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We have analyzed the problem of extending the three-body scattering amplitude to complex values of the 
total angular momentum / . We have found four main difficulties: (i) the disconnectedness of the collision 
matrix; (ii) the complexity of kinematics; (iii) the release of triangular inequalities or of inequalities like 
\M\<J, which, when / is complex, transforms finite sums into infinite sums which are most often divergent; 
and (iv) the presence of complex singularities in cosine angle variables in the full amplitude. This last diffi­
culty is not examined in the present paper. We propose a generalization of the Froissart-Gribov formula for 
the three-body scattering amplitude. In the nonrelativistic problem, the use of the Fadeev equations takes 
care of difficulty (i), and difficulty (ii) is smoothed by the use of center-of-mass energies of the three particles 
and the total angular momentum as the only variables. Of the three natural techniques—using the Schrod-
inger equation, extending the Fadeev equations, and extending the Fredholm solution of the Fadeev equa­
tions to complex values of J—only the third one avoids difficulty (iii). We prove that the Fadeev equations 
cannot be extended because their kernel becomes unbounded and because they do not reduce to the physical 
equations when / reaches a physical value. However, the Fredholm solution for physical / can be formally 
extended to complex / , and the extended solution is expressed as the quotient of two Fredholm-type series, 
where each term of the series is analytic in / in a right half-plane. The Sommerfeld-Watson series never con­
verges for the three-particle scattering amplitude, because of difficulties (iii) and (iv). 

I. INTRODUCTION 

THIS paper is devoted to an extension of the non­
relativistic three-body scattering amplitude to 

complex values of the total angular momentum / . It is 
admittedly of an exploratory character, without any 
attempt at mathematical rigor. 

Regge has shown that the two-body scattering ampli­
tude is a meromorphic function of the total angular 
momentum.1 This result has been proved for the scatter­
ing of two nonrelativistic structureless particles inter­
acting through a sufficiently well-behaved potential, for 
instance, a superposition of Yukawa potentials. It is 
then found that the poles in / of the partial-wave ampli­
tudes, or Regge poles, control the asymptotic behavior 
of the scattering amplitude when the momentum transfer 
tends to infinity. Furthermore, the functions which give 
the positions of these poles in terms of the total energy 
interpolate the bound states and resonances of the 
system. In other words, a Regge trajectory corresponds 
to well-defined internal quantum numbers. 

These two properties are so fundamental that it is 
necessary to know their degree of validity. Of particular 
importance is their possible extension to the relativistic 
case.2'3 However, the relativistic problem contains so 
many new features, like inelasticity and crossing, that 
up to now it has yielded very few results.4 The most 
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1T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960). 
2 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 396 

(1961). 
3 S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev. 

126, 2206 (1962). 
4 K. Bardakci, Phys. Rev. 127, 1832 (1962). 

interesting such result is the discovery by Mandelstam 
that there cannot be only Regge poles but there also 
must be cuts which, ultimately, govern the asymptotic 
behavior of the scattering amplitude when the energy 
tends to infinity.5'6 

It is therefore interesting to investigate the nonrela­
tivistic three-body problem for which, at least, we know 
a complete formulation. One can hope that it includes 
most of the inelasticity problems of the relativistic case, 
without the complications due to crossing. The interest­
ing questions are, obviously: 

(a) Is it possible to extend the scattering amplitude 
for three particles going into three particles as a function 
of complex total angular momentum J? 

(b) Is this extended amplitude a meromorphic func­
tion of J? 

(c) Do the singularities of the extended amplitude 
control the asymptotic behavior of the total three-body 
scattering amplitude when some momentum transfer 
tends to infinity? Or, in other words: is it possible to 
define a Sommerfeld-Watson transformation of the 
expansion in partial waves of the three-body scattering 
amplitude?7 A tentative answer to these questions is the 
subject of this paper. 

There are also other important questions, like: 

(d) Are the Regge results valid for the scattering of 
a particle on a bound state?8 

5 S. Mandelstam, Nuovo Cimento 30, 1113, 1127, and 1148 
(1963). 

6 J. Polkinghorne, J. Math. Phys. 4, 503 (1963); 5, 431 (1964). 
7 A. Sommerfeld, Partial Differential Equations in Physics 

(Academic Press Inc., New York, 1949), p. 282; G. N. Watson, 
Proc. Roy. Soc. (London) 95, 83 (1918). 

8 B. M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8, 
346 (1962). The cuts investigated by these authors appear in the 
angular momentum of a crossed channel, and we canot expect to 
find them by a completely nonrelativisitc approach. 
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(e) Is it possible to define either a partial-wave ampli­
tude or a total amplitude for the scattering of a particle 
on a Regge pole? Or, in other words: does the interpola­
tion property of Regge poles apply only to virtual parti­
cles or can it be extended to external particles? 

(f) Is it possible to build up a general theory of the 
sense and nonsense channels for the three-particle 
systems?9 

Although we feel that question (f) can be answered in 
the affirmative, we have not yet any definite result on 
this subject. 

In order to investigate the two-particle problem, two 
methods have been used. 

(a) Regge has extended the Schrodinger equation to 
complex values of J.1>10 

(b) Brown, Fivel, Lee, and Sawyer have extended the 
Lippmann-Schwinger equation to complex J.11 In fact, 
one could propose an alternative method, namely: 

(c) Extend the Fredholm solution of the Lippmann-
Sch winger equation. While the distinction between 
methods (b) and (c) is purely academic in the two-
particle case, it will turn out to be significant in the 
three-particle case. 

Before choosing to use any of these methods for the 
three-body problem, let us try to see what essentially 
new difficulties we shall encounter: 

(i) The collision matrix consists of a connected and 
a disconnected part.12 This is because two of the three 
particles can collide without suffering any interaction 
with the third one. 

(ii) The kinematics is much more complicated. 
(hi) Although these two difficulties are already met in 

actual physical problems, a third one will appear when 
/ is made complex. The reason is that relations like 
the triangular inequalities between coupled angular 
momenta, 

\h-h\<J<li+h, 

or the inequalities \M\<J between eigenvalues of Jz 

and / , are no more true when / becomes complex. Con­
sequently, certain finite summations on M or on angular 
momenta involving Clebsch-Gordan coefficients become 
infinite sums and lead to convergence problems.13,14 

(iv) The existence of several momentum transfers 
between the initial and the final state leads to complex 

9 M. Gell-Mann, in Proceedings of the 1962 Annual International 
Conference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962), p. 533. 

10 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 
23, 954 (1962). 

11L. Brown, D. I. Fivel, B. W. Lee, and R. F. Sawyer, Ann. 
Phys. (N. Y.) 23, 187 (1963). 

12 About these problems, see: H. Ekstein, Phys. Rev. 101, 880 
(1956); T. F. Jordan, J. Math. Phys. 3, 429 (1962); A. G. Tixaire, 
Helv. Phys. Acta 32, 412 (1959); G. Gravert and T. Petzold, 
Z. Naturforsch. 15a, 311 (I960). 

13 J. Gunson, University of Birmingham, 1962 (unpublished). 
14 R. L. Omnes, Institut des Hautes Etudes Scientifiques, 1963 

(unpublished). 

singularities in any one of the cosine angles linked with 
one momentum transfer. This also leads to difficulties 
of convergence. 

These four points seem, up to now, to be the only 
existing difficulties. Let us review the three possible 
methods (a), (b), and (c) in this light, (a) Newton15 and 
Hartle16 have tried to extend the three-particle 
Schrodinger equation to complex values of J. In fact, the 
differential-equation formulation of the problem com­
pletely conceals the difficulty of disconnectedness. 
Furthermore, their treatment of the kinematics leads 
them deeply into the mentioned problems of converg­
ence. I t seems very unlikely that one will be able to give 
any well-jus titled statement by using this approach. 

(b) As was mentioned in the preceding paper, the 
difficulty of disconnectedness implies that the Lipp-
mann-Schwinger equation for the three-particle problem 
is not of the Fredholm type.17 However, the Watson 
equations for multiple scattering18 are of the Fredholm 
type, as was shown by Fadeev, who rediscovered them 
independently.19 This removes difficulty (i).20 

In order to avoid the third difficulty, it seems ad­
visable not to use any unnecessary partial angular 
momentum. This was made explicit in the preceding 
paper, where we proposed to use as a complete set of 
commuting variables the center-of-mass energies of the 
three particles coi, co2, and co3, the total angular mo-
momentum / , and its projections on a body-fixed axis M 
and on a space-fixed axis m.21 In fact, m, being a trivial 
constant of the motion, will never enter into the equa­
tions. This was a well-defined answer to difficulty (ii). 
Of course, other choices are possible. For instance, one 
could replace o>i, a>2, and o>3 by their sum E=coi+co2+co3 
and introduce a complete set of orthogonal functions of 
coi/E, 0)2/Ey and co3/E.22 Although this new choice seems 
to be advisable in order to discuss the problem of sense 
and nonsense channels, it will not be used here. 

The Fadeev equations, considered as integral equa-

15 R. G. Newton, Nuovo Cimento 29, 400 (1963); Phys. Letters 
4, 11 (1963). 

16 J. B. Hartle, Phys. Rev. 134, B620 (1964). 
17 For a discussion of these points, see: L. D. Fadeev, Zh. 

Eksperim. i Teor. Fiz. 39, 1459 (1960) [English transl.: Soviet 
Phys.—JETP 12, 1014 (1961)]; C. Lovelace, in Lectures at the 
1963 Edinburgh Summer School, edited by R. G. Moorhouse, 
(Oliver and Boyd, London, to be published); also L. L. Foldy and 
W. Tobocman, Phys. Rev. 105, 1099 (1957). 

18 K. M. Watson, Phys. Rev. 105, 1388 (1957). 
19 L. D. Fadeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) 

[English transl.: Soviet Phys.—JETP 12, 1014 (1961)]; Dokl. 
Akad. Nauk. SSSR 138, 565 (1961); 145, 301 (1962) [English 
transls.: Soviet Phys.—Doklady 6, 384 (1961); 7, 600 (1962)]. 
Also Publications of the Stoklov Mathematical Institute No. 69 
(1963). We thank Dr. J. B. Sykes for sending us his translation of 
the last paper. 

