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it may be possible to establish the existence and then 
the spin of a weak boson. We predict that double lepton 
events will proceed via an S—P, rather than a F - i 
interaction; but this may not be a spectacular effect 
because neither the nuclear recoil nor the final neutrino 
momentum is measured.19 Angular distributions of the 

1 91 am indebted to Professor R. E. Norton for the following 
remark: If #2 = 0, then the events in which a \ie lepton pair is 
produced via the decay of a real scalar boson into v-\-e will be 
suppressed relative to inx events (by the decay of the scalar boson 

I. INTRODUCTION 

TH E importance of production channels in explain­
ing the higher resonances of pion-nucleon scatter­

ing has been pointed out by several authors,1-3 who 
concentrated primarily on the inelastic channel 7r-\-ir-\-N 
with the two pions resonating to form a p meson. We 
wish to calculate the scattering amplitude for the 
process T+N —> TT+N using partial-wave dispersion 
techniques to include the effects of production channels 
in which either a (3,3) pion-nucleon isobar, the N*, or a p 
meson is produced. The formalism here also includes 
the overlap of these resonances. Although the threshold 
for N* production is slightly further from the observed 
resonances than the threshold for p production, the 
higher spin of the N* allows its effects to reach further 
than might otherwise be expected. 

The detailed calculations are not designed as a fit 
to the data but proceed from known masses and three 

* This work is supported in part through funds provided by the 
U. S. Atomic Energy Commission under Contract AT(30-l)-2098. 

f A portion of this work was submitted to the Massachusetts 
Institute of Technology in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy. 

t Present address: Department of Physics, Purdue University, 
Lafayette, Indiana. 

J L . F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962). 
2 J. Ball, W. Frazer, and M. Nauenberg, Phys. Rev. 128, 478 

(1963). 
3V. Teplitz, University of Maryland Technical Report 270, 

1962 (unpublished). 

"elastic" events may provide the distinguishing 
analyzer; a report on this will appear shortly. If the 
experiments should favor a scalar intermediary boson, 
then it will be worthwhile to study the mathematical 
structure of the theory in a more thorough fashion. 

into p-\-fji) to the same extent, and for the same reason, as w —> v-\-e 
is suppressed relative to IT —» *»+/*. Until the existence of an inter­
mediary meson is definitely established and a selection of events 
proceeding through a real intermediary can be made, this test 
cannot be applied. 

known coupling constants, so that no adjustable pa­
rameters are available. 

Unitarity of the S matrix Sjk — ̂ jk+iTjk, gives T3-k (s+) 
— Tjk(s-) = iYlnTjn(s+)Tnk(sJ) for s real and greater 
than threshold. In the sum, we keep those two- and 
three-body states which can contribute to pion-nucleon 
scattering, namely w+N and ir+w+N states. The 
three-body state increases the complexity of the prob­
lem considerably. However, using the observed reso­
nances of the two-body pion-nucleon and pion-pion 
systems, several authors1-4 have suggested reducing the 
complexity of the production channel by considering 
only those three-body states where two of the particles 
emerge in a resonant state and considering this two-
body resonant state as a distinct, but unstable, particle. 
This would lead to processes TT+N —» TT+N* or T*+N. 

Federbush et al.A have shown a self-consistent treat­
ment of unstable particles by coupling them to pions 
and nucleons as though they were stable elementary 
particles, and only using the properties of their decay 
to calculate the appropriate coupling constants from 
experiment. Cook and Lee5 have developed an extended 
N/D formalism which imposes unitarity on the coupled 
TT+N and ir+ir+N channels, while at the same time it 
easily permits the inclusion of a TTT resonance in the 

4 P. G. Federbush, M. Grisaru, and M. Tausner, Ann. Phys. 
(N. Y.) 18, 23 (1962). 

BL. F. Cook and B. W. Lee, Phys. Rev. 127, 297 (1962). 
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A formalism is developed for calculating the pion-nucleon scattering amplitude which conveniently in­
cludes the inelastic production of a (3,3) isobar, and is extended to include p-meson production. The exact 
unitarity relations are found to contain nondiagonal terms which, when simplified, are interpreted as the 
overlap between resonances. Calculations based on the N/D method are performed in which the unphysical 
discontinuities are evaluated from single-nucleon or pion-exchange diagrams. The numerical solution of the 
resulting integral equations is compared to simpler approximations and to experiment. The importance of 
both the isobar and the p is pointed out. For the Dz\i channel, a resonance was found for T — \ but not for 
T = f. No resonance was found for either of the F5/2 or Z>6/2 channels. 
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three-body state. Calculations, simulating the inelastic 
effects by a delta function of variable strength in the 
channels appropriate to the p meson, were able to fit 
several of the observed pion-nucleon resonance positions. 

We wish, first, to extend the N/D formalism to per­
mit formation of a pion-nucleon resonance (iV*) and a 
pion-pion resonance (p) in the three-particle state; and 
second, to carry through a more or less realistic calcu­
lation for the amplitudes, starting from diagrams where 
a single nucleon or pion is exchanged. To do this, a 
combination of the above formalisms is used. First the 
problem is formulated in such a way as to introduce 
readily a TTN resonance into the 7r+7r+iV state. Spe­
cifically, a partial-wave expansion is used in which the 
three-particle angular momentum state T(TTN) appears 
as a pion coupled to a TN system of definite spin but 
variable mass co. For co = the mass of the N*, this is 
interpreted as a ir+N* state. The exact meaning of this 
simplification is given.2,6 The connection between this 
expansion and that of Lee and Cook, who first couple 
the two pions together to obtain a (7nr)N state, permits 
the inclusion of the p meson in the calculations. For 
values of the variables corresponding to the processes 
ir+N —•> ir+N* or p+N, we use the semiphenomeno-
logical approach of Federbush4 to calculate the ab­
sorptive part of the amplitudes, necessary for the N/D 
method, from Feynman diagrams. The inclusion of both 
the N* and the p leads to a multichannel scattering 
problem which, for given parity and / > J, couples six 
channels: one wN state, two TTN* states, and three pN 
states. The four masses and three coupling constants 
are taken from experiment.7 We wish to point out the 
effect of the N* alone and the p alone, and the effect of 
the coupled N*p. One interesting question is whether 
the pion-nucleon system can be considered as self-
sustaining without specific ww forces, i.e., using only 
the TV*. 

