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An exact generalized master equation is derived for a large quantum-mechanical system in the form of a 
power series in the density. This derivation is a quantum-mechanical generalization of a previous work by 
the author for classical systems. The quantum equation can be viewed as a time-dependent analog of the 
virial expansion of the quantum-mechanical partition function—for both degenerate systems (Bose-Einstein 
or Fermi-Dirac statistics) and nondegenerate systems. The coefficients of the series, in the quantum master 
equation, are explicitly given in terms of operators (Green functions) which are determined by the dynamics 
of isolated groups of particles and are convergent functions of the interaction potential. Equations are ob­
tained for the off-diagonal elements of the density matrix as well as for the diagonal elements. The equation 
for the diagonal elements is shown to reduce to a Markofhan master equation for asymptotically long times, 
and an explicit expression is obtained for the "scattering" operator of this asymptotic equation. 

I. INTRODUCTION 

IN a recent article1 (hereafter referred to as I) an 
exact generalized master equation for a classical 

system was derived in the form of a density expansion 
each term of which is a convergent function of the inter­
action potential. 

It is the purpose of the present article to extend that 
result to quantum-mechanical systems. That is, to 
derive an exact expression for the evolution of the 
density matrix in the form of an expansion in powers 
of the density. The corresponding quantum-mechanical 
master equations of Van Hove, Zwanzig, and Resibois 
and Prigogine,2 on the other hand, are expressed as 
expansions in powers of the interaction potential and 
are not directly applicable to singular potentials3 nor 
pertinent to a given order in the density. 

To accomplish our purpose the Von Neumann equa­
tion for the density matrix is cast in the form of Liou-
ville's equation, and the resulting Von Neumann 

1 J. Weinstock, Phys. Rev. 132, 454 (1963). Also referred to as I. 
2 L. Van Hove, Physica 23, 441 (1957); R. Zwanzig, J. Chem. 

Phys. 33, 1338 (1960); I. Prigogine and P. Resibois, Physica 27, 
629 (1961); P. Resibois, Physica 29, 721 (1963). 

3 R . J. Swenson, J. Math. Phys. 4, 544 (1963). Here, the Van 
Hove master equation is reformulated in terms of a convergent 
two-body scattering matrix. 
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Liouville equation is treated in the same formal way 
as was the classical Liouville equation in I.4 

[The Von Neumann-Liouville (VNL) formalism has 
been used in statistical mechanics by many authors in 
recent years; for example, Prigogine and Ono,5 Zwanzig, 
and Resibois.2 In Van Hove's work, however, this for­
malism is not taken advantage of and is complicated by 
the coupling between products of resolvents which 
arise from commutators. Ono, Prigogine, and Resibois 
avoid commutator complications by the clever device 
of introducing a new "Hamiltonian" in a representation 
such that the commutator in the Von Neumann equa­
tion is replaced by a "displacement" operator. In the 
present article we shall avoid commutator complica­
tions without introducing a new "Hamiltonian" by 
taking full advantage of the strict analogy between the 
Von Neumann equation and the classical Liouville 
equation.] 

In Sec. II we define quantum mechanical Liouville 
operators in terms of which the Von Neumann equation 

4 Here, however, the derivation is performed in the resolvent 
formalism (E plane) whereas in I it was performed explicitly in 
the time. The two methods are completely equivalent since they 
are related to each other by a Laplace transform. The reason for 
switching from the time plane of I to the present E plane is to 
demonstrate this equivalence at every stage of the derivation. 

5 1 . Prigogine and S. Ono, Physica 25, 171 (1959). 

Copyright © 1964 by The American Physical Society. 
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can be viewed as Liouville's equation (VNL equation). 
In Sec. I l l we obtain the /-matrix expansion (binary 
collision expansion) of the formal resolvent solution of 
the VNL equation (this expansion is a sum of products 
of two-body /-matrix operators which is analogous to 
the Mayer /»,- expansion of the partition function). In 
Sees. IV and V there are denned cluster products and 
irreducible cluster products of t matrices which are 
identical to the Laplace transforms of their classical 
counterparts in I when the classical Liouville operators 
are replaced by quantum ones. In Sec. VI the expansion 
of the resolvent is regrouped in terms of irreducible 
clusters to obtain a generalized master equation for a 
nondegenerate quantum system which is given explicitly 
to all orders of the density, and is exact for all time in 
the limit of an infinite system. This equation, as in the 
classical case, can be viewed as a time-dependent analog 
of the equilibrium virial expansion in which the irre­
ducible cluster of (s+1) particles plays the role of the 
( H - l ) t h virial coefficient. A generalized master equa­
tion for a degenerate (Bose-Einstein or Fermi-Dirac 
statistics) quantum system is derived in Sec. VII. This 
equation involves a double sum in powers of the density 
due to the degeneracy statistics. There is also obtained 
an equation for the off-diagonal part of the density 
matrix—as well as for the diagonal part. Finally, in 
Sec. VIII it is shown that the generalized master equa­
tion approaches a Markoffian equation in the asymp­
totic limit of long time, and an explicit expression is 
derived for the scattering operator of this equation. 

The results of these sections are limited to density 
matrices which are initially diagonal (in momentum 
representation this means independent of particle 
configurations). 