20 See also in this respect S. Weinberg, Phys. Rev. 133, B232 
(1964). 

21 R. L. Omnes, Phys. Rev. 134, B1358 (1964), hereafter re­
ferred to as I. 

22 For a very interesting particular case of this tecnhique, see 
A. J. Dragt, Institute for Advanced Study, Princeton, 1964 (to 
be published). 
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tions for the three-particle scattering amplitude, imply 
a summation over the helicities M from — / to +J. 
Therefore, when extended to complex values of / , the 
Fadeev equations will contain a summation on M from 
— oo to + oo. I t could therefore happen, and indeed we 
shall show it in the following, that the extended Fadeev 
equations make no sense according to difficulty (iii). 

(c) I t is clear that if we are able to find an extension 
to complex J of both the numerator and the denomina­
tor of the Fredholm solution of the Fadeev equations 
with a good choice of kinematics, we shall at least have 
got a sensible approach to the problem, free at least of 
the first three difficulties. 

This paper is essentially devoted to defining such an 
extension of the Fredholm solution. No serious attempt 
has been made to investigate the analyticity properties 
of the extended Fredholm solution so that, from a 
mathematical standpoint, we can just claim to have 
stated the problem in a form amenable to analysis. 
However, there is no mention of difficulty (iv) in the 
present paper. I t is our belief that this difficulty is the 
real problem and we expect to say more about it in a 
future paper. 

In Sec. I I , we give the expression of the complete 
three-body scattering amplitude (p/,p2/,p3/[^|pi,P2,p3) 
as a series of partial-wave amplitudes (a)i/,a)2

/,co3
/, 

Mf\ TJ\o)hoo2,o)s1M). This relation is closely analogous 
to the expansion of the two-body amplitude in terms of 
partial-wave amplitudes, except that rotation matrices23 

£>M'MJ(R) replace the Legendre polynomials Pj(x). In 
fact, we need to know the £>M'MJ(R) as well as we know 
the Pj{x). Therefore, in Sec. I l l and Appendix I, we 
investigate the properties of the £>M*MJ(R) when J is 
complex, and we define second-kind rotation matrices 
&M>MJ{R) which bear the same relation to the <£>M'MJ(B) 
as the Legendre functions of the second kind, Qj(x)y 

bear to the Legendre functions of the first kind, Pj(x). 
In particular, the well-known Neumann theorem, which 
allows one to express the Legendre coefficient of an 
analytic function either as an integral 

/ f(x)Pj(x)dx 

or a contour integral24 

—; f f(x)Qj(x)dx, 

is extended to express the "S)J coefficient" of an analytic 
function on the rotation group either as 

\ f(R)<£>M>MJ{R)dR or —- <b f(R)SM>MJ(R)dR. 
J 2-wiJ 
23 Here we follow the notations of A. Edmonds, Angular Momen­

tum in Quantum Mechanics (Princeton University Press, Princeton, 
New Jersey, 1957), except for a change of sign in the exponentials 
which relate the &MWJ{&) to the £>MM>J(aPy) functions. 

24 G. Szego, Orthogonal Polynomials (American Mathematical 
Society Colloquium Publications, New York, 1959). 

In Sec. IV, we show how this result could be used in the 
so-called axiomatic 5-matrix theory25 to define the ex­
tension of the three-body partial-wave amplitudes to 
complex values of / , and this leads us to a general 
formulation of the notion of signature.3 

In Sec. V, we recall the fundamental facts about the 
Fadeev equations as stated in a preceding paper. In 
Sec. VI, the inhomogeneous term of these equations is 
extended to complex values of / , by use of the generali­
zation of the Neumann theorem. For this we need to 
know the analytic and asymptotic properties of the off-
the-energy-shell two-body scattering amplitude which 
are investigated in Appendix I I and applied to the 
domain of definition of the inhomogeneous term. In 
Sec. VII we show that, while it is possible to extend the 
inhomogeneous term and the kernel of the Fadeev equa­
tions to complex values of / , it is impossible to extend 
the equations themselves. In Sec. VIII we show how to 
extend the Fredholm solution. Finally, in Sec. I X we 
show that no Sommerfeld-Watson transformation can 
be used in the three-body problem because of the infinite 
values assumed by the helicities. 

II. PARTIAL-WAVE EXPANSIONS 

Let us define the partial-wave expansion of the three-
particle scattering amplitude. To the initial and final 
sets of momenta in the total center-of-mass system, 
(pi,p2,p3) and (p/,p2/,p3/)J we attach a well-defined set 
of body-fixed axes, say S and S;. According to the rela­
tion (valid in the total c m . system) 

<Pi3p2,p31 Pwico2co3/ifm) 

= [ ( 2 7 + l)(27r)6/wiW2W387r2]1/2 

X5(coi—pi2/2mi)(8(o)2—p22/2m2) 

X5(co3-^32/2m3)5(P)(2x)3©mMJ*(^), (2.1) 

where S represents the rotation which carries the space-
fixed set of axes into 5 , one gets 

= I\v^Vo),JM,)d*Pfd*u\o>,JM'\T\uJM) 

Xdspd3u(a}JM\v) 

= E (l/87r2miw2w3)(2/+l) 
JMMf 

X{o>fJM'\?\o>JM)T>M>MJ{R), (2.2) 

where R is the rotation SS'"1 which carries S into S'. 
Equation (2.1) is the generalization of the expansion 

of the two-body scattering amplitude in partial-wave 

25 G. F. Chew, Address to the Washington Meeting of the 
American Physical Society, April 1964 (to be published); H. P. 
Stapp, Phys. Rev. 125, 2139 (1962); and Lawrence Radiation 
Laboratory Report UCRL-10843, August 1963 (to be published). 
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amplitudes, 

( P I V I T\Plp2) = X(2J+l)aJPj(cosd), (2.3) 
J 

where 6 is the scattering angle. 
Using the orthogonality property of the rotation 

matrices, one can invert Eq. (2.2) in order to get an 
explicit form of the three-body partial-wave amplitude; 

= mim*mz / (pip2pz\T\pip2ps)dR£>MM'J(R) , (2.4) 

where dR is the invariant measure on the rotation group 
(in terms of the Euler angles a, 13, y, dR—dad cos/3dy). 
Equation (2.4) generalizes the relation 

1 r+1 

aJ=- / <PiW|r |PiP2ycos0Pj(cos0) . (2.5) 
2J_x 

The similarity between the two-body and the three-
body partial-wave expansions suggests immediately a 
common approach to the definition of their extension to 
complex angular momenta. 

Let us pause to recall how Eqs. (2.3) and (2.5) are 
used in that respect.25 One first notices that Eq. (2.5), 
when extended to any value of / , increases too rapidly, 
when / tends to infinity with complex values, to be of 
any use. In fact, the Sommerfeld-Watson transform of 
Eq. (2.3), 

1 r(2J+l) 
— (b— dJaJPj(cos6), (2.6) 
2i J s inx/ 

would not converge with the definition (2.5) of aj. How­
ever, according to a theorem by Neumann,24 Eq. (2.5) 
can also be written for / an integer as 

aJ=~~- I T(E,x)Qj(x)dx, (2.7) 
2iri J c 

where x— cos#, and Qj{x) is the Legendre function of the 
second kind. The amplitude (p0'p2'| T\p!p2)=T(E,x) is 
supposed to be analytic in x in a neighborhood of the 
segment (— 1, + 1 ) . The contour C encloses this segment. 

When the analytic function of x, T(E,x), has only a 
cut going from X=XQ>1 to + 0 0 along which its dis­
continuity is 2iA(E,x),2Q Eq. (2.7) can be replaced by 

1 r00 

aJ=- j A(E,x)Qj(x)dx, (2.8) 

which is the Froissart-Gribov formula.27 As Qj(x) de-
26 This is the case if T(E,x) satisfies the Mandelstam representa­

tion; S. Mandelstam, Phys. Rev. 112, 1344 (1958). 
27 M. Froissart, Report to La Jolla Conference on Weak and 

Strong Interactions, 1961 (unpublished); V. Gribov, Zh. Eksperim. 
i Teor. Fiz. 41, 667 (1961) [English transl.: Soviet Phys.—JETP 
14, 478 (1962)]. 

creases when / tends to infinity, the Sommerfeld-Watson 
integral (2.6) converges when aJ> for any / , is replaced 
by its expression (2.7). Moreover, according to a theorem 
by Carlson,28 (2.7) is the unique interpolation of the 
physical values of aJ which is analytic in the right-hand 
half-plane R e / > —1 and which does not increase as 
rapidly as e^JK 

When there is an exchange potential in the two-body 
interaction, T(E,x) has two cuts: one going from — oo 
to — x2< — 1, say, and the other from X\>1 to + o o . 
Then the contour C in Eq. (2.7) cannot be applied with­
out care along the left-hand cut, since Qj(x) itself has 
also a cut going from — oo to + 1 . This difficulty is 
avoided by introducing the even and odd parts of T(E,x) 

T<+KE,x) = i£T(E,x)+T(E, - * ) ] , 

Ti-KE*) = KT(E,x)-T(E, - * ) ] , ( - ' 

and putting 
2 r 

fl/(+)=- / A«\E,x)Qj(x)dx, 

(,/(-> = - / A^(E,x)Qj(x)dx, 
IT J XQ 

where #o=min(ffi,#2). The + or — signs in Eq. (2.9) 
are called the signature.3 

III. SOME PROPERTIES OF THE ROTATION 
MATRICES 

We shall try to follow the essential steps of the pre­
ceding analysis while extending it to the three-body 
case. However, that means that we shall have to sub­
stantiate some well-known properties of the Legendre 
functions, which were tacitly assumed, by corresponding 
properties of the rotation matrices. 