The symmetry of the pions forces the appearance of 
a nondiagonal term in the exact partial-wave dispersion 
relations which persists when the three-particle ampli­
tudes are simplified. I t is then interpreted as the overlap 
of two N* resonances. A similar nondiagonal term corre­
sponding to an N*p overlap appears. The form of these 
terms is given in terms of integrals over the amplitudes 
defining the resonances which are a measure of their 
width. The extension of the N/D method to handle 
these nondiagonal terms is given. The actual numerical 
calculations start with the coupled dispersion relations 
for the functions Â  and D, where the inputs to these 
equations, the unphysical discontinuities, are calculated 
from the Born term diagrams, Fig. 1. The functions D 
are then eliminated to leave a system of coupled Fred-
holm integral equations for N. One common N/D ap­
proach is to take N directly to be the Born-term 
amplitude. This is similar to the determinantal method 

6 R. C. Hwa, Phys. Rev. 130, 2580 (1963). 
7 See Sec. IV. 

developed by Baker, and we call this the determinantal 
approximation. I t actually means the usual Born terms 
forced to satisfy unitarity. This is, in fact, just the first-
order iteration solution of the integral equations for N. 
A numerical technique is developed to solve the actual 
integral equations, and the results are compared to this 
determinantal approximation and to experiment. 

II. AMPLITUDES AND SYMMETRIZED UNITARITY 

To specify a two-particle state, we use the usual 
variables: s = (total energy)2 in the center-of-mass sys­
tem, and 0 = (6,(1)), the polar angles of the nucleon's 
momentum in the center of mass. 

I t is not possible to choose variables for the three-
particle state which are convenient for handling both 
the N* and the p. We choose those appropriate to the 
A *̂, since this will allow most of the new aspects of the 
coupled problem to be dealt with directly. Therefore, to 
specify a three-particle state \pk1k2), the variables are 
chosen to be: s= [(total energy)2 in the three-body 
center-of-mass system]= (p+ki+k2)

2; co2= [(total en­
ergy)2 of the TYIN in its center-of-mass system] = (p+ki)2; 
2= (d,4>) = the polar angles of the total momentum of 
the ir±N system, i.e., p+kh measured in the three-body 
center-of-mass system, and S = («,£) = the polar angles 
of the nucleon's momentum measured in the wiN center-
of-mass system. In other words, we describe the wiN 
system in its center-of-mass system and then treat it as 
a single unit in describing the three-particle state. The 
appropriate angles are shown in Fig. 1. 

To define invariant scattering amplitudes, the appro­
priate S-matrix element is contracted on one of the 
pions and multiplied by Ti(Et)

112. We define 

M22(s+WM') 

= (^o/m)1 /2^X|i(0)| /X ,^) i n(^o7w)1 /2(2^0)1 / 2 , 

M 23(^+ ,0 ,0 'E ' ,AA') 

= (po/rn)1!2(2hy'\ni(p\Mj(0) \p'^M)in 

X(po/my'2(2k10
fr2, 

Jf32(%,co+',Q'E'AX'X) (1) 

= (^o ,/m)1/2(2^1001/2out(i>V^ili(0) \p\k)in 

x(po/M)ll2(2k0y
12, 

= (2kl,2h,yi2(p,/myi2
ont{p\kMm I W i ' ) i n 

X(2^10
,)1/2(K/w)1/2, 

where j(0) is the pion current operator, s= (total en­
ergy)2, co2= (p+h)2, co'2= (p'+fa')2, and X, X' are the 
nucleon helicity. M33 does not include those diagrams 
where one pion does not scatter. 

Some of the variables are redundant. We later elimi­
nate these by choosing the center-of-mass system so 
that the initial angles are zero, but it proves convenient 
to keep all variables here explicitly. 

We wish to decompose the amplitudes into partial 
waves and obtain their unitarity relations. The details 

file:///pk1k2
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4sP2(s,x,y) = s2— 2s(x-\-y)+ (x—y)2, 

(vV-ju)2 

FIG. 1. Angles for three-
particle state. 

are in the Appendix. Two-particle states are familiar. 
For three-particles states, the above choice of variables 
leads to a state of total angular momentum / in which 
the two-body wiN system has angular momentum j in 
its own center of mass. This two-body system acts like 
a particle of spin j and mass co when coupled to the 
remaining pion to form the total angular momentum / . 

One complication is the transformation of the helicity 
of the nucleon. More serious is the fact that the state 
must be symmetric between the two pions. The choice 
of variables was not symmetric, and this has repercus­
sions by complicating the unitarity relations. If the 
two pions are coupled together first, the complications 
are only postponed until the effects of a wN resonance 
on the three-particle state are considered. 

Contraction rules are used to express Blankenbecler's8 

generalized unitarity relations. To write a dispersion 
relation in s for the amplitudes, one needs, for example, 
Mz2(s+,oo+)—Mz2(s-,u+). Using the unitarity of S as 
S+S= 1 gives an expression for Mz2(s+,o)+) —ikf 32(J_,CO_), 
which is not the discontinuity in s if co is also on a cut. 
Also, the three-particle scattering amplitude which 
enters is not M33, but M33 plus the disconnected dia­
grams mentioned above. 

After decomposition, these unitarity relations couple 
only amplitudes of the same total angular momentum 
and parity, and these indices will be suppressed. 

If the pions are treated, for the moment, as dis­
tinguishable, the unitarity relations read, for a given / 
and parity, 

discsMij(s) = J2k Mik(s+£+)pk(s£)Mkj(s-£J) , (2) 

where £ refers to any intermediate auxiliary variables, 
and 

p2(s)= (m/16Tt2)(P(s9m
2,ij.2)/y/s), 

A J (m+/x)2 
doo2, 

and discsM(s) = [_M(s+) — M(sJ)~]/2i with any auxiliary 
variables held fixed. 

