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for calling attention to the misprint mentioned in 
Ref. 2. 

APPENDIX 

Using the same notation as in Ref. 2, the value of 
the various parameters2 )9~u used in the computations 
were C c=0, ^C=0.64X10-12 cm, Cd=-0.41X10-12 

9 N . K. Pope, Can. J. Phys. 30, 597 (1952). 
10 G. E. Bacon, Neutron Diffraction (Oxford University Press, 

London, 1955) p. 125. 
1 1T. Y. Wu, Vibrational Spectra and Structure of Polyatomic 

Molecules (Edwards Brothers, Inc., Ann Arbor, Michigan, 1946). 

I. INTRODUCTION 

THE velocity and damping of ion-acoustic waves 
in cesium and potassium plasmas have been 

measured by Wong, D'Angelo, and Motley.1 Since this 
is the only experiment to date which seems to confirm 
the existence of Landau damping2 it is important to 
examine the interpretation of the experimental results 
carefully. In this note we examine the excitation of 
ion-acoustic waves by a source in a collisionless un
bounded plasma. We show that, in general, ion waves 
cannot be interpreted by simply examining a single root 
of the dispersion relation. However, we find that in a 
region of a few wavelengths in extent, neither too close 
to the source nor too far, the disturbance from an 
idealized sinusoidally driven pair of grids has a wavelike 
character with approximately exponential damping. 

In obtaining this result we make use of the Fourier 
transform (or superposition) method together with a 
frequency- and wave-number-dependent complex di
electric constant. 

II. DISPERSION EQUATION FOR 
ION-ACOUSTIC WAVES 

The complex dielectric constant for small amplitude 
longitudinal waves in a hot collisionless plasma may be 

* On leave from the California Institute of Technology, 
Pasadena, California. 

1 A. Y. Wong, N. D'Angelo, and R. W. Motley, Phys. Rev. 
Letters 9, 415 (1962); Phys. Rev. 133, A436 (1964). 

2 L. D. Landau, J. Phys. (USSR) 10, 25 (1946). 

cm, ^d=0.65X10-12 cm, &=1.093X10~8 cm, 7=10.66 
X10-40 g cm2, 7dd=4.02XlO-19 cm2, 7cc=3.57XlO-20 

cm2, and M= 53.51 X 10~24 g. 
The values for ydd and 7cc were obtained by using 

the results of Ref. 9. The bound coherent scattering 
length Ad and the bound incoherent scattering length 
Cd were obtained by using the scattering lengths of 
Ref. 10 in their definitions.1 It is perhaps worth men
tioning that with an incident-neutron energy of 0.10 
eV, there will be no vibrational states excited since the 
lowest vibrational state11 of CD4 is about 0.12 eV. 

written3 

*(«,*)=- / - 7 - ; dh> w 
k2J (w-k-v) 

where a space and time dependence of ^(k'r~~w0 is 
assumed. F0 and /o are the normalized ion and electron 
velocity distribution functions, respectively, and 
«p*= (Ne2/e0Mi)112 and <ap,= (Ne2/eoMe)

112 are the ion 
and electron plasma frequencies, respectively. The 
velocity integrals are to be evaluated assuming co to 
have a small positive imaginary part (corresponding to 
having "turned on" the sources in the past) and k to 
be real (Fourier transform in space). It is furthermore 
convenient to regard the dielectric constant as functions 
of the complex variables co and k in which case analytic 
continuation, as discussed by Landau,2 is implied. 

Upon introducing the Maxwell velocity distribution 
functions 

FQ= (TT1'2^)-3 exp(-t>2/V) 

and 
/o= (irll2ve)~

z exp(—v2/ve
2), 

with Vi= (InTi/Mi)1*2 and ve= (2icTe/Mey
12, the ion and 

electron thermal speeds, respectively, one obtains 

K(a,k) = l Z'( —) £'( — ) , (2) 
k%2 \kvtJ k2v2 \kvj 

3 B. D. Fried and R. W. Gould, Phys. Fluids 4, 139 (1961). 
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The excitation of ion-acoustic waves by a pair of idealized grids in a collisionless plasma is examined. It is 
shown that in a limited region, neither too close nor too far from the source, the disturbance closely approxi
mates an exponentially damped (spatially) ion-acoustic wave. Far from the source a weak electron "wave" 
with less damping and larger wavelength dominates; near the source the potential varies as 1/z. 
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TABLE I. Solutions of the equation Zr(o)o/kvi)=2. 
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FIG. 1. Integration 
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where Z'(£) = dZ(£)/d£, and 