II. VON NEUMANN-LIOUVILLE EQUATION 

We wish to study the temporal evolution of the 
density matrix of a quantum-mechanical system of N 
particles enclosed in a box of volume V. The Ham.il-
tonian of the system, excluding wall forces, is given by 

HN^HN«+Vf, (1) 

h2 *r d2 

W—— E—, (2) 
2m JHL d R / 

^i^imj, (3) 

where Ry is the vector position of particle j , V(R3-8) is 
the interaction potential between particles j and s, and 
R/g=Rj— Rs. We next define the corresponding quan­
tum mechanical Liouville operators LN, LN°, L3-s by 

Z / = ( l / f t ) [ S * , / > (l/h)£HNf-fHNl, (4) 

£^(1/»)PW1 (S) 

w=(i/«)Pw:], w 

where / denotes any function on which the L's operate. 
The Von Neumann-Liouville equation for the evolu­

tion of the density matrix p{t) of our system can now 
be written as 

dp(t)/M= ( - f / * ) C ^ , p ] = ~iLNp{t). (7) 

This has the formal solution 

p(t)^e-
iHNtlhp(0)eiHNtlh (8) 

and, hence, 

P(t) = e-^M0>GN(t)p(0), (9) 

where the iV-particle particle propagator (Green func­
tion) GN(t)^e~itLN is the formal solution of the N-
particle Heisenberg equation. [Equation (9) follows 
easily from Eq. (8) by means of the identity 

m (—\)rm\ 
(L^P^Z — ~i(HNr-rp(HNy].] (10) 

r=o r \\m~r)! 

Equation (9), it will be noted, has the same form as 
the solution of the classical Liouville equation in I. 
For this reason we may derive an exact equation for 
the diagonal part (diagonal elements) of p{t) from Eq. 
(9)—in the form of a density expansion—in the same 
way that the density expansion of the classical master 
equation was derived from the classical Liouville equa­
tion. In Ref. 1, however, the derivation was performed 
in the time i plane whereas in the present case the 
derivation shall be performed in the Laplace transform 
plane (E plane). 

We shall, hence, define the Laplace transform of the 
propagator GN(1) by gN(E) so that 

/•OO 

gN(E)^ dte~^GN{t), 
Jo (11) 

^(iLN+E)~K 

In terms of gN(E), Eq. (9) for the formal solution of 
the VNL equation becomes 

1 f ( e+tE \ 
p(*) = — <h dE[ )p(0), (12) 

2iriJ \iLN+EJ 

where the contour of integration is the usual vertical 
line of infinite extent which lies anywhere to right of 
all singularities of the integrand in the complex E plane. 

The master equation for p(t) may be derived from 
(12) in a manner similar to that in Ref. 1. Thus, the 
propagator (iL^+E)"1 is expanded as a sum of products 
of two-body propagators and the result is regrouped in 
terms of irreducible clusters of groups of particles— 
using the same cluster concept as in Mayer's well-
known equilibrium theory—to obtain a density ex­
pansion for p(t). 

Ham.il-
file:////m~r
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III. ^-MATRIX EXPANSION (BINARY 
COLLISION EXPANSION) 

The expansion of (iL^+E)^ in terms of two-body 
propagators is generally known as the /-matrix expan­
sion, and is simply the Laplace transform of the binary 
collision expansion of Ref. 1. The /-matrix expansion 
involves the free-particle propagator go(E) and the 
two-particle propagator gjs(E): 

go(E)^(iLN«+E)-\ (13) 

gjs(E)^ (iLN°+iLjs+E)~i. (14) 

These propagators are special cases of the w-body 
propagator gn(E) which we shall define here for later 
use as 

gn{E)^(iLN»+i £ Ljs+E)~\ (15) 
1< 3<s< n 

[_gn(E) is thus the formal solution of the VNL equation 
for a system in which particles 1, 2, • • •, n are inter­
acting with each other while the remaining (N—n) 
particles are noninteracting: it thus involves the solu­
tion of an n-body problem.] 

In terms of these propagators the /-matrix expansion 
of gN(E) is given by1,6 

gN(E)=£o(£)+E £ W « r • • t«ME), (16) 
n = l {a} 

where the binary index a& denotes the pair of particles 
jkSk{jk<Sh) and the /-matrix operator tah is denned by 

t«k=[_gak{E)-g*Wg«{E)-i (17) 

and involves the solution of a two-body problem [ta 

can also be denned by the usual expression (go-1/* 
= — iLa—iLago(g(THa)~]' The summation 

z 
in (16) denotes the sum of each of the binary indices 
ai,a2"-an over all the %N(N-~l) possible pairs of 
particle indices such that no consecutive pair are the same. 
[For convenience of notation we shall not always 
write the argument E in gn(E) or /«(£).] 

