bcc 

16.8 fee. 

(33) 

(34) 

If the Curie temperature is a few hundred degrees and 
HA

D is a few kiboersted, then this ratio can be of the 
order of unity for T^50°K\ Finally, when the ratio in 
Eq. (33) is much larger than unity, the Tbl2 term is 
negligible and the k-dependent part of the spin-wave 
energy may be described by <Q(T)k2, where 

2D(T) « S)(0)[M(r)/M (0)]P (35) 
with 

r2S(S+l)gpHA
D(0)lm 

P-0.63/z5(3 cos20-l) — — . (36) 
L 3 kBTc J 

IV. CONCLUSION 

The pseudodipolar coupling is "inefficient" in pro
ducing magnetocrystalline anisotropy in a cubic crystal, 
the second order of perturbation being required. The 
spin-wave energy resulting from this coupling in first 
order is therefore measured by the geometric mean of 
the pseudodipolar anisotropy and the exchange. This 
unusual magnitude combines with a comparatively 
fast temperature dependence (it varies as the third 
power of the magnetization) to produce the dominant 
variation with temperature of the curvature of the spin-
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wave dispersion over a sufficient range of temperatures 
that it can be experimentally significant. 

As an example we may discuss nickel. The expansion 
of the anisotropic exchange for £ = J contains only the 
dipolar term so that the anisotropy is entirely dipolar in 
origin on this model [see Eq. (12)]. The lattice is 
fee with the easy axis along (111). Relevant param
eters are13 Af(0) = 508 G, i£i(0) = - 7 . 5 X 1 0 5 ergs/cc, 
g=2.19, JS= l87kB, and the coefficient in the Bloch 
J3 '2 law, C=7.5X10~6 deg-3'2. The radical in Eq. (36) 
is then ~ 1X10~~2, and therefore 

pN i^O.O43(3cos20k-l) (37) 

for M in an easy direction, and assuming D>0. Finally, 

a ) N i ( r )«3D N i (0){ l -3 .2(3 cos 2 0 k - l ) 

x io-7r3 /2- 4. i x io-9r5/2}, (38) 

where the coefficient of the Tb/2 term has been calculated 
from Eq. (23). Notice that the T3/2 term is larger than 
the T5 '2 term up to ~150°K for 0k=O. Also, up to 
^ 8 0 ° K the £>(r) increases with increasing temperature 
for 0k=7r/2. For a thermodynamic property, such as the 
magnetization, the T5/2 term in S)(r) leads to a T* 
dependence. The Tzl2 term has no effect however, since 
it averages to zero over the isotropic distribution of 
k directions. 

Experimentally > the temperature dependence of spin-
wave energies has been as thoroughly investigated for 
nickel as for any other ferromagnet. In spin-wave 
resonance, a Tm term two orders of magnitude larger 
than that calculated here was observed.14 I t has been 
argued that the result is due to inhomogeneous mag
netization and is not a measure of the "intrinsic" 
temperature dependence.15 In inelastic neutron scatter
ing16 only a Tbl2 term has so far been measured, the 
coefficient of which is an order of magnitude larger than 
that appearing in Eq. (28) above. The experimental 
situation is by no means conclusive. We have already 
pointed out that the anisotropic exchange model is not 
to be taken literally for metals. In future work we 
nevertheless suggest that, if a T3/2 dependence of the 
spin-wave energy is observed, it should be checked for 
a directional dependence such as is derived here. 

APPENDIX 

Our task is to show that the first order of the pseudo-
dipolar coupling energy varies, due to spin-wave 
interactions, as [M(T)/M(0)]3. The pseudodipolar 

13 B. E. Argyle, S. H. Charap and E. W. Pugh, Phys. Rev. 132, 
2051 (1963). 

14 T. G. Phillips and H. M. Rosenberg, Phys. Rev. Letters 11, 
198 (1963). 

16 P. E. Wigen, M. R. Shanaberger, and C. F. Kool, Phys. 
Letters 7, 109 (1963). 

16 R. D. Lowde (private communication). 
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Hamiltonian (5) may be written10 

HD = H°+H+++H- ~+H++H-, (Al) 
where 

# ° = E iSi(SRi-SR*H -35R^R^i0 (A2) 
i,i 

is the only term which does not change the total Sz and, 
therefore, contributes a first-order energy. To go over to 
the spin-wave representation and obtain the correct 
result for the interaction due to the isotropic coupling, 
the Maleev transformation17 is used: 

Sn.= 2S(l-bi*bi/2S)bi, (A3) 

Si-=2Sbi*, 
where 

Si±~SiXdtziSiy and [bl,bj*~]=8ij. 