z(0 
1 r°° 

\/TT J -n x—f 
-dx, l m f > 0 (3) 

is the plasma dispersion function.4 

The characteristic frequencies of longitudinal ion 
oscillations are given by the zeros of the dielectric con
stant. For long wavelengths a)pi

2/k2v? and o)pe
2/k2ve

2 are 
much greater than unity and co/kve<£,l. Thus, the 
dielectric constant may be written approximately 

The characteristic frequencies for long-wavelength 
oscillations are therefore given approximately by the 
solutions of the equation Zf(co/kvi) = 2Ti/Te. The first 
few solutions for the case Te=Ti, obtained with the 
aid of Ref. 4, are shown in Table I. The first entry gives 
the least damped solution of the initial value problem2 

4 B. D. Fried and S. D. Conte, The Plasma Dispersion Function 
(Academic Press Inc., New York, 1961). 

(o)o/kvi)j Vj=(kv/coo)j 

1 
2 
3 
4 
5 

1.45-0.60* 
2.36-1.79* 
2.98-2.49* 
3.37-3.04* 
3.9 -3 .5* 

0.59 +0.243* 
0.259+0.204* 
0.198+0.164* 
0.164+0.147* 
0.14 +0.13* 

(k real) and is the one which one would normally expect 
to dominate after a long time. 

However, in a wave experiment the frequency a> is 
real (and the source localized) and one expects a spatial 
Landau damping (complex k) instead of a temporal 
damping. I t is tempting, therefore, to examine the 
zeros of Eqs. (2) or (4) to obtain the velocity and 
damping (or real and imaginary parts of k) of the 
characteristic waves. Indeed, in the interpretation of 
their ion-wave experiments, Wong et aL1 used the first 
entry in Table I. The difficulty with this procedure is 
that the first entry in Table I does not represent the 
solution with least spatial damping but instead the one 
with the greatest spatial damping. Furthermore, there 
are infinitely many solutions of Eq. (4) with less 
damping, with the limit point k = 0. There is also a 
branch cut integral to be considered as is shown in the 
next section. Clearly an interpretation in terms of a 
least damped wave is questionable in the case of spatial 
damping. 

III. EXCITATION OF ION-ACOUSTIC 
WAVES BY IDEALIZED GRIDS 

For sake of definiteness we consider the disturbance 
induced in the plasma by a pair of closely spaced 
idealized grids, capable of introducing an "external" 
oscillating charge density (T^e~imt[b{x—\x^) — 8 (#+§# 0)] 
into the plasma without intercepting particles.5 We 
shall henceforth suppress the factor e~iuot. The spatial 
Fourier transform (in one dimension) of the external 
charge is 

p(k)=— 2ia0 sin Qkxo) 

^—ik<r oXo &#o<Kl- (5) 

We shall, for convenience, consider the dipole limit 
xo—»0, (ro^o-^ constant. The plasma potential may 
be written 

p(k) (ro#o 1 
*&)= ^ = ~i 7T7—77 (6) 

k2€oK(o)Q,k) €0 kK(0)Qyk) 

where K(co0}k) is the dielectric constant given by 
Eq. (1). Performing the k integration we obtain 

o-oxo f00 eikx dk 
<f>{x)=~i / . (7) 

The integration is to be taken along the real k axis as 
5 The excitation of electron waves has been treated by W. E. 

Drummond [Rev. Sci. Instr. 34, 779 (1963)] and by M. Feix, 
Ref. 7. 
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shown in Fig. 1(A). The integrand has a pole at the 
origin which leads to a constant potential, different on 
the two sides of the grids. Since it does not contribute 
to the electric field we may ignore it. 