The generalization of the Legendre equation is given 
by the set of differential relations 

(J*2+Jy2+Jz2) &MM>J(R) = J(J+ 1) S>MM>J(R) , 

JMS>MM>J(R) = MX>MM'J(R) , (3.1) 

J.'X>MM>J(R) = M'$>MM'J(R) , 

where Jx, Jy, Jz are the angular momentum operators 
of the symmetric top, i.e., differential operators with 
respect to the Euler angles (a,/3,y).29 Jz {JJ) is the 
projection of the total angular momentum upon the 
body-fixed (space-fixed) z axis. The last two Eqs. (3.1) 
allow us to write 

S)MM'J{R) = <riM"dMM>J(P)e-iM'y, (3.2) 

while the first of Eqs. (3.1) gives a differential equation 
analogous to the Legendre equation [Eq. (1.2) of Ap­
pendix I ] . Just as the Legendre functions are defined by 

28 R. Boas, Entire Functions (Academic Press Inc., New York, 
1954), p. 153. u 

29 For explicit expressions for these operators see Ref. 23. 
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the Legendre equation, we shall define the dMMfJ{(3) as 
the regular solution at cos/3 = 1 of this differential equa­
tion for any value of / . 

In Appendix I it is shown that CIMM'J(P) has essentially 
the same properties as Pj(x), namely: 

(a) as a function of x= cos/3 it is an analytic function 
with a cut going from — oo to — 1 if M+M' is even, or 
(1—x2)1/2 times such an analytic function when M-{-Mf 

is odd; 

(b) when J tends to infinity, it increases as does elmJP. 

We shall define a second solution eMMfJ(x) of the 
differential equation for dMMfJ(x), regular at infinity. 
The precise normalization is given in Appendix I. Its 
properties are closely analogous to the properties of the 
Qj(x), namely: 

(a) as a function of x it is an analytic function with a 
cut going from — co to + 1 ; 

(b) when / tends to infinity, it behaves like Qj(x). 

However, while the Qj(x) is a meromorphic function 
of / with poles at / = — 1, — 2, • • •, eJMM'{x) has also 
singularities at / = 0 , 1, • • -{max |M| — ljikf ' l — 1}. 
According to the values of M and M\ these singularities 
can be poles or branch-point singularities. They are indi­
cated in detail in Appendix I. 

When / is an integer, eJ
MM'{X) has only a cut going 

from —1 to + 1 alongside which its discontinuity is 
proportional to CIMM'J(X) 

eMM>J(x+iO) — eMM'J(x—iO) = iTrdMM>J(x). (3.3) 

However, this is not enough to insure that an integral 
like 

L f(x)dMMfJ(x)dx 

can be written as 

~ / f{x)eMM'J(x)dx, 
iir J c 

(3.4) 

(3.5) 

since dMMfJ(x) is not always an analytic function of x 
in a neighborhood of the segment (— 1, + 1 ) . This is not 
surprising, since the properties of the dMMfJ{x) are 
simple only when interpreted on the rotation group. 
Therefore we go back to the full set of variables (a,/3,7) 
by defining, in analogy with Eq. (3,2), 

&MM> J(a,/3,y) = e-iM«eMM>J(P)e-iM,y. (3.6) 

Then, as proved in Appendix I, one has the following 
theorem: 

Theorem: Let /(a,/3,7) be a function defined over the 
rotation group, analytic in cos/3 and sin/3 in a neighborhood 

of the segment cosp=—l to cos/3 = + i . Then 

p2ir I*2TT r»-\-l 

/ da dy d cos/3 f(a,/3,y) ^>MM'J{afi,y) 
Jo Jo J—1 

1 p2ir f2ir ^ 

= — / da I dy (p d cos/3 
iw J0 Jo J c 

Xf{afi,y)&MM>J{afi,y), (3.7) 

where Cisa contour enclosing the segment cos/3 = —lto+1. 
If the contour C can be displaced around the singu­

larities of /(ce,/3,7) in such a way as to go to infinity, and 
if the asymptotic behavior of /(a,/3,y) when cos/3 tends 
to infinity allows one to neglect the contour at infinity, 
Eq. (3.7) is a natural generalization of the Froissart-
Gribov formula. 

In order to continue the right-hand member of Eq. 
(3.7) to complex values of / , one must take care that, 
generally, the singularities of the function f(a,/3,y) de­
pend upon a and 7. On the other hand, as eMM'J(/3) has 
a left-hand cut in cos/3 when / is not an integer, it could 
happen that the singularities of f(a,l3,y) encounter that 
cut. This is in fact the problem of introducing the signa­
ture into the many-body kinematics. 

Let us start from the symmetry relation of the 
dMMfJ(/3), valid when / is physical,23 

dMM>J(P+T) = (-iy+M'dMrM>J(0), (3.8) 

and let us introduce two new functions 

1 
aM,M .J(±)=z- f(a,p,y)Z®MM>J(a,/3,y)±(-iy 

X $>M,-M>J(a,P,y)~]dad cos/3dy (3.9) 

=- [lf(<*fi,y)±f(",P+*, -7)] 

X ^>MM'J{afi,y)dad cos/3dy (3.10) 

- / F^iafi.y^MM^iafi^dad cos/3dy, 

where 

F^(a,/3,7) = - | [ / M , 7 ) ± / ( a , ^ + 7 r , - 7 ) ] , (3.11) 

and 
FW(a,P,y) = ±FM(a, P+T, - 7 ) . (3.12) 

The continuation of aMM'Ji±) to complex values of / 
will be given by 

i-K J c 
dad cos/3dy 

XF^(aAy)$MM>J(aAy), (3.13) 

where the symmetry properties of F(±)(a,/3,7) are used 
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to insure that the contour C encloses only the singu­
larities of F(a,(3,y) which are in the right-hand half-plane, 

Recos/3>0. (3.14) 

Clearly, aMM'J(+) (#ikfArJ(~)) coincides with the 
physical value (LMM>J when J is an integer and J-\-M' 
is even (odd). 

IV. CONTINUATION TO COMPLEX VALUES OF 
J IN S-MATRIX THEORY 

I t is interesting, for the sake of orientation, to define 
the extension of the three-body partial-wave ampli­
tudes when one assumes the validity of the axiomatic 
5-matrix theory.25 In this theory, one assumes that 
(Pi/p2/p3/1T | P1P2P3) can be extended to complex values 
of the momenta with some well-defined, although not 
too simple, singularities. If one replaces the momenta by 
the variables coi, co2, w3; wi', 0*2', co3' and the rotation R, 
which defines the orientation of the final triangle 
(pi/>p2/,p3/)j with respect to the initial triangle (pi,p2,P3), 
the connected part of the three-body scattering ampli­
tude can then be written as a function /(coi,o>2,w3; 
coi/,co2

/,co3
/;a,/3,7) with well-defined singularities in a, /3, 

and 7. 
The preceding analysis can then be applied to this 

function /(o>,a/;a:,/3,y), so that Eq. (3.13) becomes a 
generalization of the Froissart-Gribov formula. Some 
special care should be exercised because of the existence 
of singularities within the physical region. 

In this form the physical meaning of signature is 
obvious: changing (a,/3,y) into (a, /5+7r, —7) means re­
placing the rotation R by a rotation Rf, which leads to a 
new reference system linked to the final state. The old 
and new systems of axes differ by a rotation around the 
x axis. This is also obviously the meaning of signature in 
the two-body case if one chooses the a axis along the 
final momentum in the center-of-mass system. Let us 
note that, according to Eq. (1.17) of the Appendix, the 
extended matrix element is not bounded when / tends 
to infinite complex values, because of the presence of 
complex singularities in the cos-/5 plane. 

V. THE NONRELATIVISTIC PROBLEM 

Let us start from the Fadeev equations [Eq. (44) of 
paper I ] , which we shall write in an abbreviated form as 

rj(i)=rki
J-i:Kj«>»rj(j), (5.1) 

U) 

where 

and 
h h k) 1= 1, 2, 3: i^j, iy^k, iy^l 

k?*l. 

Let us recall that T*i2,r, for instance, is the two-body 
amplitude for the scattering of particles 1 and 2 and the 
total three-body amplitude is rJ= rJ(l)+?J(2)+rJ(3). 
Equation (5.1) cannot be used directly to define an 
extension of the collision matrix to complex values of the 

total angular momentum because its kernel is not com­
pletely continuous.30 We therefore iterate Eq. (5.1), 

rJ({)=rkl
J-i: Kj^rlm

j+j: K/^rj(j), (5.2) 
U) 3 

where l^j, m^j. We shall introduce the connected 
part U(j)J=c[3(i)J—crjci

J, which satisfies 

UJ= -KJ0J+KJ*0J+KJ*UJ , (5.3) 

where we have written gJ= (Ft/,Ti/rfn*). According 
to Eq. (47) of paper I, the kernel Kj2 has the form 

Kj^ #23 H21-J-H2Z H2I 
H%2 Hzi Hsi-\-Hz2J 

(5.4) 

where a typical term is, for instance, ZZ^:21,81 

HI2M>MJ(O>',U,Z) 

•f 
1 

pipi 
•Fn{uf, <o", u, z—a)i)Fu(a)", u, v, z—o)2) 

XdM'MiJ(-a1
,)eiM^dMlM/(e2i,,)eiM2VdM2M

J(a2) 

X[(cOi /+W2+C08
// — z)(0)1+0)2+C03 — s ) ] _ 1 

Xdudvdcoz". (5.5) 

The inhomogeneous term K$ is of the form (5.4) and 
(5.5) except for the absence of (23 &>»••— JS)-1. When we 
wrote Eq. (5.5), we took into account the equality 
02i' = a2f—aif, and we have integrated co/' and co2", 
which—according to the delta functions in Eq. (47) of 
Paper I—are given by 

co /^co / and co2//=t02. (5.6) 

The integrations over u and v in Eq. (5.5) go from 0 to 
2TT. The integration over co3" is over a limited range such 
that, according to Eq. (5.6), 

\pi—pi\ <pz"<pi'-\-p2. (5.7) 

According to the relation (16) of Paper I between co3" 
and Q2\!t one can also write 

da)% -2{mim20)\Oi2)/fnz dcosdu' (5.8) 

the integration upon cos0i2" going from —1 to + 1 . 
Let us now consider the extension of the first term 

Kj$J in Eq. (5.3) to complex values of / . A slight 
change in kinematics is necessary in order to put the 
right-hand side of Eq. (5.5) into the form (3.7). In place 
of u, v, and W3", we must use as variables the three Euler 
angles, say (a,/3,y), of the rotation which applies the 
set of axes linked to (pi,p2,p3) to the set of axes linked 

30 According to Ref. 19, the iterated kernel is completely con­
tinuous when the total energy z is not a real positive number. In 
that case the fifth iterated kernel is completely continuous. 

