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The four independent baryonic and two mesonic electromagnetic (E.M.) mass differences are evaluated 
on the basis of the unitary symmetry model. An approximation scheme is devised and its relation to a 
dispersion-theoretic treatment by Cottingham is pointed out. Four contributions to the E.M. mass dif
ferences are taken into account: the elastic form-factor part, processes which involve the two isovector 
transitions (-n-0-̂ ) and (2°-A), and what we call the self-induced mass differences. Unitary symmetry is used 
to provide values for quantities not given by experiments, e.g., form factors for strange particles and coupling 
constants. An earlier correct result for the pion mass difference is confirmed because it is shown that the chief 
contribution is due to the elastic form-factor part. All the observed baryonic mass differences can be approxi
mately reproduced. The sign of the kaon mass difference can be explained, but the quantitative predictions 
for the kaon are still unreliable. 

1. INTRODUCTION 

ACCORDING to present conceptions, the masses of 
particles of specified spin and parity within a 

given SU3 representation should be identical in the 
limit of exact unitary symmetry. Actually, no two 
members of-the same unitary baryon or meson multiplet 
possess the same mass (if cognizance is taken of the 
fact that a unitary meson multiplet contains both 
particles and antiparticles). The observed mass dif
ferences within a unitary multiplet range in order of 
magnitude from several hundred MeV, between the 
various subgroups with the same T and Y (T is the 
isospin and Y the hypercharge), through several MeV, 
between the members of the same isotopic multiplet, 
to the very small value of 10~5 eV between the two 
members of the neutral kaon mixture. This clustering 
of mass differences around three distinct sets of values 
makes it natural to ascribe the observed mass spectrum 
to three types of splitting: 

(1) the moderately strong (M.S.) splitting which is 
associated with an A^ symmetry-breaking1 term that 
conserves T and Y and yields mass differences of the 
order of g2wr (g2 is the M.S. coupling constant); 

(2) the electromagnetic (E.M.) splitting which is 
associated with an Ai1 symmetry-breaking term that 
conserves Y (but not T) and yields mass differences of 
the order of amv (a is the fine-structure constant); and 

(3) the weak (nonleptonic) splitting which is associ
ated with an {Ai+Ai) symmetry-breaking term that 
conserves neither Y nor T (but requires A F = 1, AT= J) 
and yields mass differences of the order (G2wff~

4)wff 

(G is the weak coupling constant). 
The success of the Gell-Mann-Okubo1 -2 (GMO) mass 

formula for the M.S. mass differences within the better-
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1 S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962). 
2 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
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known baryon and meson unitary multiplets confirms 
the hypothesis that the M.S. splitting is predominantly 
Ai in character. However, no serious'dynamical calcu
lation has been made of the separate M.S. mass dif
ferences within any of the unitary multiplets (the GMO 
formula represents one relation among all the M.S. 
mass differences within a given unitary multiplet) be
cause of our lack of knowledge of the M.S. interactions. 
Similarly, the Coleman-Glashow formula3 for the E.M. 
mass differences within the / = ^ + baryon octet is consis
tent with the hypothesis that the E.M. splitting is pre
dominantly A i1, but here again dynamical calculations 
of the separate E.M. mass differences within each iso
topic multiplet of the J=i+ baryon octet are in a 
rudimentary stage. Moreover, the Coleman-Glashow 
relation is essentially empty of'content for the /=0~~ 
meson octet. Finally, it should be remarked that the 
(Ki°—K2°) mass difference is the only known "weak" 
mass difference and hence cannot serve as a " tes t" of 
any symmetry-breaking hypothesis, although its sign 
and magnitude are of great interest for dynamical 
theories. 

In this paper, we focus our attention on a dynamical 
calculation of the separate E.M. mass differences 
within the J—\+ baryon octet and the J=Qr meson 
octet where the numbers are fairly well known by now 
(although improved data for the E's would be very 
welcome). In Sec. 2, the isospin and unitary aspects of 
the E.M. mass-difference problem for the baryon and 
meson octets are defined more sharply. In Sec. 3, our 
method of calculation is presented and its relation to 
Cottingham's4 rigorous dispersion-theoretic approach is 
discussed. In Sec. 4, the elastic form-factor contribu
tions to the E.M. mass differences are considered in 
some detail starting with the latest experimental data 
for the nucleon, and Sec. 5 treats the other processes 
we include in our calculation. Finally, Sec. 6 contains 
our results and conclusions. 

3 S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 
(1961). 

4 W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963). 
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2. ISOSPIN AND SU3 CONSIDERATIONS 

The most recent experimental values for the E.M. 
mass differences of the baryon and pseudoscalar meson 
octets are given in the center column of Table I. As de
fined there they are positive, and we shall consistently 
refer to them in this fashion. I t is to be noted that in 
three of six cases the neutral member of a pair is heavier 
than the charged one. From a simple-minded point of 
view, the self-energy of a charged particle is positive as 
is the field energy of a magnetic dipole; furthermore, a 
spinless particle cannot carry a magnetic moment. In 
such an approach, one can understand the signs of A_, 
As, and Av. The signs of AN and A+ are difficult to 
explain because in order to obtain the correct signs, 
the magnetic moments of n and 2° would have to be 
large compared to those for p and S+ , respectively; this 
is known not to be true for the nucleons. The sign of A^ 
is even more difficult to understand since the kaon is 
spinless. Moreover, we shall see that membership of 
N, 2 , and S in the same baryon octet, and -K and K in 
the same meson octet, initially aggravates the problem 
of understanding the signs of some of the E.M. mass 
differences (particularly A#). Indeed, the subtleties in
volved in predicting the correct signs of all six E.M. 
mass differences are quite considerable. 

From the Nishijima-Gell-Mann formula, Q=Tz 
+ F /2 , we see that the charge Q and hence the electro
magnetic current operator has the isotopic-spin char
acter of the third component of -an isovector plus an 
isoscalar. Thus, if the E.M. mass differences are of 
second order in the E.M. interaction, that is, quadratic 
in the current, the mass operator must have the form: 

Ama = aa
s+aJT,+ aJ(Tsy, (2.1) 

where a is the index denoting a particular isotopic 
multiplet (S is scalar, V vector, T tensor). For the 
isospinors (K,N,E), Eq. (2.1) is effectively isoscalar 
plus isovector, but for the isovector particles (x,S), all 

TABLE I. Total mass differences (in MeV). 