IV. CLUSTERS (CONNECTED PRODUCTS) 
OF f-MATRIX OPERATORS 

As the first step in the derivation of a master equa­
tion for p(/) from (16) and (12) we define clusters of /?s 
in exactly the same way as clusters of fs> were defined 
in Ref. 1. This definition of clusters is adapted from 
Mayer's theory and is stated as follows: 

For any products of /'s, 

ta^ai' ' 'tan j (.!"/ 

which appears in Eq. (16) we imagine drawing a point 

6 K. M. Watson, Phys. Rev. 103, 489 (1956); A. J. F. Siegert and 
Ei Teramoto, ibid. 110, 1232 (1958). 

in configuration space for each particle (particle index) 
which occurs in the product. We then imagine drawing 
n line segments through each of the n pairs of particles 
indices ai, ar • -an so that to each tah in this product 
there corresponds a line segment connecting the pair of 
particles a*.. If it so happens that a group of line seg­
ments connect a group of particles together, directly 
or indirectly, such that a continuous line passes through 
each particle in this group then the /'s which correspond 
to this connected group are said to form a connected 
product or cluster of /?s, and the particles which are so 
connected by this group of line segments are said to be 
connected to each other in a cluster (see Footnote 7 
of Ref. 1). 

We may now define the operator 

tgn(^iiir-is+i;E)-gQ(E)lgQ(E)-i (19) 

to be the sum of all permissible / products that can be 
formed from a set of n particle indices such that no pair 
of particle indices from among the subset ii, i2- • 'i8+i are 
connected to each other in a cluster. Zgni^iv • *i*+i; E) 
is simply the Laplace transform of the propagator 
Gn{9£iv • -is+i) defined in I providing LN° and Ljs are 
defined by (5) and (6) instead of by their classical 
counterparts in I . ] 

A property of gn{^iv • 'is+i', E) that will be used in 
the next section is 

« n ( ^ f i - - - f » ; £ ) - g o ( £ > = 0 , (20) 

since, by definition, gn(?^iv - -in',E) is the sum of all 
/ products in which there are no particles connected to 
each other in a cluster. 

V. IRREDUCIBLE CLUSTERS 

We shall next use the operator gni^iv • 'is+il E) t o 

express gN{E) in a form from which one can readily 
prove gN(E) to be a linear functional of itself and, 
hence, lead to a master equation (Sec. IV). This ex­
pression for gn(E) also serves the dual purpose—to 
which we confine our attention in the present section—• 
of defining the irreducible clusters of (n+1) particles, 
Tn(ii- • -in+i; E), in terms of which the master equation 
shall appear. 

This expression is given, for all ri> 1, by 

w—1 

gn(E)^g0(E)+J: £ Ts(iv • -u+^E) 
s=l 1< *',<• • "OVn< n 

Xgo(E)~ign(?±i,--.is+1;E), (21) 

where the irreducible cluster Ts(iy • 'i8+i\ E) is to be 
determined so as to satisfy (21) for all n. Equation (21), 
for all n, is thus to be viewed as a definition of T$ 

(iy • -is+i; E). [T8(ii"-is+i\E) is the Laplace trans­
form of the irreducible cluster Vs(iv - -is+i', t) defined 
in I in which the classical Liouville operators have been 
replaced by the quantum ones.] 
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To facilitate the determination of Ts from (21) we 
substitute (20) into (21) and re-arrange to obtain 

ZV-i(l,2-..») 

s—1 l<i,<-"<is+l<n 

Xgo(E)-ign(^i,-'is+i;E). (22) 

Equation (22) can be solved recursively for all the TVs 
by solving for successively increasing values of n. As 
examples we solve for Tx and T2 in Appendix A by 
setting n equal to 2 and then 3 in (22). It is found 
there that 

3^(12; £)sg2(£)--goOE) 
^tligo(E) 

and 

r2(123; E)^g,(E)-g0(E)~ (hi+hz+hz)go(E) 
~~ (Wl3+W23+W12+W23 

+ W l 2 + ^ 1 3 ) £()(£) • 

By repeating the procedure of Appendix A with n 
equal to 4, 5, 6, etc., the recursion relation, Eq. (22), 
can be solved uniquely for all TVs. This would give Tn 

as a function of gn+i(E), gn(E), -'-go(E) so that Tn 

involves the solution of no more than an (n+1) body 
problem. [The irreducible cluster Tn(li- • -n+l;E) can 
be viewed as the (#+l)-body generalization of the 
two-body t matrix, i.e., Tn can be viewed as an (n-\-l)-
body collision operator. This is because Tn can be shown 
to vanish for all particle configurations in which all 
(n-\-l) particles are not simultaneously correlated with 
each other. For example (see Appendix C), if any pair 
of particles from among 1, 2, • • •, n+1 are sufficiently 
separated from each other than 

rn(l- .-»+l;E) = 0. 

In addition, Tn(l- • -w+1; E) can be viewed as an 
analog of the Mayer irreducible cluster sum—Husimi 
function—since it can be expressed as a sum of irre­
ducible products of pair functions, t% and vanishes when 
any two of its particles are sufficiently separated.] 

Equation (22) serves to generate all the TVs and we 
shall hereafter consider Tn to be a known function. 