We are at liberty to deform the contour of the k 
integration into the complex k plane. For positive x, 
which is all we consider since the potential is anti
symmetric in %; it is convenient to deform part of the 
contour into the upper half-plane. First we note that 
(2) and (4) are valid only when the imaginary part of 
u/kv is positive, i.e., when k is positive since oo0 is assumed 
to have a very small positive imaginary part. For 
negative k a different expression is required, namely k 
must be replaced by — k in expressions (2) and (4) since 
the dielectric constant is an even function of the wave 
number k. For this reason we split the integral in (7) 
into two parts: 

*(*) = 
(TQXQI 

27reol 

" /• o eihxdk f 

J-oo kK(o0Q, — k) Jo 

*dk 
(8) 

kK(w0, — k) Jo kK(u0,k)J' 

and treat each part separately. 
The first integral in (8) involves the use of the 

derivative of the plasma dispersion function Z'(f) in 
the upper half plane where it was originally defined. The 
first integrand is, therefore, free from singularities 
except for a simple pole at5 

-il/2 

*«f|2f — )+2f — ) I = ikD (9) 

which will give an exponential contribution. I t is 
convenient to deform the contour of the first integral 
so that it runs in along the positive real k axis as shown 
in Fig. 1(B). Now the real and imaginary parts of Z'(f) 
are even and odd functions of the (real) argument f so 
we can write 

*(*) = -
O-QXO\ 

r-e-kDx I 

€0 L 2 
- / - Im I eikxdk\, (10) 
Wo * lJT(«0,fc)J J 

where Im{ } stands for the imaginary part of the 
quantity in braces. We shall only be concerned with the 
integral contribution, since the exponential is significant 
only within a few Debye lengths from the source. 
Introducing dimensionless variables appropriate to 
ion-acoustic waves 

$ = ' —€o0/o"offo; <*)&c/vi=z; ooo/aipi=f; 

kvi/ooo=r); Ti/Te=T; Vi/ve=V, 

we obtain for the integral contribution to <£ 

T Jo lr)' ?P-Z'(l/V)-TZ'(V/ri)\ 
eir>zdrj. (11) 

This is a one-sided Fourier transform, or a LaPlace 
transform. Considerable insight into the behavior of 
$(z) can be gained by considering the integrand for 
various limiting arguments (always for /2<Kl): 

I I . 

v«v, z ' (7AW/^, £'(1AW, 
Im{ } « 0 ; 

7 « i K < l , Z'(V/rj)~~2-2Tr«H(V/V), Z'(l/r,)**r?, 

VT112 

Im{ } - - — ; 
T 2 

(12a) 

(12b) 

I I I . 1 « ^ « 1 / / , Z ' ( 7 A ) « - 2 , Z , ( l A ) « - 2 - 2 i r 1 ^ -

IV. 

Im{ }~TT1I2/2(1+T)2; 

V/«iK«>, Z ' (7A)«-2, Z ' ( l / * )=-2, 

Im{ } « 0 . 

(12c) 

(12d) 

We see that the transform function, which is always 
real, takes on different, approximately constant values 
for different arguments, with jumps occurring at the 
rather widely separated points ^ ^ 0 . 6 7 , 0.6, 1 / / . This 
result is summarized in Fig. 2. 

Integration of Eq. (11) once by parts shows that $(z) 
is equal to — 1/iz times the transform of the derivative 
of Im{ } (the derivative is also shown in Fig. 2). 

Since the jumps are well separated $ may be seen to 
consist of three distinct parts, each arising from one of 
the jumps and each with a different characteristic 
length. If the jumps were actually discontinuous at 
77= 770 then the contribution would be of the form 
(—1/iz) times an undamped exponential ei7}oz. Since 
each jump has a width there is further damping with a 
damping length inversely proportional to the half-width 
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FIG. 2. Behavior of the transform function 
and its derivative along the real k axis. 

of the jump. We now consider each contribution in 
more detail. 