Experimental 
valuea /=0.30 /=0.35 /=0.39 

AN = M(n)-M(p) 1.29±0.02 
A+=M(XQ)-M(2+) 2.85±0.30 
A„=M&-)-M(2°) 4.75±0.10 
AH=Af(Sr)-Af(E°) 6.1 ±1.6 
Av =w(7T+)-w(7r°) 4.59±0.07 

AK = m(KQ)-m(K+) 3.9 ±0.6 {-

-0 .18 
3.17 
4.81 
9.83 
4.23 

15 
-35 

1.12 
3.24 
5.47 
9.34 
4.23 

15 
- 3 5 

2.20 
3.24 
5.98 
8.84 
4.23 

15 
- 3 5 

a The experimental values for AN, AVI and AK are taken from W. H. 
Barkas and A. Rosenfeld, University of California Radiation Laboratory-
Report UCRL-8030 (unpublished). The earlier measurements of W. H. 
Barkas, J. N. Dyer, and H. H. Heckman, Phys. Rev. Letters 11, 26 (1963) 
gave the values for A+ and A_ of 3.85 ±0.8 and 4.2 ±0.8, respectively, and 
led to the speculative equal-spacing rule for the 2 masses. The recent values 
of R. A. Burnstein, T. B. Day, B. Kehoe, B. Sechi-Zorn, and G. A. Snow, 
University of Maryland Technical Report No. 382 (unpublished), show a 
rather large departure from this rule. AJ2 is taken from D. D. Carmony, 
P. E. Schlein, W. E. Slater, D. H. Stork, and H. K. Ticho, Phys. Rev. 
Letters 12, 482 (1964). 

three terms in principle should contribute. Actually, 
since TT~ is the charge conjugate of 7r+, they must have 
the same mass and hence air

v=0 in (2.1). This argument 
does »not apply to the 2 hyperons. Until recently it 
seemed that A_= A+ within experimental error, that is, 
that the masses of the S's appeared to obey an equal 
spacing rule. This would have implied that a^T^ 0 in 
(2.1). However, the latest experimental data (cf. 
Table I) yield (A_-A + ) = 1.9 so that a s

T =0.95 . 
The smallness of the E.M. mass differences led to 

isospin invariance where the violation of the exact sym
metry which produced the E.M. mass differences was 
taken to be proportional to the charge (or equivalently 
Tz). Within this framework, no relation could be ob
tained relating the E.M. mass differences of different 
isotopic multiplets. The observed grouping of particles 
with identical baryon number, spin, and parity into 
unitary multiplets leads to the charge (current) be
coming: Q=Tz+Y/2=Ai1 where A/ are the set of 
traceless generators of unitary, unimodular transforma
tions in three dimensions.1 If the E.M. mass differences 
are due to the current, then the mass differences should 
be given by Arn^ {A i1)7*, where n=2 would be expected. 
Okubo5 has shown that any tensor (Ai1)*1 can be 
written as (Ai1)n=f(Q,\J2) where Q is the charge 
operator and U is the U spin defined so that (£,2+) 
and (S-,E") are U spin doublets, [^,(-S°+V5A)/2,S°] 
is a U triplet and [(VJS°+A)/2] is a U singlet. There
fore, the splittings of the masses from the "unper
turbed" values satisfy 

M(p)-M(N) = M(2+)-M(2) (Q=l,U=i), 

M(S°)-M(S) = M(n)-M(N) (Q=0,U=i), (2.2) 

M ( S - ) - M ( S ) = M ( S - ) - M ( S ) (Q=-l, U=$. 

Upon adding the above equations, we obtain 

A 3 + A W = A + + A _ . (2.3) 

This is the well-known Coleman-Glashow relation,-3 

which should hold to all orders in the E.M. interaction. 
If, for some unknown reason, the mass operator had the 
transformation properties of a traceless tensor A i1 (for 
example, first order in-the current), we would have the 

r 

(a) 

K 

+ —CZZr-
(b) 

(c) (d) (e) 

(f) 

FIG. 1. Diagrammatic expansion of the self-energy of a particle. 

5 pkubo showed in Ref. 1 that ^ 3
3 - / ( F , T 2 ) . This equation for 

A i1 is similarly proved. 
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additional relations: 

A + = A _ , 

M S A = ( 1 / ^ ) ( A + - A j v ) , 

(2.4) 

where MSA is the "2°-A transition mass." This last 
equation actually has more general validity. Okubo6 

showed that it holds to first order in both the E.M. 
and M.S. interactions. Therefore, SU3 does not predict 
equal 2 splitting unless the predominant interaction 
transforms as a tensor A£. 

For mesons, the general Coleman-Glashow relation is 
empty. If the meson mass operator is assumed to be 
proportional to A11, we obtain: 

m>*i = — ( 1 / V 3 ) ( W R : O 2 — m K
+ 2 ) , 

(2.5) 

where m*2 is the u{^-t\) transition (mass)2/ ' The 
vanishing of AT is to be expected because the operator 
A11 only has isoscalar and isovector components and 
A,r is *an isotensor. I t follows that the observed finite 
value of A r requires at least an ( ^ I 1 ) 2 contribution in 
the SU3 language. The rather large value of AT further 
implies that caution must be exercised in stating that 
the dominant contribution to the E.M. mass operator 
transforms as A11 (cf. Sec. 1); this is also consistent 
with the new result for (A_—A+). 

3. METHOD OF CALCULATION 

In order to calculate the self-mass of a particle, we 
must evaluate all contributions corresponding to dia
grams which have only one line entering and leaving. 
Of course, we cannot calculate them all, and so to obtain 
an approximation scheme which justifies using only a 
few of the more manageable ones, we break them up into 
the series shown in Fig. 1. Any given diagram is in
cluded in one of the classes shown there if its lightest 
particle is the one shown drawn separately. In this way, 
no diagram is included more than once. We only want 
those subdiagrams which distinguish between different 
members of the same isotopic multiplet. Therefore, the 
part labeled (a), and any parts of (b), (c), (d), etc., in 
which the separated particle is coupled charge-sym
metrically to the box, will not contribute to the E.M. 
mass differences. 

FOT 
ir or K 

Am 

(0) 

(d) 

FIG. 2. Processes contributing to the baryonic E.M. 
mass differences. 

Tr*v.-J?V w°~*~<q 

(a) 

K 

(b) 

ir?^<n 

Zir or p 
(c) 

K' or K" 
(d) (e) 

AM 

2 
(f) 

7O 
FIG. 3. Processes contributing to the pion mass difference. 

In all parts of Fig. 1, the mass differences of the 
particles in the intermediate states will cause deviations 
from charge independence even when the coupling is 
charge-independent. For Fig. 1(b), which is already of 
order e2, the mass differences will only give a second-
order correction. However, Figs. 1(c) and 1(d) do re
ceive contributions linear in the mass differences. We 
call these the self-induced mass differences, and denote 
them schematically in Figs. 2(e), 3(g), and 4(e) for the 
baryons, pion, and kaon, respectively. 

Figure 1 (a) represents the bare mass of the particle, 
and if it violates charge symmetry, that is, if the bare 
masses are unequal, then the electromagnetic mass 
differences are fundamental physical quantities and not 
calculable from other experimentally observed quanti
ties such as masses and coupling constants. Coleman and 
Glashow7 move partly in this direction by postulating 
that the tadpole diagrams of Fig. 1(f) contribute to 
the E.M. mass differences. Their procedure introduces 
one additional free parameter for all the particles, which 
parameter is adjusted to optimize the final results. We 
shall discuss this point more completely in Sec. 6. 