VI. GENERALIZED MASTER EQUATION FOR A 
NONDEGENERATE QUANTUM SYSTEM 

(BOLTZMANN STATISTICS) 

In this section we shall obtain the density expansion 
of the generalized master equation for a nondegenerate 
system (an analogous equation for degenerate systems 
is derived in Sec. VII). For this purpose Eq. (21), with 
n=N, is substituted into (12) to obtain 

P ( 0 = — (fdEZg0(E)+N£ £ T8(iv • -is+i;E) 

Xgo(E)~'gN(^iv • 'i,+i;E)lt+<W0). (23) 

The master equation is a closed equation for the 
diagonal part of p(t), and can be derived from (23) in, 
essentially, two main steps. Before proceeding with this 
derivation, however, we shall first specify exactly what 
we mean by diagonal part of diagonal element. 

By an element of p(t) is meant the expectation of 
p(t) between two free A'-particle states (eigenfunctions 
of the total momentum operator). A free iV-particle 
state k denotes that particles 1, 2, • • •, TV are in free 
particle states ki, k2, • • •, kN, respectively, and is 
given by 

N 
Y-NI2 J J gtk/.R/== y-N/2ei{k) .{R} ^ (24) 

The symbol pks(t), thus, denotes the following: 

P*,(/)sF- iy/rf{R}r(k) ,lR}p(/y( ,l 'lR) 
J (25) 

^<k|p(fl|s>. 

The diagonal part of p(t), which will be denoted by 
either Dp(t) or pz>(/), is thus defined by 

Pi>(0=.^p(0sE|k>P**(0<k|. (26) 
k 

The diagonal part of Eq. (23) can now be written as 

PD{t) = D— <fidE£g0(E)+Z Z T&v • -is+i) 

Xg*{E)-igN&iv • -i+iWWO)• (27) 

The master equation for pnit) can be derived from 
(27) in essentially two steps. They are: 

Step (1): If p(0) is independent of the positions of the 
particles (this means that p (0) is diagonal in momentum 
representation) then 

DTs(iv • 4s+1)go~lgN(^iv • -M-i)p(O) 
= DT&V • -is+i)g<rlDgN(^iv • -WI)P(O) . (28) 

Step (2): If the volume of the system is sufficiently 
large then 

DgN(*iv • 'is+1)p(0) = DgN(E)p(0)+O(s/V) 

r (29) 
s duriBpD{t)+0(s/V). 

Jo 

The proofs of Eqs. (28) and (29) are given in Ap­
pendices B and C. [Equations (28) and (29), and their 
proofs, are analogous to their classical counterparts in I. 
The essential difference is that the quantum case in­
volves the diagonal part, Z>, of operators whereas the 
classical case involves the average of these operators 
over configuration space.] 

To obtain the desired equation for PD (t) we substitute 
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Eqs. (28) and (29) into (27) and thus find 

P D ( 0 = —; fdE£Dg0(E)+£ E DTs(iv • -is+1) 

Xgo~1{DgN(E)+0(s/V)}2e+iMO). (30) 

We shall avail ourselves of the notation of equilibrium 
statistical mechanics and denote the diagonal part of 
the irreducible cluster sum by p8(E), 

Ps(E)^D £ T&v~i+i\E), (31) 
l<il<-'<ia+l<N 

so that Eq. (30) can be written as 

PD(/) = — : <f> dE e+iEZDgo(E)p(0) 
2-wiJ 

+ E 1 / 3 * g < r 1 { ^ + o ( V F ) } p ( o ) ] . (32) 

In the asymptotic limit of infinite N and V (at con­
stant N/V)—and within the radius of convergence of 

oo 

Jl Psgo^s—Eq. (32) becomes 
5 = 1 

P D ( 0 = — <fdE e+^Dgo+Z fisgo-'Dg^MO). (^) 
2-KlJ s-1 

The inverse Laplace transform on the right side of 
(33) may be performed by means of the convolution 
theorem. The inverse transform of p9(E) is to be de­
noted by the time-dependent irreducible cluster operator 
&(/) , i.e., 

/•oo /»oo 

0. (E) = / dt e-z'ps (/) s 2? / dt e~EtTs (t). (34) 
Jo io 

The inversion of the integrand in (33) is simplified by 
the easily verified fact that if DA is the diagonal part 
of any operator A then, since HQ is also diagonal, 

LoDA=HoDA-(DA)HQ=0. (35) 

From (35) it follows, since p(0)=pu(0), that 

2 O ( £ ) P ( 0 ) = E - V ( 0 ) , . 

gQ(E)-iDGN(E) = EDGN(E). ( j 

Substituting (36) into (33) and making use of (12) 
as well as of the relation 

j9.(O^o=0/(/)«uo=O (37) 

[the proof of (37) is the same as that in Appendix D 
of Ref. 1] we find, by means of the convolution theorem, 
that 

PZ>(/) = P D ( 0 ) + / dy[Z (3s'(t-y)-]pD(y) (38) 
Jo «-i 

which is an exact equation for pn(t) in the form of a 
density expansion. I t is exact in the limit of an infinite 

system providing: (1) p(0) is diagonal and (2) the 
scattering cross sections are finite. 

The generalized master equation is obtained from 
(38) by simply differentiating it with respect to t and 
substituting (37) 

dpD{t) f* oo 

= / <*yE P."(*-y)l>D<y). (39) 
dt J0 «-I 

Equation (39) is a form of the generalized master 
equation given explicitly to all orders of the density. 
I t is exact for all t in the limit of an infinite "homo­
geneous" system. 