31 Here z means the total energy. Remember that these equations 
are defined off the energy shell. 
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to (p/,p2/,P3/)- Let us call R that rotation. Let us also 
call R0 the rotation with Euler angles (u, di2",v), and 
r\ and r<i the rotations of angles a\ and a2 around the 
y axis. Then, according to the relation 

R=r1
/~1RQr2; (5.9) 

one has, owing to the invariance of the group-theoretic 
measure,32 

dad cosfidy—dud cosdu'dv. (5.10) 

Accordingly, the inhomogeneous term Kj$J has the 
form (#12+-#13,^21+£23, #31+#32) where, for instance, 

B12M'MJ(^f,o),z)= / /12(co',co,z,a,/?,Y) 

X <S)M'MJ{oifi,y)dad cos(3dy (5.11) 
and 

m\m%bi\ C02 
= 2 FM(O)'9 co, a, j8, 7 ; 2—co/) 

^i /^2W3(coi /+a)2+co3
/ /—z) 

X F i , ( u > , a , f t 7 ; s - « 0 . (5.12) 

Here F23 is the two-body scattering amplitude 
(p2/p3/1 ^23(2—a)/) I p2//p3//) expressed in terms of the 
variables co', co, a, /?, and 7. The kinematical situation is 
illustrated in Fig. 1. 

When considering the second term Kj2$J of Eq. (5.3) 
we shall again introduce the Euler angles (afi{y) of the 
rotation which applies the initial reference system linked 
to (pi,p2,ps) to the final system linked to ($1,1*2,Vz). 
However, when writing explicitly Kj2$J it will be neces­
sary to introduce two sets of intermediate states, let us 
say (pi",P2",Pa") and (pi'",p%'"9v*")- We shall take as 
variables, in addition to (a,fi,y), the angle between the 
(pi>p2,p3) triangle and the (pi/,,p2//,p8//) triangle as well 
as the two undetermined sides of this last triangle. Then 
Kj23J will assume the form (5.11) while / will contain 
three two-body scattering amplitudes and^three more 
integrations. 

FIG. 1. The variables 
used for evaluating the 
contribution K$ to the 
inhomogeneous term. 

*(«,£,r) 

FIG. 2. The variables 
used for evaluating the 
contribution KH to the 
inhomogeneous term. 
The variables are coi", 
C02", ut and the Euler 
angles (a, 0, y). 

(«Ar) 

A typical kinematic situation for K23 is depicted in 
Fig. 2. 

The generalization of this approach to any term of the 
Born-series expansion of UJ is obvious. Unfortunately, 
it becomes more and more involved as one considers 
higher order Born terms, and this seems to be the price 
to pay for the three-body kinematics. In order to say 
something about the extension of these terms, and 
particularly (5.11), we need to know more about the 
analytical properties of the off-the-energy-shell two-
body scattering amplitude. 

VI. CONTINUATION OF THE INHOMOGENEOUS 
TERMS 

The off-the-energy-shell two-body scattering ampli­
tude r(p,p',£) (where £ is the complex total energy as it 
appears in the Lippmann-Schwinger equation33) can be 
considered as a function of £ and of the three invariants 
^ , £ ' 2 , and M P - P ' ) 2 . . 

A sketchy analysis given in Appendix II indicates 
that T(p2,p'2,t,g) is an analytic function of p2, p'2, t, and J 
with the following singularities34: 

(i) a cut in p2 from 0 to infinity, 
(ii) a cut in p'2 from 0 to infinity, 
(iii) a cut in t from /x0

2 to infinity, ^o_1 being the range 
of the potential, 

(iv) a cut in £• from 0 to infinity, 
(v) poles in £ for values of J which are the energies 

of the bound states. 

These singularities give rise to singularities of 
/12(co/,co,s;; a,j3/y) in Eq. (5.11) which, for fixed values of 
a and 7, are singularities in cos/3. The singularities of 
the two-body scattering amplitudes always take place 
outside of the integration domain in (a,l3,y). The singu­
larity in #23//2 of F2z(a)', co", z—co/), for instance, can 
touch this physical region. In fact, c/23//2 = 0 corresponds 
to a kinematical situation where p2 and p3" are equal, 
and this can happen only when coi' = 0 or co/ = 2co2. (see 
Fig. 1). Therefore, except for a set of zero measure of the 

32 M. Hamermesh, Group Theory and its Application to Physical 
Problems (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1962). 

33 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
34 The analytic properties of the off-the-energy shell two-body 

scattering amplitude have been previously studied by A. Grossman 
and T. T. Wu, J. Math. Phys. 2, 710 (1961); A. Grossman, ibid. 2, 
714 (1961), also presents some results for the partial-wave 
amplitude. 
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initial and final variables, the theorem (3.7) can be 
applied without special care, and allows us to define the 
continuation of the first inhomogeneous term KjdJ to 
complex values of / . 

When the second inhomogeneous term Kj2$J is being 
extended more care must be exercised, because the 
second triangle (see Fig. 2) is variable and there is 
always a kinematic situation where, for instance, 
p / = p 2 / / . However, since the integrand is also analytic in 
wi", co3", and u, we shall assume that it is possible to 
displace slightly the contour of integration of these 
variables in order to avoid that singularity. As this kind 
of singularity only touches the physical region without 
crossing it, such a displacement is always possible. 

We have up to now replaced Eq. (5.11) by 

BI2M'M(O)\O),Z) = - (p dad cosf3dy 

Xf12(u',o>,z;a&y)8M>MJ(a,f3,y), (6.1) 

where a and 7 are integrated from 0 to 2ir, and cos/3 is 
integrated along a contour which encloses the singu­
larities of the integrand and goes therefore to infinity. 
The equivalence of Eqs. (5.11) and (6.1) as well as the 
existence of the integral in Eq. (6.1) depend upon the 
asymptotic behavior of /12(a/,co,2; a$,y) when cos/3 tends 
to infinity. 

When cos/3 tends to infinity the components of the 
vectors p / , p2 ' , pz in Fig. 1 become infinite (and com­
plex) while a?/, 0)2, and o>3', the squares of their moduli, 
remain finite. Accordingly, yz'^pi —p2 becomes in­
finite as well as the c m . momenta 

q23/== (m8p2— m2p3 /)(w2+w3)~1, 

q23//== (msp2— w2p3 / /)(^2+w3)~1 , (6.2) 

qi3//== (W1P2"—tnzpJitni+tnz)"1. 

Since the components of p 3 " increase linearly with cos/3 
and since 

^23 / /2=[2W2W3/(W2+W3)](cOi+C02
/+W3

/ /) 

— [2w2w3(wi+W2+ w3)/(w2+m3)2]o>i (6.3) 

and C03" increases linearly with cos/3, the c m . momenta 
#23" and qn" as well as the scattering angles cos<£2'3" and 
cos<£3"i tend to infinity linearly in (cos/3)1/2. 

The fact that the scattering angles tend to infinity 
could lead one to believe that the Regge poles of the 
two-body scattering amplitude determine the asymp­
totic behavior of the integrand in (6.1). However, it is 
shown in Appendix I I I that the fact that the center-of-
mass momenta also tend to infinity compensates that 
effect, and that the over-all behavior of F2z, for 
instance, is 

F28(a/,w; Z-COI'; O£,/3,Y)~(cos/3)"1 / 2 . (6.4) 

According to Eq. (1.15) of Appendix I, &MM'J(X) 
behaves like x~J~1 when x tends to infinity and, there­

fore, the integrand in Eq. (6.1) behaves like (cos/3)~~J~3 

when cos/3 tends to infinity, so that it converges when 
R e / is larger than —2. 

Accordingly, the domain of analyticity of the inhomo­
geneous terms KjdJ and Kj2$J of the Fadeev equations 
can be extended to complex values of / in the half-plane35 

R e / > m a x { | M | - l ; | M ' | - 1 } . (6.5) 

This result holds true for any term of the Neumann 
expansion 

K$+K2<j+Ks<f+ • • • (6.6) 

of the solution of the Fadeev equations. 

VII. CONTINUATION OF THE FADEEV EQUATIONS 

We have found that the inhomogeneous terms of the 
reduced Fadeev equations36 can be extended to complex 
values of / into analytic functions (of J) within the 
half-plane (6.5). 

Let us now consider the problem of extending the 
reduced iterated Fadeev equations themselves to com­
plex values of / . To do so, let us first write them ex­
plicitly for physical values of / : 

UM'Mii)J(<*',a) 

M"^-J y=i J 

UM»MU)J(a>",a))du>"; (7.1) 

for simplicity we have written V in place of K$ and 
K23, and the kernel K2 in Eq. (7.1) is given by Eqs. 
(5.4) and (5.5). Both V and K2 have the form (5.11). 

We know that, in order to extend the partial-wave 
expansion (2.2) into a Sommerfeld-Watson formula, the 
extension of UJ must not increase as rapidly as sin7i\7 
when / tends to infinity. This is not a very compelling 
reason in the problem we are considering, because we 
shall see later that the Sommerfeld-Watson series never 
converges. However, the present choice is the one which 
reduces to the customary Froissart-Gribov formula in 
the case of the scattering of a particle on a bound state 
of the other two. This property leads us to choose the 
extension of VJ to complex values of / described in 
Sec. VI, since the inhomogeneous term must have the 
same properties as the full solution. 

When we come to the kernel K2J, there is no direct 
condition upon it, but indirect conditions, namely: 

(i) the extended equation must have the physical 
solution for physical values of / , 

(ii) the extended solution must not increase as rapidly 
as simrJ when / tends to infinity. 

Condition (i) is not trivial because when / becomes 

35 This domain arises from the singularities of the £>MM>J 

function. 
36 As the results of this section are essentially negative, it can 

be skipped in a first reading. 
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a complex parameter, there are no more limitations 
upon M" and Eq. (7.1) becomes 

+00 3 r 

Mf,=—cc y=i J 

XUM>< ,WW. (<o",aO&/', (7.2) 

and we should make sure that when / is an integer and 
|M | , \M'\ two integers smaller than / , the summation 
upon | M" ( in Eq. (7.2) from / to infinity gives identi­
cally zero. 