We must now consider the baryons and mesons 
separately. Consider the baryons first. If we replace the 
box in Fig. 1 (b) by the lowest mass state possible, which 
is the one-baryon state, we get the diagram shown in 
Fig. 2(a). We call this the elastic form-factor part. The 
next state contains a baryon and a meson and so is 
heavier. We hope that this and all higher states will 
give small enough contributions so that we can neglect 
them. Two photon states in any diagram give masses 
proportional to e4, and we may certainly neglect them. 
Figure 1(c) can be treated similarly: if the box repre-

(c) 

H{N) 
(d) 

K-OT 
(e) 

FIG. 4. Processes contributing to the kaon mass difference. 
6 S. Okubo, J. Phys. Soc. Japan (to be published). 7 S. Coleman and S. L. Glashow, Phys. Rev. 134, B671 (1964), 
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S&ou 
S N N r 

r 
H S P N 7i V y N 

IT 

IT 

s 

r 
FIG. 5. Partial expansion of the contribution of the scattering 

process: e-\-N —>c.~D.e'-{-N-{-ir to the nucleon mass difference. 

sents a baryon state, then only that coupling of the 
pions to the baryons which violates charge independ
ence must be considered. The possibility of a transition 
between the w° and the 77 mesons8 would produce such 
an effect. This results in the diagram of Fig. 2(b). 
Again, we neglect higher states for this box. The 
charge-dependent diagram extracted from Fig. 1(d) 
is caused by the transition between the 2° and the A 
hyperons, and is shown in Fig. 2(c). For Fig. 1(e), the 
existence of a transition between the p° and the to or 
p° and </> vector mesons would give the diagram shown 
in Fig. 2(d). However, for reasons which will be seen 
later, we shall not evaluate it. The self-induced con
tributions to the baryon mass differences are depicted 
by Fig. 2(e). 

For the mesons, we distinguish between pion and 
kaon. For the pion, our approach results in Figs. 
3(a)-(g). Fig. 3(a) is the elastic form-factor par t ; and 
Fig. 3(b), the contribution to the ir° self-energy due to 
the (ir°-ri) transition. Actually, Diagrams 3(c)-3(f) do 
not contribute to AT. This can be seen on isospin grounds 
alone, since Av is an isotensor and all these diagrams 
behave as isovectors. Alternatively, we can see that they 
vanish term by term. Figure 3(c) is of second order 
because the (ir0-rj) transition is already of order e2, and 
the coupling of rj to (3r) or to (px) is also of order e2, 
because it violates G parity. Figure 3(d) can be seen to 
vanish to first order in AK, AK>, and AK* because the 
diagrams with different charge complexions cancel. 
Figure 3(e) is of order e4 because the (p0-w), (p°-<£), 
(O)-2TT), and (0-2TT) couplings all violate G parity. The 
different charge states of Fig. 3(f) all cancel, just as in 
the case of Fig. 3(d). The baryon mass differences in 

(a) 

KX>T 
(b) 

FIG. 6. Processes 
contributing to the 
(x0—rj) transition. In 
part (b) the particle 
denoted by a is either 
a K'+} K*+, p, or E~. 

the intermediate states of Fig. 3(g) give a self-induced 
contribution to AT. A diagram similar to 3(f) but con
taining two (S°-A) transitions does give a contribution 
to AV} but this turns out to be very small. I t will also 
turn out that the contributions of Figs. 3(b) and 3(g) 
are rather small, so that the only important contribu
tion to the pion mass difference arises from Fig. 3(a). 
This explains the success of the calculation by Bose and 
Marshak,9 who only considered the contribution of the 
elastic form factor. 

Figures 4(a)-(e) are the corresponding diagrams for 
the kaons. Since AR is an isovector, all processes con
tribute, including all the isovector baryonic mass dif
ferences in Fig. 4(e). 

We end up with trying to compute the six E.M. 
baryon and meson mass differences by considering: 
(1) the elastic form-factor parts, (2) the three transi
tions (TT°-V), (2°-A), and (p°-co or 0), and (3) the self-
induced contributions. The elastic form factor and self-
induced parts have mixed isospin character (scalar, 
vector, and tensor), while the three transitions are 
pure vector. 

Cottingham,4 in a dispersion-theoretic calculation, 
related the cross sections for elastic and inelastic elec-

<£0(w0) 
(c) 

FIG. 7. (a) Contribution of the scattering process: e-\-B —>c.D.e' 
-\-B +</> to the baryon mass difference, (b) Contribution of the 
scattering process: e+B -^c.B.e'+B-i-a+d to the baryon mass 
difference [a same as in Fig. 6(b) j . 

tron-nucleon scattering to the n-p mass difference. This 
calculation includes all intermediate states which have 
at least one photon in the self-mass diagram. These are 
shown in Fig. 1(b). The elastic-scattering experiments 
determine the elastic form-factor part just as usual. 
However, he showed that measurement of the cross 
section for all energies and angles of the inelastically 
scattered electron completely determines the contribu
tions to the mass difference of all the other states. 
Calculating the n-p mass difference in this way is very 
difficult. First, there is the large number of experiments 
needed to map out the cross section as a function of two 
variables. Second is the difficulty of separating out the 
neutron part of the deuteron scattering. Third is the 
fact that a large component of the cross section is sym
metric in neutron and proton. This is the part which 
results in excitation of the (f ,§) pion-nucleon resonance, 
and because only the isovector part of the current 
operator is effective in raising the nucleon isospin from 
I to f, there will be no n-p mass splitting. 

If one believes that the E.M. mass differences are due 

8Riazuddin and Fayazuddin, Phys. Rev. 129, 2337 (1963). 9 S. K. Bose and R. E. Marshak, Nuovo Cimento 25, 529 (1962). 
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to processes which are second order in the electromag
netic interaction and that all such processes involve 
emission and reabsorption of photons, then Cot ting-
ham's approach should reproduce the mass differences 
correctly. The difficulty of extracting the necessary in
formation for the nucleons and also the certainty that 
electron-hyperon and electron-boson experiments are 
in the very distant future has led us to our attempt to 
calculate the E.M. mass differences more indirectly. 

A theoretical calculation of the E.M. mass differ
ences which is in direct analogy with Cottingham's 
basically experimental approach would be to insert into 
the box of Fig. 1(b) one state after another and to 
evaluate as many of these diagrams as is necessary to 
reproduce the experimental values. One drawback is 
that convergence of such a series is probably not very 
good since the masses of succeeding states do not in
crease very fast (e.g., N+2TT is not much heavier than 
N+TT). Also, the evaluation of even the first such term 
in which the intermediate particles are (N+ir) is not 
only difficult but also uncertain in that not much is 
known about the electropion production amplitude 
(especially on hyperons and mesons). 