The time-dependent cluster function ($8(t) involves 
the solution of a well-defined quantum-mechanical 
(s+l)-body problem, and converges for all potentials 
of a finite range [fis (t) is determined by the solution of 
the Heisenberg equation for a system of (s+1) isolated 
particles]. The cluster Ts(t), of which ps(t) is simply the 
diagonal part, is the same as the classical Vs(t) when 
the quantum Liouville operators are replaced by classi­
cal ones. 

Equation (39) is equivalent to the Resibois-Prigogine 
master equation, as given in Ref. 2, Eq. (2.9), in the 
representation of unsymmetrized plane-wave states. The 
latter is expressed as an expansion in powers of the 
interaction potential whereas the former is expressed 
as an expansion in the density. 

VII. DEGENERATE QUANTUM SYSTEM (BOSE-
EINSTEIN OR FERMI-DIRAC STATISTICS) 

In this section we shall derive a generalized master 
equation for a quantum degenerate system from Eq. 
(23). This means we must consider expectation values 
of the density matrix between properly symmetrized 
plane wave states. 

If we let n denote such a properly symmetrized plane-
wave state [for either Bose-Einstein (B.E.) or Fermi-
Dirac (F.D.) statistics] then the expectation value of 
the density matrix operator between two such states 
(n and n') is denoted by 

Pnn ' (0^<n|p(0 |n '> (40) 

and the diagonal part of p(t) in this representation is 
denoted by 

pn(t)^Dp(t)^Z\n)Pnn(t)(n\. (41) 
n 

The derivation of a closed equation for po(t) from 
Eq. (23), or Eq. (27), is more complicated for a de­
generate system than it was in the preceding section 
for a nondegenerate system. The reason is simply be­
cause step (1) [Eq. (28)] does not hold in the repre­
sentation of symmetrized states. 

For an arbitrary representation Eq. (28) must be 
replaced by the identity 

DT8(iv • 'is+dgo^gNi^iv * *i+i)p(0) 
= DT8(iv - 'ia+Ogo^Dgjfi^iv • -is+i)p(0) 
+DT&v • -is+dgo-'ODgN^iv • • V H ) P ( O ) , (42) 
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where the operator 0D denotes the of-diagonal part of 
the operators to its right 

OngNp(0)^gNP(0)-DgNp(0). 

[In the representation of unsymmetrized eigenfunctions 
the last term on the right of (42) vanishes exactly (as 
shown in Appendix C) and Eq. (42) then reduces to 
Eq. (28).] ^ 

To obtain the master equation for PD(1) (in any 
representation) we first substitute Eqs. (42) and (29) 
into the diagonal part of Eq. (23) and then follow the 
same steps as from Eq. (30) to Eq. (38) for the first 
term on the right side of (42) [Eq. (29) holds in any 
representation]. We thus find that 

f °° 
Pn(t) = Pn(0)+ dyUl^(t-y)-}pD(y) 

J o s=i 

+D<fdEZ E T&vi+i) 
*/ s=l z'i<« "<is+l 

Xg^OngN^iv • -is+i)e^p(0), (43) 

where /3s(t) is defined as the diagonal part of Ts(t) in 
the new representation: 

P.(t)=DT,(f). 

The off-diagonal operator 0Dgx can be expressed in 
terms of DgN. This is done in Appendix D where it's 

[The subscript (p*ir • -is+i) on the bracket denotes 
that no term in the expansion of the bracket is to have 
any pair of particles from among iv • -is+\ connected 
to each other in a cluster0 

Defining an operator K(t), and its transform K(E), by 
/•oo 

K(E) = dte~tEK(t) 
Jo (47) 

-D^iTgo-Hl-ODTgo-^ODT}) 

and substituting (46) into (43) there results the closed 
equation 

Pn(t) = pn(0)+ [ dyZK'(t-y)+t Ps'(t-y)1pD{y). 
Jo «~i 

(48) 

Differentiating (48) with respect to t and making 

found, in the limit of an infinite system, 

ODgNP(0) = ̂ { f ; (OnTgo-^DgMO) 
k=l 

^^{0DTg^{\-0DTg^)^}DgNp(()) (44) 

where T=T(E) is defined by 

T=t £ Ts(ivis+i) (45) 

and the superscript nmc (not multiply connected) on the 
brackets denotes that, in the expansion of the terms 
within the bracket, we retain only those ordered prod­
ucts of Ts(ii- - -i&+i) operators which are not multiply 
connected to each other with respect to particle indices: 

An ordered product of Ts's is called nmc if the term 
which appears to the right of any TSi say Ts(lv • -/s+i), in 
that product does not have any pair of particles from 
among fa, • • •, /s+i connected to each other in a cluster.1 

[For example, the product 

T1(l1l2)go~lTz(hkhl6)go~1T2(l7lsh)go~'1' - -

is nmc if: the term to right of Ti(fafa) does not have fa 
and fa connected to each other in a cluster, the term 
to the right of Tz(hhhh) does not have any pair of 
particles from among fa, fa, fa, and fa connected to each 
other in a cluster, and so on.] 