There are a priori two simple ways of extending K2J, 
namely 

(a) keep it in the form of Eq. (5.5) as an integral 
upon a 3D-7; 

(b) transform it into a contour integral of the form 
of Eq. (5.11) upon an 8J. 

Let us discuss the consistency between these two ex­
tensions and condition (i). 

We shall first discuss extension (a). In order to 
simplify the argument, we shall restrict ourselves to the 
case in which / passes from a complex value to zero and, 
therefore, we shall consider M=if'=0 in Eq. (7.2). 

We shall use23 

rr ( / -M+l ) i 1 / 2 

don*® = ( - DMPJM(COSP) ; 
Lr(/+Af+l)J 

M > 0 , (7.3) 

rT( / -J l f+l ) - i 1 / 2 

eMoJ(P) = \ QJM(COSP); M>0. (7.4) 
Lr(/+M+l)J 

Let us now consider the integral in Eq. (7.2). If we 
assume that, as in 5-matrix theory, UM"QJ has the form 
(3.13) or that it has the same properties as VM"OJ, it 
will behave like eM"oJ, i.e., become infinite like J~1/2 

when M">0 and / tends to zero. On the other hand, 
KQM"U behaves like doM"J, i.e., vanishes as J1/2, since 
the Legendre function in Eq. (7.3) vanishes as / and the 
normalization coefficient behaves like J~112. Therefore 
we must inquire about the result of the summation of 
Eq. (7.2). 

The quantity we want to keep is 

( £ % W , (7.5) 

and the quantity which should vanish is 

t(K2)oM»°UM»o° (7.6) 
I 

(taking into account the symmetry properties (1.5) of 
the d and e functions with respect to M" allows one to 
sum only upon positive integer values of M"). 

Now, let us shift the normalization factor 

\T(J-M"+1)/T(J+M"+1)J'* 

of UM»QJ upon (K2)0M"°, defining in this way (K'2)0M"°, 
so that the summation in Eq. (7.2) will be replaced by 

M-

where 

11 
" = _ 0 0 J 

{K'%M»°W,U")UM",\O>",O>W , (7.7) 

Y(J-M"+\) 
X-

T(J+M"+1) 
( - l)M"PjM"(cosp)dad cosj3dy, (7.8) 

XQjM"{co0)dad cosfidy. (7.9) 

We can see more clearly the properties of Eq. (7.8) if 
we notice that37 

T(J-M+1) 

T(J+M+1) 
•PjM(x) 

= Pj-"(x)--
(-DJ 

c o s / x r ( / + M + l)T(M-J) 

X [ e - ^ - i M ( x ) - e + ^ ( x ) ] , (7.10) 

so that, for M>0, the integrand in Eq. (7.8) will 
behave like 

Z(-i)"/nM)TQ-i*(x)-Q»"(x)l. (7.11) 
If we perform now the symmetrization of Eq. (7.8) in 
order to introduce the signature, we shall keep all terms 
which have the parity of PQ(X), i.e., Q__iM(x), and we 
shall cancel the terms of opposite parity, i.e., QoM(%). 
We can see more easily the nature of the remaining term 
by using38 

[ ( - l)M/T(M)2Q-iM(x) = (TT/2)1 /2(X2- I)1/4 

XPif-i/21 /2[*(*2-l)-1 /2]. (7.12) 

To conclude, we see that extension (a) does not satisfy 
condition (i). 

If we use extension (b), the argument is the same as 
above up to Eq. (7.8), where Pj(cos/3) has to be replaced 
by Qj(cos/3). Therefore, both the terms of the kernel and 
of the solution tend to infinity like J~1/2 when / tends 
to zero and the sum (7.6) has no meaning. 

Therefore, we cannot find an extension of the Fadeev 
equations to complex values of / which has the physical 
solution when / is an integer. The reason must be traced 
to the existence of nonsense channels for which 
| j f | > i / | . 

87 Bateman Manuscript Project, Higher Transcendental Functions 
I, edited by A. Erdelyi (McGraw-Hill Book Company, Inc., 
New York, 1954), p. 140. 

38 Reference 37, p. 141. 
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The preceding negative results would be very strange 
if the extended Fadeev equations had a solution, while 
not satisfying condition (i). In fact, the asymptotic 
behaviors of CIMM'J(%) and eMMfJ(%) when M and Mr 

tend simultaneously to infinity is exponentially increas­
ing [see Eqs. (I.20a) and (1.21) of Appendix I ] so that 
Eq. (7.2) has an unbounded kernel with both extensions 
(a) and (b). Furthermore, if we assume that the solution 
UM'MJ has the same behavior in M and Mf as in 
5-matrix theory or as VM'MJ ,the asymptotic behaviors 
of (IM'MJ(OC) and eMM,J(%) when Mf tends to infinity 
[as given by Eqs. (1.18) and (1.19) of Appendix I ] show 
that the summation upon M" in Eq. (7.2) will never 
converge. 

To conclude: the removal of the constraint | M \ < \ J \ 
when / is complex, which has no counterpart in the 
two-body problem, is enough to render an extension of 
the Fadeev equations devoid of all meaning. 

VIII. EXTENSION OF THE FREDHOLM SOLUTION 

Let us rewrite the Fadeev equations for physical 
/ [(7.1)] as 

UJ=VJ+KJ*UJ. (8.1) 

We know that the kernel Kj2 is completely continuous 
since, according to Fadeev, the full kernel K2 has that 
property, and also satisfies 

Trace K2K*2='£(2J+i) Trace Kj2 i O + 2 < oo . (8.2) 

Therefore we can solve Eq. (8.1) by the Fredholm 
method, which gives 

where89 

n=o n! 

UJ=NJ/DJ, (8.3) 

1 0 0 

Ki 2 0 

K* Kx 3 

0 Kx 

0 K2 

0 Kz 

n—1 • 

Ki Kn 

, (8.4) 

X 

1 0 0 

Ki-Kj2 2 0 

Kz-Kj* Ki-Kj2 3 

Kr-Kj* 

Kt-Kj* Kn-Kj*» 

(8.5) 
39 This form of the solution is taken from Morse and Feshbach, 

Methods of Theoretical Physics (McGraw-Hill Book Company, 
Inc., New York, 1953), Vol. II, p. 1024. 

We have introduced the notation 

Kn=Trace Kj2n. (8.6) 

We have already shown how to extend terms like 
KjnVj to complex values of / . Let us show now how to 
extend the quantities Kn. 

In order to express Kj2n for physical values of / , 
we shall use the same kind of variables as in Sec. V, 
i.e., a rotation R(a,p,y) giving the relative positions of 
the initial and final reference systems plus other mo­
mentum and angle variables labeled collectively y which 
determine the relative position of the 2nd, 3rd, • • •, 2n—2 
intermediate states when Kj2n is expanded in terms of 
matrix element of two-body scattering amplitudes. 
Then one has, according to Eq. (2.4), 

X / ( w ) ( w > ; y; afi,y)dydad cospdy, (8.7) 

so that 

K, 
J M=-J 

^>MMJ{afi,y) 

X/(n)(co,co; y; afi,y)dydad cosfidydu. (8.8) 

In order to evaluate the trace of the rotation matrix, 
it is convenient to define the rotation R by a unitary 
vector H along its axis (or, equivalently, the spherical 
angles 6 and <j> of it) and the angle p of the rotation. 
Then, one has 

j 

E £>MMJ(a,P,y) = E [exp(£F• np)~]MM 
M=—J M 

J s i n ( 2 / + l ) § P 

= £ eiMP- ; . (8.9) 
M=-J sinjp 

A routine computation shows 

dad cos/3dy = 2 sin|p(d cosjp)(d cos0)d<j>, (8.10) 

so that Eq. (8.8) takes the form 

/

/•27T rir / » + l 

dy d<S>\ dcosd 2/<*>(«,w;;y;0,0,p) 
s i n (2 /+ l ) Jp 

X sinjpd cosjp. (8.11) 
sinjp 

Let us now use the fact that two rotations with 
opposite axes and angles are in fact identical (i.e., i?3 

and not SU2) so that 

/ ( n ) ( « , » ; y ; i r - 0 , * + i r , - p ) = / ( n W ; ? ; * , * * ) , (8.12) 
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and introduce 

/?<»>(«; o>; y< 0,0, cosip) = f [/<»>(co,co; y; d,cj>,p) 

+ / ( B ) ( « , o ) ; y , i r - ^ 0 + i r , - p ) ] . (8.13) 

According to Eq. (8.12), and the analyticity of the two-
body scattering amplitudes, F(n)(co,a;;y; 0,<£,p), is an 
analytic function of cosjp, and one has 

/

/»2x /»7T 

dy J d<j> d cos0 
Jo J o 

x / 2F<»K« J«;y;^^)(i-x2)1 / 2r2 J_i(x)^. (8.14) 

We can now use the results of Appendix I I I , where it 
is shown that 

Tn(%) = (sin^|p)/(sin|p), x= cosjp, (8.15) 

is a Tchebysheff polynomial,40 so that we can introduce 
a Tchebysheff function of the second kind Sn(x) such 
that (8.14) takes the form 

Kn— I dydcj)dcos6 

X f IF^^u^) y,6$,%){!-%2)l/2Sw^^dx, (8.16) 

where C is a contour enclosing the segment (—1, + 1 ) . 
We can now proceed as before: deform the contour C 

along the singularities of F(n)(co,co; yfi,<j>,%). As the 
Tchebysheff functions of the second kind have exactly 
the same asymptotic behavior in x and in J as the Jacobi 
functions,41 all the discussion of Sec. VI, about the con­
vergence of Eq. (6.1) can be carried out without change, 
and shown that Kn is an analytic function of / in the 
half-plane 

R e / > - J . (8.17) 

Unfortunately, the presence of complex singularities 
does not allow one to satisfy the conditions of the 
Carlson theorem. 

Putting these results together, we see that we are able 
to extend all the terms in the Fredholm solution (8.3) to 
complex values of / . In this extension, there does not 
remain any summation upon indices M, which was the 
essential difficulty met in the extension of the Fadeev 
equation. 