The symmetrized unitarity relations are exactly the 
same except that for the three-particle intermediate 
states 

/•(v«-/02 

X) / da>2pz(s,c*)) 
JX J (m+fx)2 

is replaced by the nondiagonal term 

E / / A o W W W j V ' X ' ) ] . (3) 

The details of how this term arises and the exact ex­
pression for P33 are given in the Appendix. The extra 
term is essentially the overlap of the two-body states 
TIN and T^N, which must be present in the three-body 
state, since it is symmetric between the pions. 

III. SIMPLIFICATION OF THREE-PARTICLE 
AMPLITUDES 

The three-particle angular-momentum state was 
formed by coupling one pion to the system of mass co 
and spin j , formed from the nucleon and second pion. 
A two-body resonance in this nucleon-pion system is 
expected to manifest itself in the three-body amplitudes 
as a peak in the mass variable co at m*. For co = m#, the 
amplitudes are highly suggestive of describing the scat­
tering to a state of a pion and an unstable particle of 
mass m#, spin j ; and this suggestion is exploited in 
the calculations. In the meantime, however, we only 
assume that the co dependence of the three-particle 
amplitude is dominated by the strongest of the wN 
resonances, namely, the (3,3) resonance at 1238 MeV; 
and further, that this occurs only in the 7riiV system. 

Specifically, for a given / and parity, the amplitude 
M23(s,coj,A) as a function of co is expected to have a 
strong maximum near co=m*= 1238 MeV for j=%, and 
to be negligible otherwise. If this dependence is di­
vided out, 

M23 (s,<o,j,\) = ShfiM22 (co)Af 23 0,co,\), (4) 

then M2z(s,o),\) can be considered a smooth function 
of co. Similarly, 

M83 ($,«,«', j \ , / X ) 
==^3/25J,•3/2M22(co)lf22(c0,)-M33(^3CO,C0,,XX,) . (5) 

8R. Blankenbecler, Phys. Rev. 122, 983 (1961). The integrals over co can now be simplified,2 For instance, 
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the quadratic term 

Q = E / ^ 2 ^23 (^+,«+,y\)p3 fow) Af 32 (S-.,0)-,j\) 
A •/ (m+/x)2 

~ E -^23 ($+,W*+,X) / ^W2P3 0,Co) | I f 22 (w) | 2 

xJ(?32(^,w*-,x)e(j-K+/x)2), (6) 
where any factors except M22(w) may be evaluated at 

The situation is complicated by two new features, 
the symmetry of the pions and a TTT resonance. The 
influence of the p meson would show up as a peak in the 
invariant mass a of the TT system, a2= (kr\-k2)

2. How­
ever, the dependence on <r, as well as the angular vari­
ables in the TTT system, is buried in the variables s, co, S 
which were chosen to describe the three-particle state. 
Clearly, however, the partial-wave expansion could have 
been carried out by coupling the two pions together 
first, using the irw mass a as a variable (simply inter­
change 7T2 and N). The alternate partial-wave ampli­
tudes T2z(s,a,lv) describe scattering to a three-particle 
state in which the irir system of mass a is in a state of 
angular momentum I in its center-of-mass system. The 
total angular momentum and parity are as before, and 
these indices are suppressed. The two alternatives are 
connected by 

"̂23 fowJX) = E / d<r2c (sa)<r,j\lv) T2Z (s,<r,lv), (7) 
lv J 

with the recoupling coefficients given by Wick.9 

We write the full amplitude10 as MM^M^+MM1*, 
where the separation is defined so that the first term 
contains the TV* directly as a peak in co at co=m*, and 
the second term contains the p through a peak in 
2̂3(̂ ,0") at a= (mass of the p) = mp. The sum in the 

quadratic terms of the unitarity relations is then ex­
tended. Writing T2s(s)<r,lv) = 8nTvv(<r) r23(s,cr,v), we have 

x 
ljdi,2p^(S)Oo)\M22(co)\2] 

Xil?32(s-,w*,A)+Z T2S(s+,mP)v) 
v 

X da2ps(s,cr)\T^(a)\2 }TZ2(S^MPJV) (8) 

plus overlap terms. 
The first term is the one considered earlier; the second 

follows from 

£ / 6/c02M"23P^+,CO+,iX)p3(^,C0)lf32P(5-,CO-,iX) , 
j \ J 

9 G. Wick, Ann. Phys. (N. Y.) 18, 65 (1962); referred to as (i). 
10 It has been suggested that this sum for the full production 

amplitude should be diminished in the overlap region. Y. C. 
Leung, University of Colorado (unpublished). 

by the orthogonality of the recoupling coefficients, and 
it is the analog of the first term. The overlap terms are 
nondiagonal, containing cross terms like T2zp^zMz2, but 
they contribute only for a finite range of s. The expres­
sion for these is given in the Appendix. 

For convenience, we define fij=biMijbj, where i and 
j range over the states wN, irN*, and pN. 

bN
2=m/167r2, 

m C do: 
J*2= / 

32W (2ir) 
I M22(co) 12P(nt*2,ni2,ix2), 

|r..(cr)|2PKw2). 
r da 

2J (2TT)3' 

Then the unitarity relations read: 

disc / t f ($)==£ fik(s+,+)pkk'(s)fk'j(S-, — ) . 

(9) 

m 
h 2 = — 
Up 

32TT*J 

(10) 

where the extra db refer to any intermediate mass 
variables, and the diagonal parts of pkw are given by 

pN=P(s,m2,p2)/\/sy 

p*=P(s,m*2,v?)/y/s, 

pp=P(s,m2,mp
2)/\/s. 

