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Logarithmic singular potentials are considered to test the applicability of the peratization technique. It is 
shown that if one sums up the leading singular terms in each order of the perturbation series no finite results 
can be obtained. 

RECENTLY, there have been some attempts to 
obtain meaningful finite results in nonrenormaliz-

able field theories. One of the techniques adopted by 
Feinberg and Pais1 for this purpose is called peratization, 
which may be summarized as follows: From the series 
of the perturbation expansion in terms of the coupling 
constant, the most singular parts in terms of the cutoff 
parameter are isolated in each order of the perturbation. 
One then tries to sum up the series of the most singular 
terms in order to see whether the sum is finite when the 
cutoff parameter tends to infinity. Terms which are less 
singular than the first set are then considered and a 
similar treatment is applied to them. This process of 
isolating singular terms by their degree of singularity 
and summation continues till one is left with only finite 
parts of the perturbation series. 

In order to supply a ground for the peratization 
procedure, some authors2,3 have considered repulsive 
potentials singular at the origin in nonrelativistic 
quantum theory. These potentials satisfy the following 
two conditions: 

(i) I r\V(r)\dr 
Jo 

is divergent for any fixed value of b>0. 
/•CO 

(ii) / r21 V(r) | dr exists for any c> 0. 
J c 

In particular the class of potentials considered by 
Khuri and Pais2 and Tiktopoulos and Treiman3 are of 
the type 

V(r) = +g/r», (1) 

where g>0 and w>3. Since the general solution of the 
radial Schrodinger equation given in the form 

can be obtained [for ^ = 0 for the class of potentials (1)] 
in a closed form, this may be compared to the one 
obtained by the peratization procedure. It has in fact 
been shown2'3 that the peratization procedure works and 
gives the correct answer for the class of potentials (1). 

In order to see whether the peratization procedure 
can be extended to other classes of potentials, we 
consider below the applicability of the scheme for a 
physically more realistic potential (which may have 
some field-theoretic origin) given by 

V(r) = +g{_{\mY/r^. (3) 

This potential satisfies the required conditions (i) and 
(ii). We show that the scattering amplitude for this 
potential exists at zero energy. We then obtain the 
Born series for this potential by introducing a cutoff 
parameter a, where in the end a —» 0. In each order of 
the coupling constant, we obtain a leading power of 
logarithm in the cutoff parameter a. It is possible then 
to sum the series of the leading powers of logarithm 
of the cutoff parameter. The resulting sum, we show, 
does not tend to a finite limit when the cutoff parameter 
a —»0. Thus we have an example of a physically 
realistic potential for which we know that the amplitude 
exists, and for which we show that the peratization 
procedure does not seem to apply, in the sense that 
the sum of the leading singularities does not go to a 
finite limit when the cutoff parameter a—»0. The 
peratization procedure therefore must be viewed and 
applied with extreme caution. Below we give the details 
of the calculation. 

The integral equation for the regular solution corre
sponding to 1=0 and ^ = 0 for the potential (3) is 

\[/(r) — r—gr 
r ( I n / ) 2 

-yp{rf)dr'--g\ r' ^{rr)drf (4) 
o r '4 

{(d2/dr2)+k2-[l(l+l)/r2']- V(r)W(k,l,r) = 0 (2) while the s-wave amplitude is given by 
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> (lnr)2 

r \p(r)dr. (5) 

From the differential Eq. (2) with potential (3), it is 
easy to see that the solution for k = 0, 1=0 is asymp
totically given by 

Mr)- (6) 
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while near the origin, using the WKB method,4 we 
obtain 

r / r In/ \ 
^,(f) ^ eXp[ _ nrl/2 / fa' \ ^ 

r-0 (lnf)l/2
 FV Jro f'2 J 

(7) 

Therefore the potential problem which we are consider
ing admits a regular solution having the right boundary 
conditions, namely, }p(r)—>r as r—>oo and \p(r) —*0 
as r—»0, so that according to (5), we have a finite 
s-wave scattering amplitude. 

Let us now try to obtain the solution \f/(r) and hence 
(tan5)/& by using the peratization technique. For this 
purpose we replace the actual potential (3) by a cutoff 
potential 

Va(r) = d(r-a)V(r), (8) 

so that the Born series in g in (4) exists. We get (for 
r>a) 

ipo(r) = r, 

fr(lnr)2 3 lnr 7 1 
fi(r)=gr\\ + + — 

IL 2r2 2 r2 4rU 
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2r2 

lr(lm 

rL a 

(lnr)4 2 (lnr)3 

lr(lna)2 2\na 2" 
• + _ 

a a. 

(9) 

24r4 9 r4 

(lna)2 2lna 2\/l (lnr)2 

-r?*-)] 
i r i {inay -ii 

etc. The corresponding amplitudes are given by 

r(lna)2 21na 2 i 
(tan«)/*|0=-g " + + - , 

L a a aJ 
"I (lna)4 7 (lna)3 17 (lna)2 

(tan5)/* | 
f l (lna 

L3 a3 J8 18 a3 

17 lna 17 1 

+ +— 
27 a3 81 

J' 
(10) 

(tand)/£|2 = 
T2 I M ) « -i 

L15 a5 J 
etc. 

If we consider the sum of the leading singularities in 

4L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955). 

(10) for a-

(tan5)/y^== 

= 

-> 0, we obtain 

—• g112 Ina 
lna (lna)3 

L a a3 

2 (Ina)5 

1 
15 a6 

-gWQna ) tanh[g 1 ' 2 (Wa)] . (11) 

F o r a - ^ 0 , 
(tan5)/A g1/2(lna), (12) 

which is not defined. Hence in the peratization ap
proach in the sense of summing only the leading 
singularities in each order of the perturbation series, 
the scattering amplitude is not even denned, whereas 
we know from the consideration of the Schrodinger 
equation that the scattering amplitude does in fact 
exist for potential (3). Essentially the same conclusion 
is also deduced if we sum the leading singularities as 
a —> 0 in the perturbation series of the wave function 
as given in Eq. (9) near r=0. We then obtain 

/ lnr\ 
coshf g1/2— i lAM" 

lna 
< 

lnr 

\ f lnr\ / ma\~| 
- sinhf g1/2— J tanhf g1'2— J , 

which does not exist when a —> 0. We may then conclude 
that the wave function does not exist near r=0 in the 
peratization approach used in the sense discussed above, 
whereas we know from the solution of the Schrodinger 
equation that it does exist near r=0 for the potential 
(3) and is given in (7). 

Our approach has some similarity to the one used 
by Landau et al.,5 who concluded, by summing the 
leading logarithmic singularities in each order of 
perturbation series for the self-energy part in the 
renormalized photon propagator in quantum electro
dynamics, that one is led to a nonsensical answer. In 
our approach we have an example where the exact 
amplitude at zero energy is denned and where the 
approximation of summing the leading singularities in 
the cutoff parameter in each order of the perturbation 
series gives a nonsensical answer when the cutoff 
parameter a —•> 0. While we have not been able to sum 
up the next leading singularities as a —> 0, it is unlikely 
that they can cancel the infinity which we obtain from 
the summing of leading singularities. In any case we 
have demonstrated the nonapplicability of summing 
principal logarithms as a —> 0 in each order of pertur
bation series. 
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