While the solution (8.3) consists of the quotient of 
two series where each term is analytic in the domain35 

R e J > m a x { | A T | - l ; \M'\ - 1 } , (8.18) 

as long as nothing can be said about the convergence of 
these series, we cannot find the analytic properties in / 

40 See Morse and Feshbach, Ref. 39; Ref. 37, or Ref. 24. 
41 G. Szego, Ref. 24; Ref. 37. 

of the solution. This problem seems to be extremely 
difficult, and we have noting to present about it. 

Of course, the simplest situation would be that the 
series converge uniformly, as they do for physical values 
of J , so that the zeros of D j would define the Regge poles 
of the three-body scattering amplitude. As Dj depends 
only upon z, the trajectories of these poles are given by 

Dj(z) = 0. (8.19) 

These Regge poles interpolate the three-body bound 
states and resonances. However, difficulty (iv) could 
very well invalidate such a simple result. 

IX. THREE-PARTICLE SOMMERFELD-
WATSON EQUATION 

Let us start from the partial-wave expansion (2.2). 
By use of the symmetry property 

duM>J(ir+P)=(-l)J+M'dMr-M'J(P), (9.1) 

Eq. (2.2) can be transformed into a contour integral 
along a contour C which encloses the physical values 
7 = 0 , 1 , 2 , . - , i.e. « 

<P/P2/P8/1 ^|plp2p3> 

1 1 r 2J+1 
= 2 D , " / ~ UM'MJ(u\u) 

ST2mim2/mz M'M' 2% J c s inx/ 

X£>M,-M>J(a, TT-13, y)dJ. (9.2) 

However, a function CTM'MJ as given by the extension 
of the Fredholm series (8.3) or by axiomatic 5-matrix 
theory will behave like eMM>J when M and M' tend to 
infinity. A few special cases of the asymptotic behavior 
of eMM,J and du-MfJ as given in Appendix I, Eqs. 
(1.18), (I.20a), (I.20b), and (1.21), show that the sum­
mation upon M and M' in Eq. (9.2) does not converge. 

Therefore, here again, the summation upon all 
helicities M and Mf forbids convergence. Accordingly, 
one cannot use Eq. (9.2) in order to investigate the 
asymptotic behavior of the connected part of the three-
body scattering amplitude when one momentum transfer 
tends to infinity. 

X. CONCLUSIONS 

We have found essential differences between the 
three-body and the two-body scattering amplitudes 
when extended to complex angular momenta. In fact, 
the three-body problem is much more difficult than the 
two-body problem from the analytical standpoint, and 
we have not even touched any question of convergence, 
except to show up some obvious divergences. 

The fact that no integral equation can be written for 
this problem must certainly be traced to the existence 
of infinitely many nonsense channels, and a careful 

42 This equation was first written by J. B. Hartle, Phys. Rev. 
134, B162 (1964). 
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examination of the sense and nonsense channels in the 
three-body case is certainly the next step to make before 
contemplating the formidable problem of investigating 
the convergence of Eqs. (8.4) and (8.5). 

Although we are yet very far from being able to draw 
any conclusion, we have now come to the point where 
all difficulties of an essentially kinematical nature have 
been removed. I t remains now the much more difficult 
task of investigating the convergence properties of the 
solution. The presence of complex singularities, which 
have very strong implications on the asymptotic prop-
perties in J will be certainly a determining feature for 
convergence. We expect to investigate this effect in a 
forthcoming paper. 
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APPENDIX I: PROPERTIES OF THE 
ROTATION MATRICES 

1. Definition of the dMMJ(x) 

The rotation matrix43 corresponding to a rotation 
with Euler angles (a,/3,y) can be written23 

5>MM*J(afi,y) = e-iMadMM>J{co$p)e-m'v. (1.1) 

The function dMMfJ(%) is the regular solution near x= 1 
of the differential equation. 

(x*-l)y''+2xy'+{(M2+M'2-2MM'x)/(l-x*)'] 

-J(J+l)}y=0. (1.2) 

I t can be related to the Jacobi polynomials Pn
(a , /3 )(x) 

by41 

dMM'J(x) 
r{J+M)\{J-M)\-f12 

- T 
X 

L(J+M')\(J-M')l 

n+xyM+M >'*n-xy 

XPJ-M(M-M''M+M">(X) (1.3) 

43 After the completion of this work, we received a preprint by 
Andrews and Gunson [M. Andrews and J. Gunson, University 
of Birmingham, 1964 (to be published)] which contains many of the 
results given in this Appendix. We have used their notations and 
sometimes their presentations of the results in this paper. We also 
received a preprint by M. H. Choudhury of Tait Institute of 
Mathematical Physics, University of Edinburgh; where the 
author considers essentially the same problem, and concludes the 
Hilbert-Schmidt character of the kernel. That is, unfortunately, 
an overlooking of difficulty (iii) to which this section is devoted. 

or to the hypergeometric functions by 

rT(J+M+l)T(J-M'+l)n1/2 

Lr(/+M4-i)r(/-if+i)J 
f\JrXK{M+M')/2 f\^XK{M-Mf)/2 

1>MM ' (*)= 

X-
F(-J+M,J+M+1, 1+M- •M', | - • 2xj 

T(l+M-M') 
(1.4) 

Equations (1.3) and (1.4) are true only when both 
M—Mr and M-\-Mf are nonnegative. The other cases 
are given by the symmetry relations 

dMM>J(x)=(-l)M-M'dM>.MJ(x) 

= (-l)"-"'d-MrM>J(x) 

= d_M',-MJ(%). 

2. Extension to Complex J 

(1.5) 

dMMfJ{%) can be defined as the correctly normalized 
solution of Eq. (1.2) regular at x=l, or as given by 
Eq. (1.4). I t is an analytic function of x with a cut going 
from —oo to —1 when M+Mf is even, to + 1 when 
M+M' is odd. 

As a function of J it is the product of an entire func­
tion by the normalization factor 

[T(J+M+l)T(J-Mf+l)/ 

T(J+M;+l)T(J-M+l)2m 

(for A f - A f ' X ) , M+M'>0). 
The corresponding singularities when J is an integer 

are as follows: 

(a) \M\, \M'\<\J+%\ — | ; no singularity, dMM>J{x) 
finite (physical case); 

(b) | Jf | , \M'\ >\J+h\ ~h MM>0; no singularity, 
dMMfJ{x) finite (but unphysical); 

(c) | J f |, | M'\ > \J+i | - J; MM'<0; no singularity, 
dMM'J(%) = 0; 

(d) | ilf | < | / + J | - § ' I f > | / + i | - J , a square-root 
branch point where dMM,J(%) vanishes. 

For M=Mf=0, one has dMM>J(oc) = Pj(x). (1.6) 

3. Definition of the EMM>J(<&,§,*{) 

We shall define the function eM M,J(%) as the solution 
of Eq. (1.2) which is regular when x is infinite. I ts 
normalization is fixed by its relation with the Jacobi 
function of the second kind41 

eMM'J(x) = (-l)"-*', 
r T(J+M+1)T(J-M+1) -i1 

X 

• L r ( / + J f , + i ) r ( j r - j f / + i ) 

/ l + #\ (M+M'^2/x— 1\ W-M')/2 

\ 2 / 

J 
[-) 

XQJ-MM-M'-M+M'(X), (1.7) 
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or, in terms of the hypergeometric function, 

eMM;j(x) = KnJ+M+l)T(J~M+l)T(J+Mf+l) 

xr(/-if ,+i)] l/2[i(i+«])"(Jf+Jf ') /2 

x ( — ) ( - ) 

F[J-M+liJ-M'+l;'2J+2; ) 
\ 1—x/ 

X . (L8) 
T(2J+2) 

We shall define 

SM*'J(afi,y) = e-iMaeMM>J{co$$)e-iM'y. (1.9) 

4. Properties of the eMw J{x) 

ZMM'J{X) is an analytic function of % with a cut going 
from — oo to + 1 . As a function of J it has singularities 
when J is an integer, as follows: 

(a) when |j|f|, \M'\ < | / + | | —§, eMM'J(x) is finite 
for 7 > 0 , has a pole of residue dMMfJ{x) for / < — 1; 

(b) when \M\, \M;\ > | / + i | ~ i a n d i f A f ^ O ; p o l e 
of residue 1 4 1 ' ^ ) ; 

(c) | i f | , | M ' | > | / + i | - J and MM'<0; pole of 
residue ( - 1 ) J - M + 1 ^ M , - M ^ W ; 

(d) \M\ < \J+i\ - J and | Jf ' | > | / + i | - J ; square-
root branch point where eMMJ(x) is infinite. 

One has41 

eMM>J(-x)^-e±^J-MhMM>J{x) ( I r n ^ O ) . (1.10) 

The discontinuity of eMM,J(x) along the cut going from 
- l t o + l i s 4 1 

eMM'J(x+iO) — eMM>J(x—iO) = — iirdMM>J(x). (1.11) 

Furthermore, one has 

CMM> J(X) = [TT/2 sin7r(7—M)] 

( I i m ^ O ) . (1.12) 

Equation (1.12) is derived from Eq. (2.6) of Bateman, 
Ref. 37, Sec. 29 taking into account the correct drawing 
of the cuts. 

5. Extension of the Neumann Theorem 

Equation (1.11) suggests relating the integral 

L f(x)dMM'J(x)dx, 

when f(x) is an analytic function of x in a neighborhood 
of the segment (—1, + 1 ) and / is an integer, to the 
contour integral 

+-
1 

f{x)eMM'J(x)dx, 

where C is a contour enclosing (—1, + 1 ) . However, as 
dMMfJ(x) can have a singularity at x=l, some care 
must be exercised. 

Proof of Equation (3.7) 

Let us replace the integrand by 

hU(<*ft,y)2>MM'J(afi,y) 

+ / ( a + i r , ft y+Tr)£>MM>J(a+T, ft 7 + x ) ] 

=i[/M,7)+(-i)M+M7(«+^, ft T+TT)] 

X ^ M M ' ^ M / y ) . 