These amplitudes contain kinematical singularities11 

which can be removed. For f^N we let the "orbital 
angular momentum" I equal 7+J(—l)7r(—1)J_1/2, and 
we define 

/ W O ) = gNl(s)f*N(s)gNl(s), (n) 

gNl(s)=(ix/E+mr2((E+m)/Py. 

p—relative momentum of irN state= P(sym
2,p2), E 

= nucleon,s energy = (p2+m2)112. 
FNN1 has the dynamical branch cuts described by 

Frazer and Fulco,12 and is free of kinematical singulari­
ties, except possibly for the branch points of s112. We 
prefer to keep the variable as s instead of W=s1/2, 
which is the "basic" variable for states involving 
fermions, in order to minimize the problems of sub­
tractions. The square-root branch points present no 
additional problems in the formalism or in the 
calculations. 

In analogy with FNN1, we define 
P..llf

==a.lf..ll'p.l
f 

r W 5 * J *J S3 9 (12) 

where i and j refer to the channel spin states of wN, 
TTN*, and pN. The connection between channel spin and 
helicity amplitudes is given by Jacob and Wick13 as 

/ 2 H - 1 V « 
{JMis I JM\i\z) = ( 7 T 7 T J 

\2J+1 
11 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). 
12 W. Frazer and J. Fulco, Phys. Rev. 117, 1603 (I960); 119, 

1429 (1960). 
13 M. Jacob and G. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
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and the factors g are 

g*l= b/(E*+m*)yi*aE*+fn*)/P*y, 

gp '= (n/(E+m))^((E+m)/Ppy, 

P*=relative momentum of irN* state=P(s,w#2,/*2) , 

P p=relat ive momentum of pTV state=P(s,m2,Wp2), 

E*=energy of iV* in the xN* state = (#*2+m*2)1/2, 

£ = energy of the nucleon in the pN state = (p2-\-m2)112, 

m*=mass of the N*, 

w p =mass of the p. 

I t is hoped that this removes the kinematical singu­
larities for F, except possibly for s1/2. This is in fact 
true for the approximations used. 

At this point, we note that for the three-particle state 

(9\JM,j\ir)={-\y\JM,j\ir) (13) 

and the parity operator, (P does not relate M^C—X) to 
M2z(-{-\) as might be expected. Hence, parity does not 
limit the value of I for the three-particle amplitudes. 
This allows the TTN resonant system to take either 
parity. However, in the calculations, the TV* is assigned 
a definite parity, and this limits the values of I. 

The unitarity relations for F have p replaced by g~lpg~l. 

IV. INTERPRETATION OF THREE-PARTICLE 
AMPLITUDES AND CALCULATION 

Federbush4 has given the unitarity relations and 
Born-term amplitudes for the scattering of pion and 
nucleon into a pion and isobar or nucleon and p. We 
quote the relevant results: Let 

**J{s) = {s/PiP3)^{SJ- l)jk/2i, (14) 

where j , h refer to the states wN or TTN*, or pN. Then 

Imajk
J(s) = y£ ajk>

J(s+)pk>(s)ak>k
J(s-.), 

(15) 

pk(s) = Pk(s)/\/s. 

We seek the connection between MJ(s,?n*), or equiva-
lently fJ(s,ni*), and the aJ(s). 

Since aJ^SJ— l,aJ contains any disconnected dia­
grams omitted from the fJ; aVN-, VN* (s+) and f2z

J(s+Joo+^) 
both describe scattering to the state iry (TTTV)*, i.e., w and 
resonating system of TN, SO 

However, 
a*N;icN*J(S-) a / 2 8

J ($_,*»*_) . 

(16) 

Therefore, the unitarity relations correspond to those 
for the simultaneous discontinuity in s and co variables 
mentioned earlier. Comparison with the unitarity rela­
tions for fJ shows: 

(17) 

f22J(s)=axN;rN
J(s), 

f2/(s+,m^+)=airN;TN*J(s+), 

fa2J(s+}m*+)=aVN*;TN
J(s+), 

/3 3
J (s+,tn*+,ni*+) = G ĴV*; rN*J (S+) ~ disconnected parts. 

The discontinuity desired is 

f2/ (s+,m*+) - /2 8
 J (s-,tn*+) 

- U**J(s-,™++) -f2tJ(s-,tn*-)l. (18) 

The term in brackets, the discontinuity in co, can be 
obtained from the contraction rules as the discontinuity 
in s was. 

The discontinuity in co is given by cutting the dia­
gram across the state described by co: 

disCw M 23 (S,d>,j\) = M2Z (s,W+,j\)p2 (co)lf 22 («_) 

*'*' J (m+n)2 

Xp3 (a?,o>/)Af82 (aJ,<o-,j'\'). (19) 
Dividing out M22(co) from M28(s,co) removes the con­
tribution from two-particle states,2 and 

f2z(s,<a,\) a M28(s,co,§ ,X)/Af22(co). 

For the three-particle states, however, 

(20) 

&scaf2z(s,<a,\)<xM2s(s,G)+9fi) E / Jco/W23(co+,co+
/,/X/)P3(co,co/)^32(co-,co_/,i/X/) 

- MM (u+) £ / du^Ma (w+,5,«+',iX,i'X')p3 (ap')M„ (<o_>_,i'A') , 
i ' W (m-Hi)* 

(21) 

and the terms no longer cancel. For co=m#, however, 
the range of the co' integration is from m+p to m^—p 
and cannot include co = m*, i.e., cannot include the reso­
nant irN state, and neither term will contribute to 
discw/23(s,to). Hence, we ignore the ± limits on co and 
calculate the discontinuities appearing in the N/D 
formalism from the Born approximation. Similarly, dis­

continuities in cr from two-pion states are removed from 
T2z(s,(T,v). 

We use the interaction Lagrangians4 

£>TcNN = g$ybT$<pi, 

£ . ^ * = ( g * / w ) ( ^ / ) ^ ' + H . c . , (22) 

£ « P = (gp/2)(<P%<Pj)p»k*ij\ 
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where g is the pion-nucleon coupling constant and g*, gp 

are calculated from the widths of the N* and p, 
respectively. 