We first note that, for our purposes, the contributions 
from the jump at i ? « l / / has a characteristic length 
equal to the Debye length and is important only very 
near the source. As is easily seen, the other two contribu
tions are proportional to 1/z for small z and the fact 
that the transform falls to zero in the vicinity of 
rj^l/f simply means that for distances closer than a 
few Debye lengths the potential no longer increases as 
1/z. In fact it approaches a constant given by the total 
area under the transform curve 

We do not consider the form of this contribution any 
further. 

We next consider the contribution from the " jump" 
in the vicinity of ^ 0 . 6 . In this region, the approximate 
dielectric constant (4) applies, i.e., the electrons behave 
essentially as massless particles which equilibrate in
stantaneously with the fluctuating potential [_Z'(w/kve) 
« — 2] and the vacuum-displacement current is 
negligible compared with the electron and ion currents. 
With the aid of Ref. 4 we find that the jump occurs at 
k^0.62(coo/vi) and the derivative has a width (at half-
maximum) of about Ak = 0.24:(o)o/vi). Thus we expect 
a damped wave ^^(e~°'24z/z)e~~i0-62z. This result is not 
very accurate, however, since the derivative curve does 
not have a Lorentzian shape. We have, therefore, 
evaluated (11) numerically, using the IBM 7090 com
puter, to obtain the precise behavior of the potential.6 

Since the quantity <£//2 is independent of frequency 
provided j ^ « l , it is this quantity which we shall 
discuss. Figure 3 shows the magnitude (semilog plot) 
and phase of $ / / 2 . The curve marked me/mi=0, which 
corresponds to the approximation Z/(co/kve)=—2, will 
be discussed first. 

For z<^l the exact location and shape of the jump 
are unimportant and after integration of (11) by parts 

6 A brief discussion of the method of evaluation and of errors 
is given in the Appendix. 

once one obtains 

$ 1 1 TT1/2 1 
- = , - « s « l . (14) 

p Tr-iz2{\+n / 
For z^>l and me/mi=0 the behavior is very nearly 
exponential. To a good approximation the behavior in 
this region can be represented by a single complex wave 
vector: 

A=(0.590+i0.243)cooA» (15) 

which indeed corresponds closely with the first entry 
in Table I. 

For realistic values of mjm^ Fig. 3 shows that the 
decay of the ion wave is eventually limited by the 
contribution from the jump near &^/coo=0.6F which 
is associated with electrons. This contribution is much 
smaller in magnitude [by a factor of roughly 4 7 as 
may be seen by comparing (12b) and (12c)] but has a 
much greater characteristic length (A£~w0Ae) a n d 
hence may be expected to dominate at large distances. 
Furthermore, there is an interference between the two 
contributions in the region where they have comparable 

0 10 20 30 40 50 §9 Zs!yr 

FIG. 3. Magnitude (semilog plot) and phase (linear pk>t) of the 
potential due to a pair of grids in plasmas with different ion species 
(hydrogen, potassium, cesium, and the limiting case w e /wi=0) , 
coo<3C«p»\ Dashed line shows single pole approximation of Sec. IV. 

7r1/2f 2n 
$ ( 0 ) « / « 1 . (13) - , 

2(1+T)w ^ 
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FIG. 4. Magnitude (semilog 
plot) of the electron contribu
tion to the potential, which 
dominates far from the source. 
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amplitudes. The period of the interference pattern is 
governed by the ion wave contribution since it has the 
shortest wavelength. 

We now examine the electron contribution in more 
detail. We may let Z'(l/ri)**rj*<£,l and write £=ri/V, 
obtaining 

$ / / » « / Im \e^VzU^ (16) 
TwJo \Z'(1/Q\ 

thus making evident the change in length scale and the 
smaller magnitude of this contribution. This contribu
tion has also been evaluated numerically and is shown 
in Fig. 4. For small z, only the magnitude of the jump 
(not its precise shape) is important and 

1 V2 

2TT* T 

1 

•iVz 
Vz«l. (17) 

Furthermore, the jump occurs at k = 0.6cco/ve and its 
derivative has a width A&«0.2<o0A>e. This introduces 
an additional damping and phase shift on a distance 
scale which corresponds to propagation at the electron 
thermal speed. For very large Vz, we can use the small-
argument approximation,4 

in Eq. (16) and the method of stationary phase to 
evaluate the resulting integral. We obtain: 

Xexp[ f ( iF2) 2 / 3 (v3 ' i - l ) ] , F * » l . (18) 

This result has already been obtained by Feix7 in the 
study of the excitation of electron oscillations by grids 
when co0

2«cope
2. Note that fW2/T=W/o:pe

2 and 
Vz=a)o%/ve so the ion variables disappear entirely. A 

similar result was obtained by Landau2 for the half-
space problem. 