This does not change the integral. Since f(a,/3,y) is 
defined on the rotation group (and not SU2) one has 

f(a+w, /3, y+w) = f(a, —ft 7) 5 (1.13) 

therefore the integrand contains §[ / (a , f t7)+(— 1)M+M' 
X/(a , ~ f t 7 ) ]=^ (a , f t 7 ) . Since f(a,P,y) is an analytic 
function of cos/3 and sin/3, F(a,/3,y) is an analytic func­
tion of cos/3 when M+Af ' is even and sin/5 times an 
analytic function of cos/3 when M-\-Mr is odd. As 
smP1+(~1)M+M'+1dMM'J(l3) is always an analytic function 
of cosft Eq. (3.7) follows from Eq. (1.11). 

6. Asymptotics 

All the asymptotic properties given below can be 
obtained by using the asymptotic properties of the 
hypergeometric functions as given by Bateman as well 
as the identities satisfied by those functions. 

(a) When x tends to infinity, 

dMM>J(x) = T(2J+2)ZT(J+M+l)T(J+M'+l)T(J--M+ l)T(J-M/+l)']-1/2(x/2)+J, 

IT(J+M+1)T(J--M+1)T(J+M/+1)T(J-M,+ 1)J/2 

eMM,J(x) = ±e±*V(M-Jf') 

(L14) 

(x/2)~J~1; I m x ^ O . (1.15) 
r(2/+2) 

(b) When / tends to infinity (#= cos/3), 

djf j i f^Cco^J^CcosJjSj^+^Xsinif t^-^^^(T/ sin/3)-1'2 cos{ | J-M + J | j S - M , 

e M j i f ' J ( x ) M ^ ) 1 / 2 ^ ^ ^ I i m ^ O for - 7 r < a r g / < 7 r . 

(L16) 

(1.17) 
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(c) When M tends to infinity, M' fixed, 

(IMM> J(x) ^ constant XI 
p r C J - i f ' + l ) " ] 1 7 2 , . . _ , „ - , , , _ „ , jl-x\M/2\ 

/ + l ) - i 1 / 2 /l-x\M/2r 4 i M , / 2 

[smTr{J-M)J,2M*M'-H ] 

H-DJ V i W L(i-x)(i+x)J L r ( / + j f ' + i ) J " ' '" M + 
(1.18) 

rrcz-if'+i)-]1/^ ji-x^M/2r 4 ( ri\j—M'-j-l ) ~ \ i r z / l — x\MI2r 
e±iU~M)\ M2M,-H ) 

Lr(/+jf'+i)J \i+xJ L 

Mil 

( l - * ) ( l + x ) J 

rY{J+M'+\)-\112 /l+x\M/2r 4 - i - ^ ' / 2 

J M-w-H J 

Lr(/-Af+i)J \i~xJ Lft-s) 
(1.19) 

.T(J-M+1)J \l-x/ | _ ( l - * ) ( l + x ) _ 

(d) When M=Mr tends to infinity, 

dMuJ(x)~U\+x)/2y 2 - ^ + 1 > ( x l f ) - 1 / 2 [ l - ? + ( ^ - l ) 1 / 2 ] - 1 / 2 

X [ l + £ - ( ? 2 - l ) 1 / 2 ] 2 ' + 1 / ^ ^ (I.20a) 

(e) When M==—M/ tends to infinity 

s i iwr( / -Af) r ( | ) / l - x \ M / £ - l \ - / + 1 

wT(M-J)T(M+J)\ 2 / \ 2 / 

X [ H ( ? - l ) 1 / J ] - / ^ [ l - f + ( ? - l ) 1 T + 1 / T l - h ( P - l ) 1 ^ (I.20b) 

(f) Using Eqs. (1.12), (I.20a), and (I.20b), we find the asymptotic behavior of eMuJ(x) when M=M' tends 
to infinity: 

2simr(J-My 

X [1 - { + {e-1)1/2]~1/2[1+£- ( f 2 - 1 ) i /2 ]2 .m/2 K + ( { 2 _ j j i ^ y + i f ? ( L 2 i ) 

ta^f^-11- f -J 2 - ( 2 ^ 1 ) ( T T M ) - 1 / 2 

- * 'T-M)\ 2 J 

£=l-2(x-l)/(x+l). 

7. Grouplike Propert ies which is a particular case of Eq. (1.22) for M=M' = Q, 
A r , ^ -, , ^ A A. * • • where use has been made of Eqs. (1.1) and (7.3) and 
A fundamental property of the rotation matrices is w h e r e w e h a y e d e f i n e d ^ = y + a # 

their group property 0 n e c a n p r o y e E q > ^ ^ {n s e v e r a l w a y s > F o r s i m p l e s t 

M"=*J proof, consider the Fourier expansion of dMM'J(cosP cos/3' 
£>MM'J(R'R)= E *£>MM"J{&)*£>M"M>J(R), +sin/3 sin/3'cos<£) in a series of terms proportional to 

M"~~J I T ' \ eM"*> Then, except for convergence considerations, Eq. 
( / an integer), ^ ^ i g e q u i v a l e n t t o t h e s e t o f equalities 

where R and Rf are two rotations characterized by their ^ 
Euler angles («,/3,7) and M ' , 7 ' ) and 22'2? is the product ^ /" ' d J(coafi c o s / 3 ' + s i n / ? s i n ^ cos<j>)e-m»*d4> 

of ie and i?. I t can be extended to any value of / by J 

giving up the conditions on M" 1 3 ' u =dMM-'J(cosl3)du"M'J(cosff'). (1.23) 

Jkf"=+oo 

£>MM>J(R'R)= E ^ M M - ^ W S D M - M ^ W . (1.22) Equation (1.22) can be proved by applying the differ-
M"=-CO ential operator that appears in (1.2) to the left-hand side 

A particular case of (1.22) is the well-known addition i n ° ; d e r *> P r ^ e ^ a t * e r i g h t " h a n d sMe * proportional 
property of Legendre functions,^* t o dMM>J{cos$). The calculation is in fact rather tricky. 

Another proof consists in considering real values of /3 
P/cos/3 cos/3'+sin/3 sin/3' cos<£) and /3', such that | cos/91, | cos/371, and | cos/3 cos/3' 

oo r ( j — m + 1 ) +s in0 sin/37 cos0| stay less than 1 when cos<£ runs from 
= P i(cos0)P i(cos0')+2 E : (™l)m - 1 to + 1 . Then, for M, M', and M" fixed, Eq. (1.23) 

m = 1 T ( . 7 + ^ + 1 ) is true for any positive integral value of / . Furthermore, 
XPjm(cosl3)Pjm(cost3f) cosnKj), Eq. (1.16) shows that both members do not increase as 

44 Reference 37, pp. 76-77. rapidly as e^ when j tends to infinity. Both members 
45 Reference 37, p. 169. * can be then extended through to complex values of j in 

file:///i~xJ
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a way that satisfies the conditions of Carlson's theorem. 
Therefore, Eq. (1.23) is true for any value of / . The 
conditions on cos/3 and cos/3' can be removed by noticing 
that both members are analytic functions of cos/3 and 
cos/37. Finally, Eq. (1.23) is true as long as cos/3^ —1> 
cos/3'^ — 1, and cos/3'+sin/3 sin/3' cos$ does not pass 
through —1 when cos0 varies from —1 to + 1 . In fact, 
even that last condition could be removed by displacing 
the integration contour. 

The domain of convergence of Eq. (1.22) is easily de­
duced from Eq. (1.18). Equation (1.22) converges inside 
a corona (set closed by two circles of radii R and R'y 

RRf= 1) passing through the point cot/3" = —cot/3 cot/3'. 
Equation (1.22) can be extended to the rotation 

matrices of the second kind as follows for 1 < cos/3 < cos/3': 

8MM'J(R'R)= E &MU»J{R')&M»M'J{R). (L24) 
M"=-oo 

Equation (1.24) follows immediately from application 
of Eqs. (1.12) to (1.13). 

APPENDIX II: THE TWO-BODY SCATTERING 
AMPLITUDE 

1. Analyticity Properties 

We need to know the analytic properties34 of the 
ofT-the-energy shell two-body scattering amplitude 
T(p,p',£) solution of the Lippmann-Schwinger equation 

np,P' ,£)=F(P-P') 

r dzq „ 1 
+ F(p-q) r(q,P',f), (II.1) 

J (2TT)3 g2-£ 

where r(p,p',£) can be considered as a function of the 
invariants p2, p'2y = t= - (p~p02 and of £. While all the 
techniques which have been applied for investigating 
the on-the-energy-shell amplitude give some information 
on the ofT-the-energy-shell amplitude, this new problem 
is more complicated, since it involves a function of 
several complex variables and not only of two variables. 
Therefore our approach will rather have a trial-and-
error character than the form of an exact proof. 

We shall restrict ourselves to the case in which the 
potential V(r) is a superposition of Yukawa potentials 
and, for simplicity, we shall write explicitly only the 
case of an isolated Yukawa potential V(r) = ger^/r, so 
that its Fourier transform is V(p) = g(^2+M2)-1. It would 
be easy to extend our results to the more general case. 