By a straightforward calculation involving introduction 
of the Fourier transforms b^, 6k*, 

bi=N-u2 E k bk e x p ( - * . R 0 , (A4) 

bi*=N-1*2 L k ^k* exp(ik.R,) , 
the result 

fl°=Eo+i;*J**M* 
-Zk.ki.k2 rkl (k2

k6kl+k*6k2_k*6kl6k2 (A5) 

is obtained. If the isotropic exchange [Eq. (3)] is 
included, 

EQ=-NJZS2, (A6) 

£ k = 2 S / Z ( l - 7 k ) + 2 S Z i Ei cos k -1 , (A7) 
and 

r k l i k 2
k = (2.A0-1 Z i ( / + 2 E 0 exp(* . l ) 

X [ l - e x p ( i k r l ) ] [ l - e x p ( - i k 2 - l ) ] 
+ 3 ( 2 i \ 0 - 1 i ; i £ i e x p ( ; k . l ) 

X [ e x p ( t k i . l ) + e x p ( - i k 2 . l ) ] . (A8) 

Equation (A8) is the strength of the spin-wave inter
action to this order in the pseudodipolar perturbation. 
The first term of (A8) originates in the isotropic spin 
coupling, vanishes if kx or k2 is zero, and leads to the T6/2 

dependence of the spin-wave energies. I t is the source 
of Eq. (23) of our text and is now dropped from this 
discussion. The second term of (A8) comes from the 
Ising term of H° and vanishes only if k, ki, and k2 

vanish simultaneously. In first order there is a contribu
tion from this term only if k = 0 or k=k 2 —ki (note that 

17 S. V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957) 
[English transl.: Soviet Phys.—JETP 6, 776 (1958)]; R. A. 
Tahir-Kheli and D. Ter Haar, Phys. Rev. 127, 95 (1962). It should 
be emphasized that, except for S = i, this transformation is not a 
true representation of the spin operators. The Holstein-Primakoff 
representation11 would serve as well. However, it does not yield, in 
as simple a way, the correct spin-wave interaction term resulting 
from isotropic exchange. See T. Oguchi, Phys. Rev. 117, 117 
(1960). 

-Zk.ki.k2
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rk 1 ( k 2
k 2 - k i - r k l , k 2 °=r k 2 , k l

0 ) . The diagonal part of H° is 
therefore 

HdiaB° = J S o + E k nk-2 Lk i ,k 2 ^ k ^ k s I V ^ 0 , (A9) 

and the average energy associated with the excitation of 
a spin wave is then18 

f k ~ £ k - 4 £ k ' W > r k , k ' 0 , (A10) 

where ( ) denotes a thermal average and to this order 
the (ny,) are uncorrelated. In the long-wavelength ap-

18 See, for example, M. Bloch, Phys. Rev. Letters 9, 286 (1962). 

proximation for both k and k', and making use of 
Eq. (17), 

& = * k - (6/iV)Ek'(»k'>Ei Ei cos k -1 , (Al l ) 

or, using Eq. (A7), 

| k = 2 5 / Z ( l - 7 k ) 
+2S E i Ex c o s k . l [ l - (3 /MS)I><» k '> ] . (A12) 

Noting that [ A f ( r ) / ^ ( 0 ) ] n « C l - ( » / i V 5 ) E k ' < » k ' > l 
we have shown that the first-order pseudodipolar 
coupling energy varies as [_M(T)/M(0)]3. 
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Ultrasonic Attenuation in Metals in the Fluid-Dynamic Approximation* 

L. H. HALL 

University of California, Santa Barbara, California 
(Received 29 June 1964) 

Ultrasonic attenuation in metals has been discussed from diverse points of view, and for the most part the 
derived attenuation formulas reduce in the first-order low-frequency limit to the viscous dissipative expres
sion originally proposed by Mason. We undertake here a treatment for the low-frequency range which makes 
immediate contact with the transport-theory formalism of classical gases. "Fluid"-dynamic equations for the 
metal are formulated. For the electron-gas component a complete set of transport coefficients, including the 
several diffusion coefficients, is derived in a unified way on the simplifying assumption of a constant relaxa
tion time. The acoustic attenuation coefficient for a longitudinal wave is deduced; the dominant term is of 
course the shear viscous one, but thermal and diffusion effects are also explicit. 

INTRODUCTION 

MOTIVATED by the problem of ultrasonic attenu
ation, we develop "fluids-dynamic equations for 

a metal in a manner parallel to that employed for a 
mixture of classical gases.1 We take as a two-component 
model a free-electron gas coupled to an elastic ion con
tinuum by an electromagnetic field and by collision. 
From the Boltzmann transport equation, fluid-dynamic 
equations and a complete set of transport coefficients 
are derived for the electron gas in a unified way; thus 
the various diffusion coefficients are included. For the 
present purpose a constant-rate relaxation term suffices 
for the collision integral, and we are content simply to 
postulate isotropic continuum equations for the ions. 
The equations for the two components are combined 
into a simplified set for the system as a whole. This, in 
conjunction with the equation for the relative motion of 
the electrons and the Maxwell equations for the associ
ated electromagnetic field, determines the behavior of 
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the model. Finally, we consider the propagation of a 
longitudinal-plane acoustic wave and compute the 
attenuation coefficient. 

FORMULATION OF MACROSCOPIC EQUATIONS 

The electron-distribution function /(r,v,/) obeys the 
Boltzmann transport equation 
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where symbols have their common meanings. When dis
tinction is needed, indices 1 and 2 will be used to denote 
electrons and ions, respectively. Let \f/(\) be a particle 
property which is a function of velocity. According to 
standard transport theory,1 (1) is multiplied by \f/(v) 
and integrated over velocity to obtain the equation of 
change for the mean value (\f/): 

d 

dr 

d d /V d\f/\ 

dt dr \m\ dv / 

F fy\ 
(2) 

Here n\ is the electron-particle density. We assume the 
electron and ion densities are equal. Ac(\(/) is the rate of 
change of \p per unit volume due to collisions; F has been 