Although this approach is probably correct, it is im
possible to carry through. Alternatively, our approxi-

JT 

FIG. 8. Contribution of the z V ^ l I - ^ \ A 
scattering process :H--B—*c.D.e' f | A ( 2 0 ) \ 
+A(2°)-hfir or 7r to the baryon "e \ I / §" 
mass difference. ^v. ! ^ 

1 — 
7T or K 

mation method enables us to calculate numbers, but 
there is no guarantee that we have taken into account 
all the major contributions to the E.M. mass differences. 
In what follows we shall try to show a correspondence 
between the correct dispersion-theoretic method and 
our diagrammatic approach. Naturally, there are am
biguities in drawing the analogy because one cannot 
say to what dispersion-theory term particular diagrams 
contribute. Consider as an example Fig. 5, which repre
sents the expansion of the second term in the Cotting-
ham approach. In dispersion theory, we know that the 
intermediate state containing both a nucleon and a pion 
has the particles on their mass shells, and so each sub-
diagram shown on the right-hand side of Fig. 5 can 
only belong to the diagram on the left-hand side of 
Fig. 5. However, in a purely diagrammatic approach, 
with no mass-shell restrictions, we can cut each of the 
last three subdiagrams such that the intermediate 
state is either (y+N) or (y+N+w). Therefore, we 
cannot say if they contribute to the elastic form factor 
part or to the electropion production part. We shall 
avoid this difficulty by claiming that there is a corre
spondence between our method and the correct dis
persion theory treatment if we can reduce our processes 
to diagrams which would appear in the dispersion 

FIG. 9. Contribution of the 0 ^>JV\A 
scattering process: e-\-B—>c.T>.e P/' I ^ ^ 
-\-B to the baryon mass dif- — <̂  \ \ 
ference. X. j yf s 

approach, that is, diagrams with intermediate states 
which contain at least one photon. 

When one recalls that the three transitions we con
sider have an electromagnetic origin and can be repre
sented diagrammatically by graphs which have a 
virtual photon line, then we see that the diagrams we 
take are a special subclass of all those entering into the 
full calculation. This is represented in Figs. 6 and 7 for 
the (7r°-r]) transition. Rosen10 showed that among the 
diagrams contributing to this transition are those of 
Fig. 6. If we insert these into Fig. 2(b), we get the 
diagrams of Fig. 7. Figure 8 is a diagram which arises 
from 2(c) if a particular graph which allows the (2°-A) 
transition process to occur is inserted. Figure 9 shows 
why it is probably incorrect to include the (p°-u>) transi
tion in this analysis. If this transition is dominated by 
the photon pole, it is already included in the elastic 
form-factor contribution. Figure 10 is a schematic way 
of viewing the self-induced mass differences. The par
ticular diagram shown contributes to AN. 

Beneath each diagram of Figs. 7-10 are written the 
scattering processes to which they correspond. The 
letters C D . underneath the arrows serve as a reminder 
that only the charge-dependent part of the diagram 
contributes to the mass differences. I t is for this reason 
that we cannot argue backwards and predict important 
diagrams for inelastic electron scattering from processes 
which give large contributions to the E.M. mass dif
ferences. For example, from diagram 7 (a) another 
graph for <£ production can be obtained by replacing rj 
by 7T°, and if the <jyn°y coupling is larger than the 0r/y 
coupling, it will give larger charge-symmetric scattering 
than the charge-dependent one. The charge-dependent 
diagrams for the E.M. mass differences correspond to 
the cross terms in the cross section, that is, the product 
of two partial amplitudes which lead to the same final 
state but have different internal lines and different iso-
spin dependence. There is no reason to expect that these 

FIG. 10. Contribution to AN induced by the kaon mass differ
ence. This partially takes into account the contribution of the 
scattering process: eJt-N-*c.T>.e'+A-{-K to the nucleon mass 
difference. 

10 S, P, Rosen, Phys. Rev, 132, 1234 (1963). 
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!To7"7rx ^y~K orw K O F T T X ^ S n< or if 

K* or /3, U) K or 7T 

(a) (b) 

FIG. 11. (a) Contributions to the mesonic E.M. mass differ
ences due to vector-meson intermediate states, (b) Contributions 
to the mesonic E.M. mass differences due to two-meson inter
mediate states. 

contributions are larger or smaller than the direct ones. 
We have done some approximate calculations which 

correspond to the first state heavier than the elastic 
form-factor part in the Cottingham approach for the 
kaons and pions. First, the intermediate states were 
taken to be a photon plus a vector meson resonance as 
shown in Fig. 11(a). The relative couplings were taken 
from unitary symmetry,11 and are: 

•M(K*+ -> K++y) = M(p+-> 7T++7) 

= M(p° -> TT°+T) = -W(K*° -> K°+y) 
= (l/y/5)M(a-**°+y),- (3.1) 

where a Hamiltonian 

Wi = g<k„«fiFi"'<l>°dfy (3.2) 

was used, g is the effective coupling constant, and F*v, 
cj)a, and <$> are the photon, vector meson, and boson field 
operators, respectively. The width of the decay of K*+ 

into (K+Jry) was taken as 1 MeV. This calculation is 
quadratically divergent and was cut off at one nucleon 
mass. The results are Ax= - 7 MeV and AT=2.3 MeV. 
If the radiative decay width of K*+ is larger, as may be 
the case, then the mass differences become propor
tionately larger. 

In view of this poor result, an estimate was made of 
the same diagram treating the (K—T) system as un
bound and putting the resonant effect into the ampli
tude for pion photoproduction on kaons. This is shown 
in Fig. 11(b), and the result is A x = - 0 . 1 7 MeV if the 
electromagnetic decay width is again taken as 1 MeV. 
The (Y+27T) state does not contribute to Av because 
the octet model predicts equal photon coupling to 
(p+-7r~) and to (p°-7r°). Not much more than the sign of 
the (K—ir) contribution to A# can be inferred from the 
calculation, because of the divergence in the resonant 
approach and because of the approximations made in 
the second. The large difference, a factor of 50 between 
the two calculations, casts doubt on naive calculations 
which treat the resonances as stable particles. 

4. ELASTIC FORM-FACTOR CONTRIBUTIONS 

If the electromagnetic form factors of a pair of par
ticles are known, then a simple weighted integration 
over the momentum-transfer variable gives the con
tribution of diagrams 2(a), 3(a), or 4(a) to the E.M. 

11 S. Okubo, Phys. Letters 4, 14 (1963). 

mass difference. Feynman and Speisman12 derived the 
proper relation and used it to show that the nucleon 
mass difference could be understood if suitable cutoff 
functions were introduced for the form factors. Marshak 
and Sudarshan13 did the same thing for the 2J hyperons 
and showed that for certain ranges of values of the 
magnetic moments of the S's, the experimental masses 
could be reproduced. This early work must now be 
reconsidered as will be shown below. 

Riazuddin14 derived the relation between the boson 
form factors and the E.M. mass differences using dis
persion1 theory. Cini, Ferrari, and Gatto15 extended this 
to fermions and obtained a result identical to that of 
Feynman and Speisman. In both cases, the usual ques
tion of subtractions in the dispersion relations creates 
an uncertainty whether the derived expressions cor
rectly give the mass differences. These subtraction terms 
are determined by requiring that the final result becomes 
equal to the perturbation-theory expression when the 
form factors are taken to be unity. If this method is 
accepted, then once the form factors are measured, 
their contributions to the E.M. mass differences can be 
evaluated. The only form factors determined so far 
and, practically speaking, 'the only ones likely to be 
measured even in the distant future, are the nucleon 
form factors. We shall not be able to proceed with our 
over-all program unless we can derive at least approxi
mate expressions for the form factors of the hyperons 
and mesons. There are a number of ways to do this, and 
until a method can be developed to discriminate among 
them, they are all equally believable. 