Let us first consider the properties of T as a function 
of £. It is well known that the Lippmann-Schwinger 
kernel is of the Hilbert-Schmidt type.46 As it is also 
bounded and operator-analytic as a function of £, T is 
an analytic function of £ except for a cut going from 0 
to infinity and poles which are located at the energies of 

46 C. Lovelace, Phys. Rev. 135, B1225 (1964). 

the bound states. The position of these singularities is 
independent of p2, p'2, and U 

Let us now go to the analytic properties in L Let us 
write47 

r r P'~~P P + P 1 
r(P,P',£) = / exp|^-i (x+y)-i (x -y)J 

X V1/2(x)K(x,y; Q V1/2(y)d*xd*y, (II.2) 

where i£(x,y,£) is the resolvent of the kernel 
F1 / 2[ l /(#o-£)]F1 / 2 , which is L2. Keeping p+p ' fixed, 
and using the exponential decrease of the potentials 
when x or y tend to infinity, it is easy to show that T 
is analytic for 

| Im(p-p') |<M/2, | Im(p+p') |<M /2 . (II.3) 

Since r(p,p',£) is rotational-invariant, it is an analytic 
function of the invariants p2, p'2, and / in the image A 
of the domain (II.3). The form of A is rather compli­
cated, however; when p2 and p'2 are real and positive 
the projection of A upon the /-complex plane is the 
interior of the parabola48 

M
2Im^2(Re/+Ju

2)2. (II.4) 

Our only need for this domain is to make sure that the 
Legendre series expansion of T as a function of the 
scattering angle cosO=p*j>'/pp' converges, at least for 
some values of p and p' 

Z W , 0 = - E(2/+l)r i^ , , f )Pi(cos(?) . (II.5) 
p I 

The partial-wave amplitude Ti(p,p',£) satisfies the 
equation11 

g /p2+p/2+»\ 

2pf \ 2ppf J 

g r00 dq /p2+q2+»2\ 
+ - / — - < 2 * ( — )Ti(q,pr,Q. (IL6) 

Wo q2-£ \ 2pq J 
The inhomogeneous term has a singularity at p=^zp/ 

dzi/x. Letting p become complex in the integral, we see 
that the integral is convergent and defines an analytic 
function of p within the strip D\ defined by 

Dx: | Im^ |< M . (II.7) 

We can now deform the contour of integration of q in a 
new contour, Th also going from 0 up to an infinite real 
value. Ti must stay within Z>i and avoid the singularity 
of the Born term at zLp'dzin and the singularity of the 

47 S. Weinberg, M. Scadron, and J. Wright, Phys. Rev. 135, 
B202 (1964). Also F. Coester, ibid. 133, B1516 (1964), and K. 
Meetz, J. Math. Phys. 3, 690 (1961). 

48 This domain of analytici ty can be extended by a trick due to 
Bottino, Longoni, and Regge, Ref. 10. 
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integrand at g=dz£. Now letting p become complex in 
the integral along Ti, we see that Ti(p,p',£) is analytic 
within the strip 

D2: \1mp\<2p, (II.8) 

indented by cuts, parallel to the imaginary axis and 
ending at dap'daip, and db£. This procedure can be 
iterated to show that Ti(p,p',£) is an analytic function 
of p, except for these cuts. The analytic properties of 
Ti(p,p',£) as a function of pf could be obtained in the 
same way by using the Lippmann-Schwinger equation 
for the initial state. The results are of course the same 
as for p. 

Let us now notice that the cut at p= d=\/£ does not 
in fact exist for the full amplitude. Indeed, it would 
mean that there is a singularity in £ which depends upon 
the value of p, which we have shown not to be true. 

The singularities at p=—p'dzip, do not exist in the 
full amplitude. Indeed, if we put p2=p'2=£, we know 
that this singularity is absent. It represents the left-
hand cut of the partial-wave amplitude associated with 
the singularity at t=+p,2 of the full amplitude. The 
same argument holds for the singularities at p=p'dzn. 

This analysis, whose results are given in Sec. VI, is 
admittedly sketchy and nonrigorous. 

2. Asymptotic Properties 

We need to know the asymptotic behavior of r(p,p',£) 
when both p' and cos# tend to infinity like some con­
stant multiple of a complex parameter o?1/2 

p'~Aa1/2, cosd^Bu1'2. (H.9) 

It is difficult to find the exact behavior by starting from 
Eq. (II. 1), because F(p—q) can become infinite upon 
some part of the q domain of integration. We shall 
therefore use the results of the analysis of Eq. (II.6) by 
Brown, Fivel, Lee, and Sawyer.11 They have shown that 
this equation is of the Fredholm type when the solution 
is sought within the Hilbert space with metric 
dq(q2—£)~l, when lm£=^0. Therefore, the solution 
Ti(p,p',i;) is a meromorphic function of £ for fixed I or 
of I for fixed £. Its poles are the zeros of the Fredholm 
determinant 

Z>(«) = 0. (11.10) 

One can use a Watson-Sommerfeld transformation in 
order to show that, for infinite values of cos#, the asymp­
totic behavior of the full amplitude is given by 

12a(f) + l 
T(p,v',0 : —Pato(-cosOMp,p',Q, (11.11) 

p sin7ra:(£) 

where P(p,p',g) is the residue of Ti(p,p',g) at /=«(£) 
and a(£) is the leading Regge pole. 

In order to find the behavior of p(p,p',£) when p' 
tends to infinity, we shall notice that it is equal, up to 
constant factors depending only upon £, to the scalar 
product of the inhomogeneous term of Eq. (II.6) and 

the solution \pi{q) of the homogeneous equation 

r dq 1 /q*+p'*+ix2\ 

Jo q2~£p' \ 2qp' 1 /o q2-$P 

where \f/{q) satisfies 

HP) -7 
7T J n 

dq /p2+q2+fx\ 
Qi( )Uq);i=*(Q. (H.13) 

\ 2j>q J o q2~t 

When / is an integer, we know the asymptotic behavior 
of \f/i(p). In fact we know that \f/(p) must be equal to the 
wave function divided by p2 [a factor p for the one in 
Eq. (II.5) and another one for the metric dq in place of 
q2dq in Eq. (II.6)]. As the configuration-space wave 
function ^(x) behaves like rl when r —> 0, ypi{p) behaves 
like p~l~x when p —> <x>. 

One can show, using Eq. (11.13), that this behavior is 
still consistent with complex values of /. In fact, let us 
assume that \f/(q)^q~l~1 within the integrand of Eq. 
(11.13). Let us now split the integration domain into 
two parts going from 0 to pp and from pp to oo ? where p 
is a fixed number p^Cl, say P=T$. Then 

r* /q2+P2+»2\ 

Jo \ 2qp J 

do 

PP /2q\l+1 dq 
) Cl+0(l)]^(g)-

-i 

<-
hi+i {2q)^[\+o(i)-]Uq> 

dq 

constant 
< (11.14) 

and 

J ov ^ 

q2+p2+H*\ dq 

2qp ) f-\ 

< QJ Wl+0(l)}i 
Jpp \ 2qp I qi 

<(pp)~l 

J DO > 

q2+p2+»2\ dq 

2qp )q2^ 

constant Xln̂ > 
< 

#,2+1+6 
(11.15) 

Although this is not a direct proof, it shows that, by 
continuity, the limit $i(q)(Tl~~1 extrapolated from inte­
gral values of / is consistently defined and that 

\Hq)\^q~x~2, for 2-^co, X = Re/. (H.16) 

Now exactly the same technique can be used in 
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Eq. (11.12) to show that 

\KP,P'&\~P'-X~2, for p'-*oo. (11.17) 

So, using the asymptotic form of Pa and Eq. (11.18), 
we see that the leading term in Eq. (11.11) becomes 
proportional to 1/OJ when p' and cos# are given by 
Eq. (II.9). Notice the cancellation of the dependence 
on the Regge Pole.49 

In fact, this analysis is inconclusive insofar as we 
should take into accout the contributions of all the 
Regge poles which all behave as or1. We should there­
fore consider it as a proof that the leading Regge pole 
does not determine the asymptotic behavior of r(p,p', £). 

Let us now write the complete expression of Eq. 
(HID 

ZXP,P',$)= £ —PaJa)(cosdMp,P',0 

+• 

«/«) siiura/1) 

1 /•+*» 21+1 1 r+m2l-\-l 

irip J-ico sinirl 
-Pii-casBWifap'&dl. (11.18) 

The same kind of analysis shows that, when Re/=0, 
I Ti(p,p',g) | behaves like 1/p' when pf tends to infinity, 
therefore 2Xp>p'>£) behaves like co~1/2, the precise asymp­
totic behavior, (i.e., the coefficient of co~1/2) depending 
upon A and B in Eq. (II.9). 

An alternative approach would have been to use the 
Lippmann-Schwinger equation 

r(p,p' ,f)=P(p-p') 

d\ 

/

d°q 

(M 
T(p,q,£) % - P O , (H.19) 

together with Fadeev's bound, 

I y(p,q,f) I <constant(l+^)-1~ (11.20) 

valid for physical values of p and q. This shows that for 
p physical and within the domain of p' and cos0 where 

49 The cancellation between the Regge asymptotic behavior and 
the behavior of the residue is the mechanism responsible for the 
cancellation of the Amati-Fubini and Stanghellini cuts (see Ref. 
5). These results could be extended to show this cancellation in 
the sum of all three-body ladder diagrams; in fact, it is easy to 
write generalized Fadeev equations which bear the same relation 
to the Bethe-Salpeter equation as the Fadeev equations bear to the 
Lippmann-Schwinger equations. 

(11.19) converges, | r(p,p', £) | is bounded by a constant. 
But this limitation to the domain where (11.19) is well 
defined is not enough for our purposes. 

APPENDIX III: TCHEBYSHEFF FUNCTIONS 

The polynomials41 

r„(#) = sin|»£/sin!j(3, x=cos0 (III.l) 

are orthogonal on the segment (—1,+1) with the 
weight function (1 —x2)172. They are a special case of 
Jacobi polynomials42 

Tn(x) = ̂ »[T(n-l)/T{n-±)~]Pn-x{-ll2>-m){x). (III.2) 

They satisfy the differential equation 

(x2-l)(d2Tn/dx*)+x(dTn/dx)-(n-l)2Tn=0. (III.3) 

Another solution of Eq. (III.3), regular for x— oo, can 
be defined as 

£>n\%) — " 
2n~ln(n-\) 

-(x-l)-w + 1 / 2(^+l)1 / 2 

XF[n-h n; 2n-l; J (III.4) 
\ 1—x/ 

for n=2, 3, • • •, and 

SI(X) = T1' 2 

*)L 
ln(l+x) (x 2 - ! ) 1 ' 

/ . 

,+1 ( l _ / 2 ) - l / 2 -, 
X / ln ( l+ / )* . (IIL5) 

J-l X—t J 

The Neuman theorem for the Jacobi functions gives42 

+i 
(l-x2)-1/2Tn(x)f(x)dx 

tir J c 
(y*-l)-u*Sn(y)f(y)dy, (III.6) 

where f(x) is an analytic function in a neighborhood of 
the segment (—1, +1) and C is a contour enclosing that 
segment. Formula (III.6) is valid for n= 1, 2, 3, • • •. 