We have seen that <£//2 depends on the frequency 
only through the dimensionless distance variable 
z=a>ox/vi so long as the frequency is small compared 
with the ion plasma frequency (/2<<Cl). When the 
frequency is increased above the ion plasma frequency, 

f*3.0 

20 30 40 50 60z=H& 

7 M. Feix, Phys. Letters 9, 123 (1964). 
FIG. 5. Effect of increased driving frequency on the potential 

(<£//2), cesium plasma with Te = Ti. 
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FIG. 6. Effect of decreasing 
Ti/Te in a cesium plasma. 
Dashed curve shows single pole 
approximation for Ti/Te — Q.5. 
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the jump at r)= 1/f coalesces with the jump at rj^O.6 
and annihilates it, thus reducing the ion wave excitation 
coefficient. In Fig. 5 we show the behavior of a cesium 
plasma as the frequency is increased above the ion-
plasma frequency. I t is seen that the ion wave may be 
excited at the ion-plasma frequency and slightly above 
with reduced amplitude. As a practical matter, however, 
the wavelength of such a wave is comparable with 
Debye length and the contribution from the pole 
[Eq. (9)] can probably no longer be neglected. 

I t has previously been shown3 that the consequence 
of an electron temperature greater than the ion tem
perature is to reduce the damping of ion waves. This 
has the effect of increasing the distance over which the 
ion wave follows an exponential decay although the 
number of e-folding distances until the electron con
tribution becomes dominant is nearly the same. Figure 6 
shows the behavior for i y 7\,= 0.5 and 1.0 in a cesium 
plasma. 

IV. CONCLUDING REMARKS 

We have shown, by numerical computation, that 
there is a region neither too near, nor too far, from the 
source in which an exponentially damped ion wave 
exists. I t is of interest to try to explore other possible 
integration contours which will lead directly to this 
result. Such a contour is shown in Fig. 1(C). We have 
again brought the incoming and outgoing contour 
together in the upper half-plane and in doing so have 
passed over the pole at k~ikD (which we neglect) and 
the first three of the poles listed in Table I (located at 
rj=rjj). Using approximation (2) and evaluating the 
residues, 

J 7?/ 

where x(z) is the contribution from the contour C The 
pole contributions are readily evaluated using Ref. 4. 
For Te= Ti and «o<$Cwp»-

$ / / 2 - i { e x p [ ( - 2 . 9 2 - 1 . 1 8 i ) + ( - 0 . 2 4 3 + 0 . 5 9 ^ ) 2 ] 

+ e x p [ ( - 5 . 8 - 0 . 3 8 * ) + ( - 0 . 2 0 4 + 0 . 2 5 9 * > ] 

+ •'•} +x(*). (20) 
I t may be seen that near the source the contribution 
from the first pole is larger than the contributions from 
the next few poles, even though the latter decay more 
slowly with distance, because of the larger coefficient. 
I t is difficult to evaluate x(z). However, the numerical 
calculations indicate that the first term of Eq. (19), 
arising from the most damped pole and shown by a 
dashed line in Figs. 3 and 6, is a relatively good approxi
mation over a limited but nevertheless useful region. 