The detailed forms of the amplitudes for the single-
particle exchange diagrams in Fig. 2 are given in Ref. 4. 
The a's are linear combinations of Legendre functions 
of the second kind Qi{A) where the argument A is a 
rational function of the center-of-mass energies and 
momenta. We let FB be the corresponding amplitudes 
of Sec. I l l with the kinematical singularities removed. 

The asymptotic limits of the a's are important when 
considering the subtractions necessary in the N/D 
formalism. These limits are different for the amplitudes 
FB, but the limit of the product pa which enters will be 
essentially unchanged. For large s, 

aoo jr 

anN; TTNJ^/ constant, 

OLirN;irN*J~S112, 
(23) 

/ ^ y i 0 for channel spin \ 

I ^cons tan t for channel spin f 

The singularities of aTN;irNJ lie along the real axis 
below threshold. The singularities of ar^;irN*J and 
ctirN',PNJ are similar and are complex. Let us concentrate 
on aw,ITN*J. Qi(A) has branch points at AzLl. The cut 
from s112 is taken along the negative real axis, and the 
additional cuts from pu and p* are taken along the real 
intervals ((m—M)2?(W+JU)2) and ((w*—M)>(W*+M)2)> 

respectively, and the cuts for Qi(A) are taken along the 
line where A(s) = t, real and —l<t<l.a(s) then has 
the cuts of px, p*, s112, and Qi{A). However, the kine­
matical cuts on the positive real axis are removed by 
the factors (px) \ (p*)l in F2zB, and the cuts of F23S are 
shown in Fig. 3. 

The complex cut crosses the real axis at s= (9.0/*)2 

for the N* amplitude, and at s = (10.8/x)2 for the p 
terms. 

The threshold behavior of the production amplitudes 
depends on which sheet of the Qi is involved. For the 
highest threshold, Qi^O on the physical sheet and 
a:" '^(Plastic)*'- If the complex cut is avoided, this 
behavior remains, and a u ' ~ (p)1 or v as ^ ^ 0 . The sheet 
reached by going through the complex cut has been 
considered by some authors, who found all'~ (p)~l. This 
is not relevant here, however, since we always use the 

O 

<> 

FIG. 2. Input Born 
diagrams. 

-o-

-o 
o 
-o-

p CUT 

FIG. 3. Inelastic complex cuts. 

physical sheet, and the functions are the most singular 
on the complex cut. 

The numerical values taken for the coupling con­
stants and masses were /z=138 MeV, m=6.80/j, ni* 
= 8.96M, wp=5.54/x; and g2/47r= 15.0, ^ 2 / 4 T T = 4 . 0 5 , and 

gp
2 /4^=1.95. 

V. SOLUTION OF THE INTEGRAL 
EQUATION FOR N 

The multichannel N/D method consists of expressing 
the scattering amplitude, in matrix notation, as 
F = N D - X where 

D(*) = l / dsf , (24) 

where Th stands for threshold. In the usual formula­
tion,14 with a diagonal density-of-states matrix and 
without complex singularities, this solution satisfies 
unitarity for any N containing only unphysical 
singularities. 

The nondiagonal density-of-states matrix presents no 
formal problem. If it is inserted into the definition of D 
as a matrix, it contributes only over a finite range of 
integration, and unitarity is still satisfied. 

The effect on the definition of N and D of the complex 
singularities arising from single-pion exchange, appro­
priate to p-meson production, has been discussed in 
Refs. 1 and 2. The results for single-nucleon exchange, 
appropriate for N* production, are similar.15 They con­
sist primarily of deforming the contour defining D 
around the complex singularity. Although of formal 
interest, these terms were dropped in the calculations 
as negligible. For instance, 

Di\r*0)=-
(sso) f . ^ M N w M 

7T . /Th (S' — SQ)(S' — S) 

(s—so) QN(S') discN;v*O0 

7T J complex contour yS So) {$ S) 
(25) 

14 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960). 
15 F. T. Meiere, Massachusetts Institute of Technology, thesis 

(unpublished). 
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FIG. 4. Typical approximations used in 
the kernel of the integral equations. 

S tji*) -> 200 

The second term is expected to be small compared to 
the first for two reasons: the integration range is finite 
and short, and the integrand is the discontinuity of N 
which is smaller than N itself. We remark that the 
complex cut does not intersect the real cut arising from 
the overlap of resonances. 

Hence, we write straightforwardly, 

r J n (S'-S0)(S'~S) (26) 

N ( S ) = F ( J ) D ( J ) . 

Letting C = t h e contour of unphysical discontinuities 
of F(s), and A(s) = discsF(.y), we obtain: 

A ( / ) D ( / ) 
N(s) = N(s0)+(s-s0) ds'-

c (s'-s0)(s'-s) 

A(s') 
= K(s0)+(s-s0) ds'-

Jc (s'—so)(s—s) 

(s-so) f A(s') r" 9(s")K(s") 
Ads'—— / 

ir Jc (s'—s)J'n 
Letting 

(s'-s)Jn(s"-s0)(s"-s') 

Ms') 

(27) 

G(s) = N(so)+(s-s0) ds'-
Jc (s'-s0)(s'-s) 

and using 

1 l r / '—5 0 s—s0~\ l 

"-si-s'^s" s'~sJ(s'-s0)' (s'-s)(s"-s') (s"-s)Ls' 

we obtain 

(s-so) r G(s")~G(s) 
N ( J ) = G ( J ) + - / ds'' 

TT J?h (S"-S0)(S"-S) 

X9(s")N(s"). (28) 

The Born approximations to aJ(s) are finite at s = 0, and 
we see no reason to think otherwise in general. However, 
gNl, g*\ a n ( i gpl g° t 0 z e r o 5 (gl)2~Vs as s goes to 0. 
Therefore, we let sQ go to 0 along the positive real axis 
and take N(>o) = 0. Then G(s)=FB(s). This also insures 
that the first iteration of the N/D method gives the 
Born approximation back again. To avoid confusion, 
we keep the notation G where it appears in the kernel 
of the integral equation. The equations now read: 

G(s')-G(s) s r <n*)-
N(s) = FB(s)+- ds' 

7T./Th S'(s' (s'-s) 
Q(S')N(S'). (29) 

No general closed-form solution to this is known. I t is 
equivalent to an equation for gll2(s)N(s)/s with sym­
metric kernel, which is finite for s = sf, and Fredholm. 