The first and simplest way to deduce the other form 
factors is to make use of unitary symmetry and impose 
the condition that the current operator transforms like 
the charge—that is, as the A i1 component of a traceless 
tensor. This yields the relations which were originally 
given for the magnetic moments3: 

G^=Gp] G 2 o = - J G n = ( l / ^ ) G 2 A = - i G g o ; 

G?-=Gz-=-Gp-Gn; FK+=Fr+; FK°=0. (4.1) 

Here the G's are the electric and magnetic form factors 
of the baryons and the F's are the electric form factors 
of the mesons. GSA is the form factor for radiative 2° 
decay. If we remember to include the diagram for the 
2° in which the intermediate state is A + 7 and if we 
neglect rather small corrections due to M.S. mass dif
ferences, we obtain for the elastic form-factor con
tributions to the E.M. mass differences: 

A ^ = A + ; AS = A_; W A = - W K A Z , (4.2) 

12 R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954). 
13 E. C. G. Sudarshan and R. E. Marshak, Phys. Rev. 106, 

599 (1957). 
14 Riazuddin, Phys. Rev. 114, 1184 (1959). 
15 M. Cini, E, Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7 

(1959). 
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independent of the values of the nucleon and meson 
form factors. 

The second and third methods involve constructing 
the form factors by determining the coupling constants 
of the vector mesons p°, co, and <j> to the particle in ques
tion and to the electromagnetic field. If we can deter
mine the SU3-invariant coupling strengths of the vector 
mesons to the baryons, and also the strength of the 
photon-vector-meson interaction from the nucleon form 
factors, then we can write down the hyperon form fac
tors in terms of these parameters. This assumes that 
the experimental values for the nucleon form factors 
are well fitted by three resonance terms with masses 
at the p°, co, and </> masses. Unfortunately, this is not 
possible and one or two cutoff masses are also needed.16 

This introduces an arbitrariness in that the strengths 
of these cutoff terms are not known because their uni
tary properties are not known. This difficulty does not 
arise for the charge form factors, because the zero-mo
mentum-transfer values—that is, the electric charges— 
are known. We can circumvent the difficulty for the 
magnetic form factors as well only if we know the 
magnetic moments of the various particles. I t may be 
that departures from exact unitary symmetry are small 
for the magnetic form factors at zero-momentum trans
fer. In that case, we can use the usual relations for the 
magnetic moments3 ( / /S + =MP; MS°= — IM™; etc.). If this 
were not true, then we might as well use the first 
method [i.e., (4.2)], and only consider it an order-of-
magnitude estimate. 

If we are willing to match the magnetic moments as 
given by unitary symmetry, then we can allow for cutoff 
masses in the form-factor expressions. Even under these 
restrictions we can construct at least two sets of form 
factors. The first uses particle mixing in the manner of 

. aBa= 7.4 F - 2 ; ^ - - 1 3 2 F - 2 ; 

aE
v=22.2; 0E

V= - 2 5 . 7 ; 

aM
s=26.1; pM

s = 62.6; 

aM
v=7S.3; pM

v= - 7 6 ; 

This fit matches the experimental values and slopes16 at 
zero-momentum transfer. I t also reproduces the experi
mental observations20 up to / = —100 F~~2 except for GEP. 
At t= - 4 5 F~2, it yields G J G P = 0 . 0 6 against the experi
mental value of 0.124± 0.040. These discrepancies for 
large t are not very important for the E.M. mass dif
ferences, because the largest contributions to the latter 
come from the range — 2MN2<t<0-

16 L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys. 
35, 335 (1963). 

17 S. Okubo, Phys. Letters 5, 165 (1963). 
18 J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962); Phys. Rev. 

132, 434 (1963). 
19 S. Coleman and H. Schnitzer, Phys. Rev. 134, B863 (1964). 
20 K. W. Chen, A. A. Cone, J. R. Dunning, Jr., S. G. F. Frank, 

N. F. Ramsey et al, Phys. Rev. Letters 11, 561 (1963). 

Okubo17 and Sakurai,18 and the second used the vector 
mixing procedure of Coleman and Schnitzer.19 In 
Okubo's method, the "bare" particles coo and $o are 
members of a nonet in unitary space described by a 
tensor W/= F / + (l/v3)5/<£0. Here 7 / is_the traceless 
tensor containing the octet members K*, K*, p, and co0; 
and 0o is a unitary singlet. These are coupled to the 
baryons by means of D- and F-type couplings and to 
the pseudoscalar mesons via F-type coupling only. The 
effective photon-vector-meson coupling is 

3Ci = g[PM°+ (1/V3)CO0M}4* , (4.3) 

where g is the photon-vector-meson coupling constant. 
The "physical" or observed particles co and <£ are related 
to the bare ones by 

co=(l/v3)(coo+v20o); <A=(lM)(v2co0-4>0). (4.4) 

We now construct a fit to the nucleon form factors 
in the following form: 

OLE,MS PE,MS 7E,MS 

GE,MS = + + , 
mj-t mJ-t M2-t 

(4.5) 
OLE,MV fiE,MV 

GE,MV — 1 ? 
mp

2-t M2-t 

where M is a cutoff mass. The particle-mixing method 
imposes the following two conditions on the parameters: 
OLE,MS=\<*E,MV and PE,MS= —^{^~2fE,M)otEtM

V\ 

fE,M/(l — fE,M) are the ratios of F- to ZMype coupling 
of the vector-meson nonet to the baryon octet for the 
electric and magnetic form factors. The resulting values 
for the parameters are: 

2. 7 ^ = 124 F - 2 ; M 2 = 2 5 F ~ 2 ; 

/ * = - 3 . 9 5 ; (4.6) 

T M s = _ 8 8 . 6 F - 2 ; 

Unfortunately, constructing the form factors on the 
basis of particle mixing has forced us into a serious 
difficulty. The large values for the / parameters—1.1 
and —3.95—cause some of the hyperon coupling con
stants to be very large, and this in turn causes the con
tributions to the E.M. mass differences to be un
believably large. The actual results using (4.6) and 
constructing the hyperon form factors via particle 
mixing are: 

A ^ - 0 . 8 0 ; A + = - 5 . 3 2 ; A_=13.2; 
A s = 20.8 ( inMeV) . (4.7) 

These poor results make us turn to the vector-mixing 
theory19 to construct the hyperon form factors. The 
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chief difference between the two methods is that with 
the vector-mixing method, the bare <£0 meson is con
sidered to have its own independent coupling constant 

CLE8 = 15.2 F-2; PES = 

aE
v=24.6', $EV= 

a M
5 - 2 0 . 4 ; (3M

S = 

aM
v=M.9; pM

v= 

Experiments are not yet sufficiently detailed to fix 
the parameters JE,MS, SO that for simplicity we take 
them to be zero. If they were nonzero, then the values 
of OLE,MS and &E,MS would change, perhaps as much 
as by a factor of two. This would not alter AN much, 
since the parameters are chosen so that the form-factor 
expressions match experimentally observed curves, and 
it is these curves which determine the contribution to 
AN. The hyperon mass differences could change by one 
MeV or so because of this uncertainty. 