Although these results have been obtained for a pair 
of grids with arbitrarily close spacing ( # 0 - ^ 0 ) , they 
are easily generalized to finite x0 since we have effec
tively obtained the Green's function for the problem. 
Thus we see that so long as XQ<^Vi/o)o} i.e., small com
pared to the wavelength of the ion waves, the results 
are still valid. Since the surface charge density is related 
to current density 70 supplied to the grids through the 
relation 70= — icooco, 

(Jo^o IOXQ Id 

eo —--KOOCTO icooC 
(21) 

•e'T'+xiz), (19) 

where C is the capacitance per unit area of the grids 
without plasma. Thus, for a constant current source cr0 

varies inversely with frequency and the ion wave 
excitation increases only linearly with frequency. The 
sensitivity of a second pair of grids, which responds to 
the electric field, will also be proportional to frequency 
when connected to a high-impedance load. 
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Since the experiment by Wong et al.1 has demon
strated the feasibility of detecting ion waves it may also 
be possible, by extending the sensitivity of the receiver, 
to observe the electron contribution at larger distances. 
The use of a higher frequency would have the twofold 
benefit of increasing the excitation coefficient and 
decreasing the distance required between the trans
mitting and receiving grids. Furthermore, departures 
from exponential damping should be readily detectable 
near the source. 
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APPENDIX: NUMERICAL EVALUATION AND 
THE TRANSFORM INTEGRAL 

Since the quantitative aspect of the results given in 
Figs. 3-6 depend upon the numerical evaluation of the 
transform integral, Eq. (11), we have a short discussion 
of the method employed and of possible errors. The 
integral (11) was first replaced by a sum 

3>* Arj M 

—=— J^FimA^e^^, (Al) 

where F(r}) denotes the transform function. We observe 
that the substitution of an infinite sum (M= oo) for the 
integral is equivalent to multiplication of the transform 
function by a "comb" function, with periodicity Arjy 

in (11). Thus (Al) defines a new function which is just 
the convolution of the original function with the 
periodic function, 

^ ( 2 ) = E d(z-2irl/Ari)9 

i.e., 

**(*)= E Hz-2wl/AV). (A2) 
Z=-oo 

Thus, in order that (Al) be a good approximation to 
the original function, we must select Arj such that 

where 3m a x is the largest value of z to be used. The 
function $(3) must decrease sufficiently rapidly outside 
this range. 

Truncation of the sum (Al) after a finite number of 
terms is equivalent to introducing another jump in the 
transform (11) and according to the argument of 
Sec. I l l this introduces an extraneous term which 
decays slowly with z, although it oscillates rapidly 
l$~(A/iz)eiMAv*,A=F(MArj)~]. This difficulty was 
effectively eliminated through the use of a Gaussian 
cutoff, i.e., through the substitution of e~^^lvo)2F(rj) for 
F(tj) in (Al). To be sure, a discontinuity is still intro
duced at r]^MArj, but 770 can be selected so as to make 
the magnitude of the jump negligibly small by requiring 

rj0>MAr)/6. (A3) 

Multiplication of the transform function by the 
Gaussian function is equivalent to the convolution of 
the original function with another Gaussian function 
of z, i.e., it represents a smoothing operation with a scale 
Az=i I/77 0. The results presented in Figs. 3-6 have been 
smoothed (AJS£=0.2) due to this effect. This is believed 
to be of little or no consequence except very near to 
the origin. 

Finally, machine round-off errors become important 
in the region far from the source where there is a high 
degree of cancellation between the individual terms of 
(Al). Each term is of order unity, and assuming 
individual random errors of the order 10-8-4 we estimate 
anerror of 

e « (lOOO)1^ 10-8-4~ e-1* (for M= 1000) (A4) 

which is very much smaller than the quantity computed 
except for the nonphysical case me/mi=0 (see Fig. 3). 
Here $ / / 2 was observed to decay to roughly this value at 
z~S0 and to be masked by irregular fluctuations of the 
above magnitude beyond this point. Uncertainties in the 
region 53<z<6Q are indicated by the dotted portion 
of the curve in Fig. 3. 

Systematic errors larger than the above by an order 
of magnitude probably also arise in the computation of 
the complex exponential and the plasma dispersion 
function used in evaluating the individual terms of (Al). 
I t is difficult to estimate the size of these errors but it 
has been shown £by comparison with the result com
puted using Eq. (16)] that they do not significantly 
affect the results in the region where the weak and 
slowly decaying electron contribution prevails (z{>30 
in Fig. 3). 