The integral equations for N, Eq. (29), serve as the 
starting point for our approximation scheme. The un­
physical discontinuities A will be approximated, allow­
ing the functions G to be calculated, which in turn gives 
both the inhomogeneous term and the kernel appearing 
in the integral equation for N. Once these are solved, 
it is a straightforward procedure to calculate D, and 
hence the physical amplitudes F. One could iterate the 
integral equations: to first order N=FB, and since N D - 1 

= N Adj(D)/det(D), to first order in the numerator 
F = FVdetD. In this simple form, the Born terms are 
just enhanced by the factor 1/detD and enable one to 
see the effect on F of changes in the input, such as in­
creasing the coupling. We also remark that this approxi­
mation is symmetric and has no complex cut in the 
elastic channel, properties possessed by the full solution 
but not necessarily by all approximations, such as 
truncated iterations for N. 

As for solving the equations for N directly, we keep 
the terms ¥B for N without modification and calculate 
the corrections given by the second term in (29). For 
the functions appearing in the kernel, the form G(s) 
= (as+b)/(s—c) fits very well for ^>^Cut, which is 
where the complex cut crosses the real axis; see Fig. 4. 
Using this form in the second term of (29) makes the 
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FIG. 5. Re(detZ)) us­
ing only Born term am­
plitudes. Resonance en­
ergies are determined by 
the first zero in Re(detD) 
in this lowest order de-
terminantal solution. 

TOTAL ENERGY <BEV> 

,— 
2.2 

kernel separable, for s>scnt, 

-«S(s')-G(s)W(s'-s)=<p(s)f(s'), , N 
7T (30) 

<p(s)= (s/r)(l/(s-c)), *(s')= ~ (ac+b)/s'(s'-c). 

For s<scnt the kernel does not necessarily separate. In 
this integral, s' is always greater than threshold, so the 
form holds for Gjk(s'); but for (w+M) 2 <s<s c u t , G2z(s) 
definitely does not have the same form. 

To calculate D, only s greater than ^cut is needed for 
^32, TV33, so the troublesome term is in iV2y for (w+/x)2 

< s < s c u t , namely: 

G23OO-G23O) 
- I dsf 

7T./Th3 S'(s' 'Th3 Sf(s'-S) 

We drop this term but keep the term 

G22OO-G22O) 

PaMNvC^). 

ds'- ^ ) N V M , 

1.4 IJ6 1.8 2.0 

TOTAL CM. ENERGY <BEV> 

FIG. 6. Cross section given by the D3/2, T== \ resonance. 

noting first that this error is introduced only into the 
relatively small range from ( W + M ) 2 to sCut; and second, 
that s is not included in the range of integration for the 
term dropped, but is included in the range of integration 
for the term kept. The effect is to make ^23= 0 and 
^23=0 for (fn+jj)2<s<scut. Equation (29) now reads: 

Nij(s) = Fi3-
B(s)+j: <pik(s)Iikt, 

k 

/»00 

/»* y=7 ds'fik(s')pk(s')Nkj(s') 

= CW+2_, Hik;i'k'Ii'k'3', (31) 
i k' 

Hi 

/•oo 

Cik>= ds'tik(s
f)Pk(s')Fkj

B(sf), 
JThfc 

= 5»v h, I dstyik (sf)pk (sf) <pkk> (s'). 
J Thk 

ik,i'k' 

Considering the index ik as a single index in a direct 
product space, matrix multiplication gives / as I3 

= {\-H)-lCj, and Eq. (31) gives N. The constants 
defining <p and \f/ were determined by least squares, and 
the integrations were done numerically. 

I t should be pointed out where the approximate form 
Fvo]°= (as+b)/ (s—c) was used for FBorn. In all deter-
minantal calculations for coupled TV*, iV* alone, or p 
alone, FBoTn was used exactly as calculated. When 
solving the integral equations for the coupled N*p or 
the p alone, FBoTn was not approximated in the first 
term of the expression 

N=FB+<pI, 

but the approximation was used in the second term. 
For simplicity, when solving the integral equations with 
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the iV* alone, the approximation ^Bom^^P016 was used 
throughout.15 

Using the functions Fpo le corresponds, in a certain 
sense, to a generalization of the single-pole approxima­
tion of Lee and Cook for the p.5 

VI. GENERAL STRUCTURE OF THE SOLUTIONS 

Several general statements can be made about all 
partial waves considered. As remarked earlier, the 
lowest order iteration gives FNN==FBoTn/det(D), and 
any resonances are given by Re(detJ9) = 0, Fig. 5. 
The inelastic force introduced was proportional to 
ginei=gg* or ggp. The expression for this case, 

Re(detD) = 1 - d22~ dndZ2+piN nPzN ^, 

s /•* o(s')N(s') (32) 
d(s) = -J?.V. dsf — , 

7T J Th S'(sf—S) 

shows that ginei enters only quadratically, and hence the 
resonance is independent of the sign of the inelastic 
force. Increasing the magnitude of ginei increases the 
effect of the product 2̂3̂ 32 and allows the resonance to 
move down in energy. 

If pN{s) remained finite as s —>oo, d(s) would domi­
nate pN(s), and the term p2N2%p%Nn would have little 
effect on Re(detD) for large s. However, the effect of 
the spin-f iV* on the inelastic term is to make P2N23 and 
PzNw^s112 for large s. Since d(s) goes at most like Ins, 
the pN terms force Re(detZ>)>0 for large s. Hence, as 
s is increased from threshold, where Re(de tD)>0, the 
term 2̂3̂ 32 can drive Re(detD) down through zero and 
negative, producing a resonance, but it must go through 
zero again to reach its asymptotic positive value. The 
amplitude at this second zero is necessarily cut down 
and in the actual calculations did not produce a peak 
in the cross sections. I t is of course possible that neither 
zero appears. On the other hand, if ginei were so large 
as to force Re(de tD)<0 at threshold (which is not the 
case here), then at least one zero is forced to appear. 