Equation (44) is next substituted into the sum on the 
right side of (43), and use is made of (29) followed by 
(45) and (37) to obtain 

use of (37) we finally obtain 

dPD(t) C% 

= dfiK"(t-y)+E(l."(t-y)TpD(y). (49) 
dt 7 0 * - i • 

This is a generalized master equation for a quantum 
degenerate system, and it is exact in the limit of an 
infinite "homogeneous" system. Although we have 
specified that diagonal parts, and expectation values, 
of operators are in the representation of symmetrized 
single-particle states (B.E. or F.D. statistics) Eq. (49) 
actually holds in any representation for which p(0) 
= pz>(0). In a representation of unsymmetrized single-

7 We use the notion of connectivity in the same sense as in equi­
librium cluster theory except that here the clusters Ts(ii- • -is+i) 
are noncommutative so that ordering is important. 

£ E T,(iv • -i8+i)giT10DgN(9*i1- • -is+i)p(0) 
s h<"'<itt+l 

= £ £ T.(ii- • -u+dgo-1 ^{OnTg^a-ODTgo-T1}^ ...i+oDgnfriv • -u+MO) 

s h<"'<is+i 

= -»»{ Tgo-^DTgo-i (1 - 0DTg^)-l)DgNP (0) 

= ^{Tgtia-0DTgtrri^DT\EDgtrpm. (46) 
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particle states Kfr(t—y) vanishes exactly and (49) 
reduces to (39). 

VIII. LONG TIME LIMIT—MARKOFFIAN EQUATION 

It has been shown (see Sec. III.of Ref. 1) that the 
classical generalized master equation reduces to a 
Markoffian equation in the asymptotic limit of long 
time. This was a consequence of the fact that the kernel 
of the former equation rapidly vanishes with time. Since 

oo 

the kernel, [ ! £ " ( # + E f t " ( 0 1 of the quantum gen-
5 = 1 

eralized master equation also rapidly vanishes with 
time (although we do not prove it here) we may use 
the same analysis as in Ref. 1 to prove that Eq. (49) 
asymptotically reduces to a Markoffian equation. We, 
thus, find that 

dPD(t)/dt=A(E*)pD(t) (large t), (50) 

where the Markoffian scattering operator A(E) is 
defined by 

• / . 
A(E)= durt*ZK"(i)+XP."(t)l (51) 

and £* is denned as the solution (real) of 

[ E - A ( E ) ] P D ( 0 ) = 0 . (52) 

Equation (52) is an implicit definition of A(E*). An 
explicit expression for A(£*) can be obtained by simply 
"inverting" (52) (this was not done in Ref. 1) as 
follows; a function co(E) is defined by 

w s A ( E ) - E . (53) 

Since A'(0)^0 and A(E) is analytic in the neighborhood 
of E=0 (see Ref. 1) it can be shown that, in this 
neighborhood, the inverse of (53) exists, is unique, and 
is given by8 

£ = E ^L[>-A(0)]*, 
w = l 

where 

A.n— 
1 f dn~l E 

(54) 

(55) 
n\{dEn-llA.{E)~Ey\ E^ 

Since E* is the solution of co(E) = 0 we simply set co=0 

in (54) to obtain 

A(£*)=E*=£(-l)»il»i;A(0)]» (56) 
w=»l 

which is an explicit expression for A(E*) in terms of A(0) 
and the derivatives An(0). 

APPENDIX A 

The solution of the recursion relation, Eq. (22), for 
Z\(12) and T2(123) is, formally, the same as that for 
its classical counterpart in I so that we can be brief. 
Setting n equal to two in (22) yields 

7\(i2; E)^g2(E)-g,{E)^ (il12+ilN«+E)-* 
-(ilN«+E)-i (Al) 

= *i#o(£) 

which only involves the solution of a two-body problem. 
To obtain T2(123) we set n equal to three in (22) 

T2(123',E)^gz(E)~-go(E) 

- £ T1{iiH\E)g,{E)^g^i1i2)E). (A2) 
1< U<*2< 3 

But by definition, 

g3(^12)^g0+(*13+*23)g0 (A3) 

so that (A2) becomes 

T2(m;E) = g3--go-T1(12)go-1(l+h3+t2z)go 
-Tl(13)g<r1(l+t12+t2z)go 

~T1(23)gQ-\i+t12+tn)go. (A4) 

Substituting (Al) into (A4), and re-arranging, we 
obtain 

T2(m;E)^gz(E)-go(E)-(t12+hz+t2d)go(E) 
~ (^12^13+ W 2 3 + ^ 1 2 + ^13^23+ fa%tl2 

+tntu)gQ(E) (AS) 

which determines T2(123;£) in terms of gz(E) [see 
Eq. (15)] and t, and involves the solution of only a 
three-body problem. 