The resulting expressions (4.8) match all the electron 
scattering experiments quite well; however, they do not 
satisfy the relations 

GM
n'p(t=+4:MN

2) = GEn'Ht=+^MN
2), 

relations which, as emphasized by Wilson,21 are neces
sary in order that the annihilation cross sections for 
proton-antiproton and neutron-antineutron at rest be 
isotropic. This is not too serious a fault, because we do 
not expect the form-factor fits to be exact, but only to 
describe the experimental observations in a certain 
region, in this case, / < 0 . Near t = 4:MN

2, large-mass 
terms will be important, whereas for t<0 they are 
negligible. We do not write out the hyperon form 
factors here, but refer the reader to the paper of Cole
man and Schnitzer19 for a description of the vector-
mixing method. 

For the pseudoscalar mesons, the form factors con
structed using the vector-mixing method are: 

2\m2-t . M2-t I 
(4.9) 

l/0.271amp
2 1.39am2 (l-a)M2\ 

FKS=J + _L+_ \ 
2\ m2-t m^-t M2-t J 

where M is a cutoff mass taken to be the same for the 
isoscalar and isovector parts, and a is an unknown 
parameter. For complete p° dominance of the vector 
form factor, a=l. 

The results for the baryon and meson mass differences 
are presented in Table I I . The first number is the value 
calculated by using the fit (4.8) for the nucleon form 
factors and constructing the hyperon form factors 
through vector mixing. For the mesons, we use (4.9). 

21 D. G. Wilson (private communication). 

to the baryonic current and all 10 of the parameters 
a, 13, y are independent. This produces the following fit 
for the nucleon form factors: 

The number in the parenthesis is the value obtained by 
still taking (4.8) for AN and the same expression (4.9) 
for Fir, but using the relations (4.1) to get the hyperon 
and kaon form factors. In all cases, the charged par
ticles receive larger contributions than the neutral ones 
because the neutral ones have small charge form factors, 
and the magnetic moments of the baryons, according 
to (4.1), are all of the same order of magnitude. The 
pion mass difference can almost be correctly given if 
a= 1, but the kaon mass difference has the wrong sign; 
indeed, A^ is greater than zero and A# is less than zero 
for all values of a. The quantity A_—A+ receives a 
sizeable contribution, near 2 MeV in both cases, and 
this is essentially the observed value (cf. Table I) . 

5. OTHER CONTRIBUTIONS 

If we compute the contributions to the E.M. mass 
differences of diagrams 2 (b) in perturbation theory and 
use an interaction Hamiltonian for the (T0-^) transition: 
5CI = ^XIJ20TO0I7, we obtain convergent results. This is 
because of the k~A dependence of the effective pro
pagator for the (x°-r/) system: 

G(k2) = imTV
2/\:(k2-mT

2)(k2--m2)2. (5.1) 

If we use the value for m^2, the (TT0-^) transition (mass)2, 
of —0.16m/ derived from unitary symmetry,22 we ob
tain undesirable results. All the baryon mass differences 
receive negative contributions if the meson-baryon 
couplings are given in the usual SLVinvariant way with 
the / parameter at any value greater than 0.25. How
ever, it was pointed out by Hori et al.,n that the 3x 
decay amplitude of t] vanishes when calculated in this 
way if the four-boson interaction is assumed to be 
unitary symmetric. This is because the two diagrams 

TABLE II. Elastic form-factor contribution (in MeV). 

AN = -0 .85 (-0.85) 
A+ = -0 .61 (-0.88) 
A_ = 1.61 (0.93) 
AE = 2.30 (1.27) 
A, = 6.60-2.91a-f-0.42a2; =4.11 at a = l (same) 
AK = -2.52+0.29a-0.64a2 ; = - 2 . 8 7 a t a = l 

(-2.52+0.78a-0.09a2; = - 1 . 8 3 at a = l ) 

22 S. Okubo and B. Sakita, Phys. Rev. Letters 11, 50 (1963). 
23 S. Hori, S. Oneda, S. Chiba, and A. Wakasa, Phys. Letters 5, 

339 (1963). 

- 1 2 . 3 F - 2 ; 7 ^ = 0; M 2 =22.8F~ 2 ; 

- 2 7 . 4 ; (4.8) 

- 2 2 . 7 ; yM
s = 0; 

- 8 0 . 
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TABLE III. (TT0—ri) transition contribution (in MeV). 

AN = 
A+ = 
A_ = 
AS = 
A , = 

AX = 

- 8 . 4 8 ( 1 - 4 / ) 
16 .7 / (1 - / ) 
16 .7 / (1 - / ) 
8.25 (1 -4 / 2 ) 
0.12 

0.23 (from*'); 
• • { • 

18 (from 
-32 

K*) 

/=0.30 

1.70 
3.50 
3.50 
5.28 
0.12 

18 
- 3 2 

/=0.35 

3.40 
3.80 
3.80 
4.20 
0.12 

18 
- 3 2 

/=0.39 

4.75 
3.96 
3.96 
3.22 
0.12 

18 
- 3 2 

for i) decay, one with an rj pole and the other with a 7r° 
pole, cancel because they differ only by a relative 
minus sign. 

Barrett and Barton24 remedied the situation by 
effectively studying the k2 dependence of the transition 
(mass)2, m-jrrj2. They evaluated the (T°~T)) propagator 
in the form: 

G(k2) = iRri/(k
2-m2)+iRr/(k

2-m1
2)+a(k2), (5.2) 

where <r(k2) is the contribution of intermediate states 
other than T° and rj, and RVtir are two parameters which 
they evaluated by relating them to the E.M. mass 
differences of the baryons and to the meson-baryon 
coupling constants. The values they find, namely 
R,= (2 to 4)X10- 3 and £ T = - ( 1 to 2)X10-2 , can ex
plain the partial width for 97—» 3TT. If we ignore a(k2), 
this is equivalent to taking the transition (mass)2 to 
be given by : 

2=k2(Rv+R„)-Rvtn„ -RTm2. (5.3) 

For most of the range of k2 (k2<mv
2) this is a positive 

quantity, in contrast to the constant value —0.16m,,-2 

used previously, and we can expect to obtain positive 
contributions to the E.M. mass differences. Now the 
calculation is logarithmically divergent, however, and 
requires a cutoff. We use a cutoff of one nucleon mass 
consistently throughout. These results are shown in 
Table III for three values of/: 0.30, 0.35, and 0.39,25 

E//( l—/) is the ratio of F- to D-type coupling of the 
pseudoscalar mesons to the baryons]. 