At best this simple solution can give only the position 
of the resonance and not its detailed properties, but 
since it is easier to calculate than the solution of the 
integral equations, it is interesting to check its relia­
bility against a better solution. 

As to the full solution of the coupled problem, no 
such sweeping statements can be made, although some 
remarks are pertinent. First, unlike before, the relative 
sign of the coupling constants g can influence the 
resonance. Second, the full solution is F=N Adj(D)/ 
det(D), and since Adj(D) has an imaginary part, the 
position of the resonance is no longer given exactly by 
the point where Re(detD) = 0, i.e., now phase (F) 
= phase iV(AdjD)—phase (detD). Third, the asymp­
totic behavior of the input Born terms in one channel 
can influence the numerator function N for all other 
channels through the coupling of the integral equations. 

This can be significant for the coupled problem, since 
the TV* production amplitudes contain asymptotically 
at least one higher power of s112 than do the elastic or 
p-production amplitudes. 

VII. RESULTS AND CONCLUSIONS 

Six partial waves were calculated, namely, T== \ and 
!T=! states for the Dy2, ^5/2, and D5/2 angular-momen­
tum states. In all cases, all available channels were 
kept, meaning for a given / , one irN state, two 7rN* 
states, and three pN states. Hence, the matrices N and 
D are of dimension 6X6 for the coupled NN*p case. 
The main contributions to the inelastic cross sections 
were from the lower angular-momentum states avail­
able, but contributions to det(Z>), and hence to the 
resonance positions, were important for both values of /. 

The -D3/2, T=\ partial wave was the only one to 
exhibit a resonance (Fig. 6). This occurred at 1490 
MeV with a width of 110 MeV, and compares favorably 
with the observed position of 1520 MeV and width of 
100 MeV.16 The curve contains a large inelastic con­
tribution. For comparison, the lowest order deter-
minantal solution predicted a resonance at 1370 MeV. 

The effect of "turning off" either the N* or the p 
does not eliminate the resonance. A D3/2, T—\ reso­
nance was predicted when only the TV* was used, coming 
at 1560 MeV with a width of 250 MeV, and also when 
only the p meson was used, coming at 1430 MeV with 
a width of 125 MeV. I t is interesting to note that the 
width of 250 MeV in the case of the iV* alone is reduced 
considerably by the addition of the closed channel 
p+N. Physically, this would be expected if the iV* 
were the dominant mechanism for producing the reso­
nance, since it could spend part of its time in the p+N 
virtual state and lengthen its lifetime.17 However, the 
p+N state also plays an important role in producing 
the resonance, and hence this separation is perhaps 
artificial. 

There was no evidence for any other of the observed 
TTN resonances. The T—\ shoulder and the F5/2, T—\ 
resonance16 were particularly noticeable in their ab­
sence. I t should, however, be mentioned that the solu­
tions are very sensitive to the inelastic scattering, and 
hence, resonances are easy enough to obtain by varying 
the parameters of the theory, in particular the coupling 
constants g* or gp. This we have specifically tried to 
avoid. Also, states with J=\ were not calculated. Here 
the asymptotic behavior of the inelastic Born terms 
causes some of the integrals to diverge and forces the 
inclusion of arbitrary subtraction constants. 

The lowest order determinantal method, in which the 
Born terms alone are used to calculate Dy agreed in all 
cases with the more accurate solution in whether or not 
a resonance appears (Figs. 5 and 7). The positions were 
shifted by solving the integral equations. 

16 D. P. Lichtenberg, SLAC Report No. 13,1963 (unpublished). 
1 7 1 . P. Gyuk and S. F. Tuan, Purdue University (unpublished). 
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FIG. 7. Re(detZ>) after numerical 
solution of the integral equations for 
the numerator function. Resonance 
energies are no longer determined by 
the zeros in Re(detZ>) for the full 
solution. 

The possible values of the available angular mo­
mentum for a given / are important. Because the terms 
(pN) go to zero like p2l+1 near threshold, high angular-
momentum shifts the effects of the principal-value 
integrals defining the elements of D to higher energies, 
where their value is reduced. Hence, it is expected that 
for a given / , the parity state which allows the lower 
angular momentum in the inelastic channel has the 
best chance of exhibiting a resonance. 

The approximation of keeping only the two- and 
three-particle states coupled to the elastic channel is 
probably good. Four-body states with three-body reso­
nances would seem to be the only possible significant 
correction. The variable mass dependence of the three-
body amplitudes was taken to be the resonance be­
havior of the appropriate two-body system. This ap­
proximation is probably reasonably good also, if all 
the important resonances are kept. 

Crossing symmetry is destroyed by the approxima­
tions used on the unphysical cut. This is reflected in 
the appearance of a "ghost" pole between zero energy 
and threshold in the full solution for the amplitude, and 
emphasizes the fact that analytic continuation below 
threshold (toward the crossed channels) is not justified. 
The problem of ghost poles is not infrequent in this 
type of calculation.3,5 

For the elastic force, the Born term is surely bad for 
this strongly coupled problem. The results are more 
sensitive to the inelastic processes, where the Born term 
is not as bad as it first looks. The same type of approxi­
mation is used to relate the parameters of the "unstable 
particles" to experiment, and hence much of our ignor­
ance about the three-particle amplitudes is lumped into 
the width or coupling constant of the resonance, which 
is found from experiment. A next interesting step would 
be the inclusion of the Born terms for the elastic N* 
scattering,17 i.e., the Peierls mechanism. 

There were no free parameters in the theory. The 
width and position of the (3,3) isobar and the p meson 
determine the inelastic force, while the well-known wN 
coupling constant determines the direct elastic force. 
The isotopic-spin dependence is determined by the 
particular diagram considered. The technique used to 
solve the integral equations for N, given the unphysical 
discontinuities, is suitable for only a restricted class of 
functions, but is probably more accurate than the 
approximation used for the discontinuities. 