APPENDIX B 

To begin the proof of Eq. (28), step (1), we note 
that in matrix notation T9(ivi8+i;E)go(E)~'1 is a 
four-index (tetradic) operator. This is a direct conse­
quence of the fact that L is a commutator. For example, 

{k\g12(E)p\ r>s<k| [ dte-^e-i^+^p] r) 
Jo 

= (k I / dte~Ete~iih~l (H^+vn)peith-^(HNQ+vn) I r\ 
Jo (Bl) 

JcrmpPmp j 

8 C. Caratheodory, Theory of Functions (Chelsea Publishing Company, New York, 1958). 
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where the tetradic matrix element gn(E)krmv is defined 
by 

{gu(E)}krmP^ / dte-Et{gi2{t)}krmp 

Combining (B4) with (B6) we see that, in (B3), 

• / 
= / dte~Et{e~ith-l^"+v^}km 

X{eim~l^+V^}pr. (B2) 

In this notation a diagonal element of the left-hand 
member of (28) can be written as 

(k\Ts(iv • -is+i)g<rlgN{?£iv ' -*V+i)p(0)|k) 

= H { Ts (h • ' * is+dgo"1} kkmp 
m,p 

X{gN&iv • -f*fi)p(0)W. (B3) 

But Ts(iv ' 'is+i)go~1 contains iteration terms {Li\i%^ 
Liiiz, etc.) between particles ixir'-is+i only. This is 
because Ta(iv • *^+i) contains tiii^, tiii%, etc. (see Ap­
pendix A of Ref. 1 for further details). Consequently, 
Ts(iv —is+i)g<rl changes the relative "momenta" of 
only particles ih • • •, is+i.1 The "momenta" of the re­
maining (N—s—1) particles cannot change. In other 
words, the intermediate states m and p can only differ 
from each other, or from the state k, in the momentum 
eigenvalues of particles iv • 'is+i- Hence, if my denotes 
the "momentum" of particle j in the iV-particle state 
m then, for j?*ii, • • •, i8+i, 

ny= py= ky (J9^iv • - i s + i ) . (B4) 

The "momentum" of the center of mass of particles 
iv ' 'is+i is also constant; i.e., 

mh-\ hm l 8+1= P»i+P*2H Vis (B5) 

On the other hand, the operator gN^iv * -i«+i)p(0) 
contains no interactions, or forces, between particles 
ii, *" is+i, a n ( i is, in fact, entirely independent of the 
relative vector positions between particles iv • -is+i. 
[This follows from the fact that g^i^iv • • is+i) does not 
have two or more particles from among iv • -is+i con­
nected to each other in a cluster, and p(0) is independent 
of positions—see Appendix A of Ref. 1. The operator 
gN^iv * -is+i)p(0) depends upon the positions of par­
ticles iv - -is+i in the form of momentum operators 
only.] This means, when combined with (B5), that the 
"momenta" of particles iv • -is+i in the state m must 
be equal to their "momenta" in the state p: 

mj= Pi (j=ih ir " is+i) • 

m7 
(a l i i ) 

and, hence, 
tn=p. (B7) 

Substituting (B7) into (B3) then yields 

(k\Ta(iv • 'is^i)gflgN{y^iv • -is+i)p(0) | k) 

— JKTsfyv * -is+l)g<Tl}kkmm{gN{7*iv * 'is+l)p(0)}mm 
m 

= <k| Ts(iv • - f * f l ^ o - ^ ^ f ^ f i - • -*VI )P (0 ) I k ) . (B8) 

Multiplying both sides of (B8) by |k) (k | and sum­
ming over all k finally yields the desired result 

DT8(iv • 'is+i)g^~lgN{^iv ' 'is+i)p(0) 
= DTs(iv • -i+dgf^DgN&iv • -is+i)p(0) (B9) 

which is Eq. (28). 

APPENDIX C 

The proof of Eq. (29), step (2), is strictly analogous 
to that of its classical counterpart in I (Appendix B) 
so that we will be brief. We first note that if F«(R«) 
is a short-range potential then (as for fa in I) 

ta={ga— go)gO 1==—goLagagQ (CI) 

is zero, since La is proportional to Va, unless Ra is less 
than some well-defined length of finite extent. This 
length will depend upon E [since go(E) operates on La 

in (CI)] as well as upon the range of Va but is inde­
pendent of the total volume V of the system. 

I t then follows, as in I, that a cluster (connected 
product) of /a 's is zero whenever the separation be­
tween any two of the particles in the cluster is greater 
than some finite distance. 

Hence, since [GN—GN^iv ' *^+i)] is defined as the 
sum of all t products which contain two or more of the 
particles iv • -is+i connected to each other in a cluster, 
it follows that GN—G^i^iv • • Vf-i) will be zero when 
particles iv * -is+i are all simultaneously separated from 
each other by more than some finite distance. 

There thus exists the finite regions (independent of V) 

such that 
V(iii2), V(iiiz), -", V(iiis+1), 

GN(E)-GN(^ivis+i;E) = 0 (C2) 

when R*1Z2 lies outside of the region Vtyfa), R-hn lies 
outside of V(iih), etc. 