For the mass difference, A*, we must evaluate Fig, 

The operator r^ is introduced into the (K*Kw) inter
action to maintain invariance under the "gauge" trans
formation for the K* field: K^* —-> K*-\-dMA, where 
A is a strangeness-carrying gauge field. We impose 
"gauge invariance" even though the strangeness-chang
ing current to which K* is coupled is not conserved, 
mainly to remove a divergence of very high degree. 
Figure 4(b) is biquadratically divergent if we do not 
impose "gauge invariance"—that is, take TiXV=gtxv in 
Eq. (5.4), and then the contribution to A# is —32 MeV 
for a cutoff of one nucleon mass. However, if we make 
the interaction Hamiltonian "gauge-invariant" by tak
ing the familiar form for r^: 

T^=g^—d'idv/d2, (5.5) 

the divergence is reduced to a more acceptable loga
rithmic one. Unitary symmetric coupling of particles is 
expected to describe physical reality only in the limit 
when all unitary multiplets have identical masses. In 
that case, the currents would be conserved and gauge 
invariance should be imposed. Since there are mass 
differences and in this case the K-TT mass difference is 
the one we are ignoring, we can expect to make large 
errors, but perhaps the sign of the resulting contribu
tion, Ax= 18 MeV, can be considered to be significant. 
These two results for A# are also given in Table I I I . 

In analogy with the way we handled the (w°-rj) 
transition, we should calculate the contributions of 
Figs. 2(c) and 4(d) using an effective propagator for 
the (S°-A) system: 

3(b). I t contributes an amount mvf/[2mr(ni*--m1*)~] G(k) = iR^/(y'k-M^+iRA/(y'k-MA)+r(k) , (5.6) 

where r(k) is due to intermediate states in the prop
agator other than 2° and A (e.g., SK and NK), and 
R% and J^A are the residues of the propagator at the 2° 
and A masses, respectively. In the case of the (Tr°-r)) 
propagator, Barrett and Barton evaluated the constants 

= 0.12 MeV; this same value is obtained if we use the 
value — 0.16w,r2 for m^2 or evaluate it from Eq. (5.3) 
at k2=mT

2. 
Figure 4(b) is the relevant diagram for AR. K! is the 

presumed scalar (K-ir) resonance at 725 MeV. Its 
width was taken as the maximum value allowed by 
experiment, namely 15 MeV. iT* is the vector resonance 
at 888 MeV, which has a width of 80 MeV. The cou
plings invariant under unitary symmetry are: 

+^C(r^*)(f*+A)S>]+c.c. (5.4) 
24 B. Barrett and G. Barton, Phys. Rev. 133, B466 (1964). 
26 A. W. Martin and K. C. Wali, Nuovo Cimento 31, 1324 

(1964). These authors determined the value 0.39 for / . 

RVtT and the remainder term a{k2). In the limit of 
vanishing E.M. mass differences and vanishing ifi-i) 
mass difference, a(k2) —» 0. In this limit, if we use the 
theorem that the integral of the spectral function for 
the propagator for two different fields over all allowed 
values for the mass should vanish (see Ref. 24), we 
would have Rv+Rv=0. We would expect, therefore, 
Rv to approach — Rr if we could decrease the ir°-ri mass 
difference [of course, G{k2) would vanish in this limit— 
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TABLE IV. (S°—A) transition contribution (in MeV). 

AJV = 
A+ = 
A_ = 
AH = 
A» = 
AK = 

0.432(l-4/2) 
1.12/(1-/) 
1.12/(1-/) 

- 2 . 4 6 ( 1 - 4 / ) 
0 
6 .48-10.74/-•15 .17/2 

7=0.30 

0.28 
0.23 
0.23 
0.49 
0 
1.89 

/=0.35 

0.22 
0.25 
0.25 
0.98 
0 
0.86 

/=0.39 

0.17 
0.27 
0.27 
1.38 
0 

-0 .01 

cf. Eq. (5.2)]. In the case of the (2°-A) propagator, 
in which the mass difference between 2° and A is only 
about 8% of the A mass, the approximation RZ=—RA 
should not be bad. If we neglect the remainder term, 
then the propagator becomes: 

G(*) = « z ( M 2 - J f A ) / [ ( T - * - M 2 ) ( 7 - * - J l f A ) ] . (5.7) 

This is the same thing as would be obtained by using 
an effective Hamiltonian for the (S°-A) transition: 

3Ci = M SA ( ^ S ° ^ A + if A I M (5.8) 

if the transition mass, MSA, is taken to be equal to 
Rz(Mz~MA). Unitary symmetry gives a value6 for Mz\ 
of ( 1 / V 3 ) ( A + - A A O = 0 . 9 0 MeV; we use this value and 
take the usual meson-baryon coupling constants. The 
resulting logarithmically divergent integrals are cut off 
at one nucleon mass and the results are shown in Table 
IV; again for / = 0 . 3 0 , 0.35, 0.39. As was mentioned in 
Sec. 3, there is a contribution to A r from baryon-anti-
baryon loops which have two (S°-A) transitions, but 
this will be of the order of M^/lm* ~ 3 X 10~3 MeV and 
we shall neglect it. 

The contributions to the E.M. mass differences from 
the (p°-co) or (p°-</>) transitions are shown in Figs. 2(d) 
and 4(c) ; Fig. 3(e) is of higher order in the E.M. inter
action. We do not evaluate the (p°-co) and (p°-<£) transi
tions for three reasons: First, as was mentioned earlier, 
if these transitions are dominated by a photon pole, 
we have already included them in the elastic form 
factor part. In a recent work, Zimerman, Riazuddin, 
and Okubo26 derived the value for the (p°-coo) transition 
(mass)2 (coo is the bare co and member of an octet) of 
— (0.11 to 0.\4)mv

2. The contribution to this transition 

TABLE V. Self-induced mass differences (in MeV). 

AN = 
A + = 
A_ = 
AH = 
Av = 
AK = 

1.49-
2.08-

-1 .22-

-11.7/+7.86/2 

-8.34/+5.19/2 

-1.74/+13.4/2 

1.18+1.83/+0.36/2 

11.7- 23.4/-21.2/2 

- 3 . 3 + 1 3 2 / - 1 4 8 / 2 

/=0.30 

-1 .31 
0.65 

-0 .53 
1.76 
2.77 

23.0 

/=0.35 

-1 .65 
-0 .20 
-0 .19 

1.86 
0.91 

24.8 

/=0.39 

-1 .87 
-0 .38 

0.14 
1.94 

-0 .65 
25.6 

(mass)2 from the photon pole is: 

*»P„0
2= -gPyV^m2^ - WP

2 /8TTV5= -0 .69m; 2 , (5.9) 

where m is the average of the p° and coo masses and gpy 

is the photon-p0 coupling constant. We evaluate gpy by 
assuming p° dominance of the pion form factor; its 
value is — mp

2/gpT7r, where gp7r7r is the coupling strength 
of p° to 7r+—Tr~(gPTnr2/^7r~2). From this, we see that 
even in the worst case, omitting the (p°-coo) contribution 
should cause errors of the order of the elastic form-factor 
parts which, except for AJV, are already uncertain by an 
MeV or so. Another reason for omitting the (p°-co) and 
(p°-0) transitions is that the intermediate states in Fig. 
2(d) are heavier than those from the (2°-A) transition, 
and the results in that case were already relatively 
small; hence we can expect these to be smaller. Finally, 
the calculation would be highly divergent and little 
reliance could be placed on it. 