Considering the fact that there are no free parameters 
at all in the theory, the agreement with experiment is 
reasonable. There is no reason to believe a priori that 
any resonances should appear at all, or that they would 
occur in the correct channels. I t certainly indicates that 
the mechanism, i.e., coupling of the elastic channel to 
three-body inelastic channels through unitarity, plays 
an important role in the explanation of the higher reso­
nances, and in particular that the TN* state has an 
important effect even though the threshold is not close 
to the resonance. 
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APPENDIX 

Wick9 has shown how to construct angular-momentum 
states for three particles. As applied here, we pick one 
of the pions, 7ri, and form the state of total angular 
momentum / in which the nucleon has helicity X, while 
the iriN system has angular momentum j and energy co, 
all measured in the TIN two-body center-of-mass sys­
tem. This state, denoted \sJM}o)jy,\}(T1N)ir2 is not sym-
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metric between the pions. If this fact is ignored and the 
three-particle decomposition carried out using this state, 
the partial-wave unitarity relations are the usual ones 
given in Sec. I I . One way to treat the identity of pions 
properly is to consider the three-particle state in a 
direct-product space as ^\P\k\k,2)z= I ^ X ^ i ) ^ ! ^ ) ^ 
+ \P\,ki)T2N\k2)v1. The first state can be decomposed 
using the states | (^jiV)^), and the second using 
| (TT2N)TI) in which the variables are interchanged. 
Letting 1 refer to the original choice of variables and 2 
to those with the pions interchanged, the production 
amplitude has two terms arising from the two decom­
positions, vHf23=ikf23 (1 )+^23 (2 ), and the quadratic 
unitarity terms are extended, 

Q=Z M2mMZ2= E E M2^pzMd2w = i: QiJ. 
3 i,j=l 3 ij 

Since the three-particle sum is invariant under the inter­
change of variables 1 into 2, Q22=Qn and <212=(P. Qn 

is the usual term, while schematically 

Q21 = L3M23(2)P3M32(1) 

= E s < M 0 l T l | (7ri^)7r2)if23(1)P3M32
(1), 

where the recoupling coefficients defined by 

| SJM,0)2 J272,^2) (ir2N)vi 

= E / do)2CJ (S0)20Jyj272^2^7^) 
jy\ J 

X I sJM,<ajy,\)(TlN),2, (Al) 

are given in (i). They are, apart from normalization 
factors, given by 

A7iY2M X 2(^ico 2 , / i i i 2) 

= JT17/(^7r7r)^7iXiyi(ai)^T2X2
i2(«2)41x2

1/2(6'7r^), (A2) 

where 0™ and 6^^ are the angle between the two pions 
measured in the TTTTN and N rest system respectively, 
and the angles a are the pion polar angles as defined in 
Sec. I I . All arguments are functions of s, coi, co2. 

The terms Q12 and Q21 give nondiagonal contributions 
to the exact symmetrized unitarity relations, e.g., for 
a given / and parity, 

discM 22 (s) = M 22 Cs+)p2 (s)M 22 (s~) 

+ E fda)2du'2M2z(s+,u)+,jy) 
iyj'y'J 

Xp7y (sojO)/Jj/)Md2(s-.ycc-)fy
/) , 

E I E R E 

where 

pyy> (sua)' ,jf) = p3 (s,<a) [5 (a>2 - u'2) djy8y7> 
+Njj>AyYe(o)u-o)')e(a)'-oH)l, 

AyY=A7Y+(-iy(~iy^2A^Y, ( } 

N,y= ( 2 y + l ) i / 2 ( 2 / + l ) i / 2 P ( . , c 2 ^ ) P ( c 2 , ^ V ) • 

The three-particle integral over o) and a/ can be simpli­
fied as before, making use of the resonance at co = m*, 
but now the density of states for the 7riV* state is 
modified. With the definitions from Sec. I l l , 

M2s(s,<a,jy) = 5j*/*b*-1f2z(s,u,y) , 

disc/220) = /22O+) (P(s,m2,n*)/y/s)f22(sJ) 
+Hyy'fc3(s+,m*,7)pyy>h2(s-,?n*,y'), 

where 

P77'= (P(s,m*2,p2)/<s/s)8yy> 
+ (T/s) (tn*2/P (?n*2,m2

 yfx
2))AyY (s,w*,m*, 7,f f ) 

X0(su-s)6(s-si), (A4) 

where the limits for s are such that a)i(sh?n*)<ni* 
<ww(sM,w*), i.e., that iV* resonance is possible in the 
TTIN and ir2N systems simultaneously, and 

\fdo)M22(o))\2 

r= — . 
fd0)\M22(0))\2 

r is a measure of the width of the two-body resonance, 
and its value depends slightly on the shape of the reso­
nance. The value of V is the full width at half-maximum 
times a factor close to unity for a Breit-Wigner form, a 
normal curve, or a square wave, and we take T = full 
width. 

The above analysis calculated essentially the expan­
sion of (7r2iV)7ri in terms of (jrIN)TT2 states to find the 
effect of a irN resonance in the ir2N system. This was 
necessary, since the mass of the T2N system did not 
appear directly as an independent variable. The analy­
sis can be repeated for the (7TIT2)N state to find the 
effect of a resonance in the TT system. The result is 
obtained from Eq. (A2) by the interchange of in and 
N. This, for instance, sends (7r2iV)7ri into (w2Ti)N and 
co2 into 0-= (invariant mass of the TIT system), but sends 
(TTIN)TT2 and coi into themselves. The corresponding 
overlap terms are obtained from Eq. (A4) by this inter­
change. These overlap terms can be thought of in terms 
of diagrams, although these are not used in the 
derivation.4,18-20 

18 S. F. Tuan, Phys. Rev. 125, 1761 (1962). 
19 R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963). 
20 R. F. Peierls, Phys. Rev. Letters 6, 641 (1961). 