As a consequence of (C2) one can write, with {k(s)} 
(B6) • {R(s)} = ( V Rh+ki2.Ri2+ • • . + k,,+1. Ria+1) 

V~( tvfdRiJ dRilia- • • f dR^^e-^^-ms^G^G^^i,.. . t a + i ) > ( 0 ) ^ k W J - W ) ) = 0 , (C3) 
JV J V-V(iii2) J V-V(nis+i) 

where the region of integration V— Vtyiiz) denotes that we integrate Rtli2 over all of the volume V except for the 
region V{hk)\ifv-v{hi2)^fv--fv(ilh)]. 
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In the limit of infinite V the ratio of the volume of V(iii2) to the volume V approaches zero so that we can ob­
tain the following from (C3), see I for details: 

J v J v J v 

If we let {k^s)} and (R(^s)} denote the set of momentum eigenvalues and vector positions, respectively, 
of all particles except iv • -is+i then we can take the expectation value of (C4) between the states {k(Vs)} to 
obtain 

V~N fd{R(^s)} fdRh fdRilh- • U ^ r i ^ ' ^ ^ i 

= (k\ZGN-GN(9*iv • •*Vi)>(0)|k> = O ( ^ ) . (C5) 

Multiplying both sides of (C5) by |k)(k| and summing over all k we obtain the desired result: 

DGN(E)P(0)-DGN(^iv • -i8+MO) = 0(s/V). (C6) 

APPENDIX D 

The derivation of Eq. (44) begins with the off-diagonal part of Eq. (21) operating on p(0). If we substitute 
gN(^iv •i*fi) = £gtf(?**i- • 'is+i)+0DgN(^iv - -in-O a n d DgN^iv • 'is+d^Dgn+OiV-1) into the off-diagonal 
part of Eq. (21) we obtain 

ODgN(E)p(0) = 0D £ E Ts({is+1})g0^DgN(E)p(0) 
s=l u<»«»<i«+i 

+0Dz £ rs({is+1})go-1o^(^{t5+1})p(o)+o(F-o, (Di) 
8=1 ii< • • • <i*4-l 

where we have used P ( 0 ) = P D ( 0 ) to obtain 

Oj>go(£)p(0) = ODg0(£)pi> (0) = 0, (D2) 

and {i«+i} denotes the set of s+1 particles iv • #is+i. 
Equation (Dl), together with (29), is a recursion relation for OngNpiO) in terms of DgNp(Q). 
If we subtract, from both sides of (Dl), all t products which have two or more particles from among {jj+i} 

connected to each other in a cluster we obtain, with (29), 

< W ( ^ O W ) = 0 D E E T.({i9+1})go-iDgMo) 
s h<"'<is+l7^{jl+l} 

+0Dz Z r.({*H.i})g,r1<W(5*{»Vi))p(o), (D3) 
8 h<--'<is+l^{jl+l} 

where the subscript ^{ji+i} on the sum means that we exclude, from this sum, those values of ii, ir • 'is+i for 
which r«({i8+i})go""1gjv(?,£{wi}) contains two or more particles from among {ji+i} connected to each other in 
a cluster. 

Substituting (D3) into the last term on the right of (Dl) we have 

ODgN(E)P(0) = ODTg<rWgNp(0)+n™{ (ODTg^Y}DgNp(0)+^{ (ODTg<riyODgNp(0)}+O(V~i), (D4) 

where 

T^t £ T8({is+1}) (D5) 
s—l h<-' '<ia+l 

and the superscript nmc (not multiply connected) on a bracket denotes that, of all the ordered products of Ta({is+1}) 
operators which appear in the expansion of the term within a bracket, we retain only those which are not multiply 
connected to each other with respect to particle indices. By an nmc product of operators we mean the following: 

An ordered product of TVs is called nmc if the term which appears to the right of any Ts, say T8({js+1}), in that 
product does not have two or more particles from among {js+i} connected to each other in a cluster. 
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For example, 

( 1 ) nmc{r2}^„mo{2: z r.({fH.i})Z Z ^(OVi})} 

= E E rs({»s+1})E Z ^({y^!}). (D6) 
s=l h<>--<is+l 1=1 3l<-"<h+l9^{is+l} 

(2) ™°{(ODTg<riyODglfp(0)}^ODZ Z T.di^Vgo-1 

8=1 h<"'<is+i 

XODj: E ^({iH.i}ko-1O i>&(^{jVi})p(0). (D7) 
1=1 jl< - • - <3l+lr* { is+l} 

(3) nmc{T} = r . 

To continue the derivation of Eq. (44) we substitute (D3) into the third term on the right of (D4) to obtain 

ODM£)P(0 ) = nmc{ (0DTgc1)+ ( O ^ O - 1 ) ^ (O^o-O3}AM0)+nmc{ (Op^o-O^^CO)}. (D8) 

By repeated substitutions of (D3) into (D8) we eventually obtain 

0DgN(E)p(Q) = »™{(0DTgo-l)+(0DTgo-1)2+' • •}ZW0)+O(F- 1 ) . (D9) 

£The process of repeated substitution into (D8) eventually terminates since the last term on the right side of 
(D8) eventually becomes 

^{(OnTgo-^iOnTgo-1)- • • (OnTgo^Ong^iO)} 

^LODZ E Ts({is+1})go~l3LODj: E Tk{{h^})g^-} 

• • • [ O B E E ^ ( { i ^ } ) s o - l ] 0 ^ ( ^ + i } ) p „ = o . 
J yi<-- -<^+15^{l ,2 , . . . iVJ 

That is, we eventually run out of particles.] In the limit of an infinite system (D9) approaches the desired result 

ODgN(E)P(0) = **»{£ (ODTg0~r}DgN(E)p(0), 
a=i 

= »™ {OnTgrKl-ODTgo-^DgxiEMO). (D10) 