With regard to the self-induced mass differences, 
Katsumori27 has calculated these effects for both the 
baryons and mesons. We use his calculations, except 
that we insert the meson-baryon coupling constants 
predicted by unitary symmetry and also use more recent 
values of the E.M. mass differences. These results, as a 
function of the / parameter, are given in Table V. 

6. RESULTS AND CONCLUSIONS 

Table I shows the total contributions from the four 
processes that we have considered. We feel that in a 
consistent evaluation of the meson mass differences the 
major contributions should come from the lightest 
intermediate states. This is well borne out by the fact 
that the elastic form-factor part yields almost the 
entire observed pion mass difference. There are many 
states for the mesons lighter than the baryon-anti-
baryon loops appearing in the (2°-A) transition and self-
induced contributions, which we have not evaluated. 
Therefore, we feel that it would be inconsistent to 
include these contributions to Ar and A#. Accordingly, 
in Table I, we only include the results of Tables I I and 
I I I for the meson mass differences; the effects of 
Tables IV and V for A*, and AK will be discussed below 
in any case. 

Examination of Table I shows that the situation for 
Av is very satisfactory; the same result for A*. arises 
as that calculated earlier9 when p° dominance of the 
vector form factor was assumed. If the parameter a 
had the value 0.85 (nearly complete p° dominance), the 
pion mass difference would be matched even more 
exactly. If baryon-antibaryon heavy mass states are 
included for Aw, the results are nearly unchanged (cf. 
Table IV); even the self-induced contribution (cf. 
Table V) leaves this conclusion essentially unchanged 
provided that / is in the vicinity of 0.35. 

On the other hand, the kaon mass difference is the 
26 A. H. Zimerman, Riazuddin, and S. Okubo, Nuovo Cimento 

(to be published). 27 H. Katsumori, Progr. Theoret. Phys. (Kyoto) 24, 35 (1960). 
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most difficult to explain using our procedure. The con
tribution of the (ir°-ri) transition (cf. Table III) is 
essentially indeterminate because of the range of values 
(between 18 and — 32 MeV) permitted by the method 
of calculation. Even if a large negative value were the 
actual contribution from this process, there could still 
be a large positive contribution from the self-induced 
process (cf. Table V) which would make the value of 
AR positive. While this is not a satisfactory state of 
affairs, the possibility has at least been opened up of 
explaining the unusual sign of the kaon mass difference. 

With regard to the baryon mass differences, it is 
evident that the inelastic contributions [particularly 
from the (TT0-^) transition] play an important role. 
These inelastic contributions give a marked improve
ment over the elastic form-factor results (cf. Table II) , 
and actually yield quite good predictions for the four 
baryon mass differences when / = 0 . 3 5 . The largest dis
crepancy is for Ag. One solution which might be con
sidered is that the (H-iT) couplings are not as large as 
those predicted by unitary symmetry (although there 
is no real evidence for this). For example, if for / = 0 . 3 5 
we uniformly reduce all iT-baryon coupling constants 
by a factor g#2 —> IgK2, the resulting baryon mass dif
ferences would be: 

Atf=1.75; A+=3.73; A_=5.98; A s =7 .38 . (6.1) 

From (6.1) it is seen that A s now comes within the 
measured range of values at the expense of AJV, A+ and 
A_. In any case it is encouraging that when inelastic 
contributions are taken into account, the signs and mag
nitudes of the four baryon mass differences can be 
understood. 

Coleman and Glashow7 and, more recently, Coleman 
and Schnitzer28 have calculated the six E.M. mass dif
ferences assuming that there are two contributions. The 
first is the tadpole diagram of Fig. 1 (f) where the par
ticle exchanged is postulated to be a neutral isovector 
scalar meson called 7r0/. The second, called the nontad-
pole contribution, is assumed to receive its major share 
from the elastic form-factor process. In this way, using 
the strength of the ir0' tadpole as a free parameter, the 
authors attempt to match all the mass differences and 
do obtain reasonable agreement, especially since the 
2-MeV isotensor contribution29 to the S mass differences 
from the elastic form-factor part is now consistent with 
the latest measurements of the 2) masses. 

One may inquire further whether the fit between 
theory and experiment can be improved by adding the 
tadpole diagram to the diagrams which we have con
sidered. Since the tadpole diagram effectively adds 

28 S. Coleman and H. Schnitzer (to be published). 
29 Until the latest experimental values for the 2 masses came 

along, the proponents of the tadpole point of view were faced with 
the conflict between the apparent equal 2 mass spacing and the 
nonnegligible isotensor contribution; this obstacle is now overcome. 

amounts to the baryon mass differences of Table I in 
the ratios 1:1.5:1.5:2 (cf. Coleman and Schnitzer's 
paper28), it is possible to improve the fit by working 
with / = 0 . 3 9 ; the total values obtained in this way 
would be: 

Aar=1.29; A+=l;88; A_=4.62; AH = 7.02; (6.2) 

where the strength of the tadpole contribution is deter
mined to match A^. Despite the availability of one 
additional parameter, these values of the E.M. mass 
differences for / = 0 . 3 9 with the tadpole diagram are 
only slightly better than those for / = 0 . 3 5 with the 
tadpole contribution not included. 

From these results, we feel justified in saying that it 
is possible to dynamically evaluate the E.M. mass dif
ferences in a consistent way without invoking the tad
pole mechanism. Our (TT0-^) transition diagram in 
particular plays an analogous role to that of the tadpole 
diagram in emphasizing the isovector contribution to 
the mass differences. But the point is that the (ir0-rj) 
diagram must be present, whereas the tadpole mecha
nism is involed in a purely ad hoc way.30 If one believes 
that scalar tadpoles give sizeable contributions to the 
mass differences, then our calculations show that other 
processes besides the elastic form-factor part con
tribute significantly to the nontadpole portion. Socolow31 

has reached a similar conclusion on the basis of other 
considerations. He has evaluated the contributions of 
the decuplet to the baryon mass differences [Fig. 1(b), 
where the box is represented by a spin-f+ resonance]; 
adding the elastic form-factor contributions to his re
sults, he was able to obtain a reasonable fit to the 
baryon mass differences (except for the nucleon mass 
difference). However, the agreement for the hyperon 
mass differences would be substantially destroyed if 
the tadpole mechanism is the one responsible for cor
recting the nucleon mass difference. While we assess 
differently the relative importance of the decuplet 
diagram compared to some of those which we have 
considered, Socolow's calculations, in conjunction with 
ours, underline the need to properly evaluate the non-
tadpole diagrams in order to decide whether the 
tadpole diagram enters the picture at all. 
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30 The extension of the idea of "tadpole dominance" to non-
leptonic weak interactions runs into difficulty with the Cabibbo 
scheme [cf. Coleman and Glashow (Ref. 9), p. B679] and hence 
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31 R. Socolow, thesis, Harvard University, 1964 (unpublished). 


