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We have developed a semiempirical equation, starting from the liquid-drop model, to account for the syste-
matics of nuclidic masses. The mass excess of a nuclide is expressed as follows (in the scale of C12= 12.000000 
mass units) :M(Z,^)=(0 .0089794^ 2 -2 .07l7^+33.448)+i[3 .258--(60.22/4 1 / 2 )+431.6/^](Z-ZA) 2 -^ 
+ (11.51/41/2)5 MeV, where ZA= (A +0.00342)/(2+0.0L4); 5 = + l , 0, - 1 for odd-Z-even-4, odd-4, 
even-Z-even-4 nuclides, respectively; and S is a term for the shell effect consisting of a series of Cauchy distri­
bution functions in terms of the nucleon numbers. The shell correction is not symmetric with respect to the 
shell edges, this being the main feature of the present equation. The shell effect on ZA has been investigated 
in an alternate approach. Compared with the other nuclidic mass equations, the above equation, with only 
34 adjustable constants, has the fewest number of large deviations from the experimental data and very 
little systematic error. The equation agrees with the 842 experimental masses to within ±0.5 MeV in 57% 
and within ±1 .0 MeV in 91%. Only 11 deviations are between 2.0 and 3.1 MeV. 

I. INTRODUCTION 

IN the past thirty years, more than twenty mathe­
matical expressions have been formulated to account 

for the systematics of the nuclidic masses, binding 
energies, and nucleon separation energies.1 These 
expressions, commonly called nuclidic mass equations, 
represent the mass or the equivalents as a function of 
the proton number Z and the neutron number N of the 
nuclide. Some of these expressions are quite incon­
venient to use because they involve many complicated 
functions and adjustable constants. The physical 
significance of some of the complicated functions is also 
uncertain. Although many of the quations describe 
fairly well the general features of the nuclidic mass 
surface (a three-dimensional plot of nuclidic masses 
versus N and Z), systematic deviations from the experi­
mental data are observed in every mass equation hither­
to published.1 Most of these systematic deviations 
originate from the inadequate treatment of the nuclear 
shell effects and the isobaric mass variation. We have 
developed a relatively simple semiempirical expression 
to account for the nuclidic mass systematics starting 
from an equation based on the liquid-drop model,2,3 

with the shell effects included in a correction term. The 
numerical values of the constants in the mass equation 
are evaluated by least-squares fitting of the experi­
mental nuclidic masses4,5 based on the scale of C12 

= 12.000000 mass units. The computations in this work 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

t Supported in part by the National Science Foundation. 
*J. Wing, Atomic Energy Commission Report, ANL-6814, 

1964 (unpublished). 
2 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). 
3 P. Fong, Phys. Rev. 102, 434 (1956). 
4 L. A. Konig, J.?H. E. Mattauch, and A. H. Wapstra, Nucl. 

Phys. 31, 28 (1962). 
6 V. A. Kravtsov, Nucl. Phys. 41, 330 (1963). 

were performed at Argonne with the help of several 
electronic computers and an abacus. 

II. FORMULATION OF THE MASS EQUATION 

The basic form of our nuclidic mass equation is 

M(Z,A) = MA+hBA(Z-ZAy+PA-S(N,Z), (1) 

where M is the mass excess (nuclidic mass minus mass 
number), MA the mass excess of the stable nuclide 
(Z = ZA) for mass number A, BA a, measure of the 
curvature of the isobaric mass section, ZA the charge 
(not necessarily an integer) of the most stable isobar, 
PA the pairing energy due to the even-odd variation, 
and S the shell correction term. 

MA is assumed to be a parabolic function of A, and 
the coefficients were evaluated in a first approximation 
by a least-squares fit of the experimental masses of the 
stable, odd-̂ 4 nuclides not containing closed-shell 
configurations: 

MA=0.0089794^2-2.0717 4"+33.448 MeV. (2) 

For odd-A nuclides, it can be shown that 

BA=M(Z,A)-2M(Z+l,A)+M(Z+2,A). (3) 

With the experimental masses of odd-̂ 4 nuclides in­
serted into Eq. (3), we calculated the values of BA on 
the basis of which the following expression was obtained 
as the first approximation of BA: 

£ / = 4 . 6 8 - (86.32/^1/2)+ (550/,4)MeV. (4) 

The expression for ZA was taken from Green's work6; 
his ZA seems sufficiently satisfactory as a continuous 
approximation and is adopted without change: 

ZA= (.4+0.003 ,42)/(2+0.01 A). (5) 
6 A. E. S. Green, Nuclear Physics (McGraw-Hill Book Company, 

Inc., New York, 1955). 
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FIG. 1. Deviations of the present 
mass equation from the experi­
mental values of nuclidic masses. 
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The pairing energy term was obtained by comparison 
of Eq. (1), with Eqs. (2), (4), and (5) inserted, with the 
experimental mass data, disregarding the nuclides with 
the closed-shell configurations: 

PA= 11.51 5A41/2MeV, (6) 

the other hand, each side may be fitted by a Cauchy 
distribution curve with a width different from that of 
the other side. Thus we assumed different values of the 
width b± for N(or Z) greater and smaller than the magic 
number. The shell correction term thus has the following 
form: 

where 5 equals 0 for odd-A, — 1 for even-Z-even-^4, and 
+ 1 for odd-Z-even-v4 nuclides. 

Wapstra7 suggested a bell-shaped correction curve 
for the shell effect. We tentatively assumed the shell 
effect term in our mass equation to take the form of the 
sum of a series of Cauchy distribution functions in 
terms of N and Z, with their maxima located at the 
magic numbers : 

S(N,Z) = Z 
aJb, *± ak< JU3± 

(N-NW+bu* i (Z-Zj*)*+b,±* 
(8) 

5/(iV,Z) = E 
ajb/ 

t (N-N*)*+bt* i (Z-ZfY+b* 
(7) 

where Nf and Z / are, respectively, the magic numbers 
of neutrons and protons in the closed-shell configura­
tions, a is the maximum magnitude of the shell cor­
rection in the ith neutron or jth proton shell, and b is 
the half-width at \a. In the neighborhood of a shell edge, 
only one term in the sum is large; other terms from 
other shells are small. The advantage of this form of 
shell correction is that the mass equation remains a 
continuous function (except for the pairing energy) 
from one shell region to another. It soon becomes 
apparent1 that the correction curve of Eq. (7), which is 
symmetric with respect to the shell edge, cannot fit 
experimental data on both sides of the shell edge. On 

7 A. H. Wapstra, Physica 18, 83 (1952). 

where bi± and bj± are used when (N—Ni*)^0 and 
(Z—Z/)2;0, respectively. In spite of the discontinuity 
of b at the shell edge, the equation remains continuous 
to the first-order derivative. The values of the constants 
in Eq. (8) were evaluated by a variable metric method 
for minimization,8 the input data being the values of 5 
obtained from the combination of Eqs. (1), (2), and (4) 
to (6) and substitution of experimental masses. The 
results are listed in Table I. 

We then applied the variable metric minimization 
method for the improvement of the BA expression, 
using the experimental masses and all the previous 
equations and constants except Eqs. (3), (4), and (7). 
We obtained the following expression for BA and 
discarded Eq. (4): 

BA = S.25S- (60.22/A^2) +(431.6/A)MeV. (9) 

A similar iteration was performed for MA- However, the 
values of the coefficients so obtained were essentially 
identical with those in Eq. (2) and therefore Eq. (2) 
is used for MA without change. 

8 W. C. Davidon, Atomic Energy Commission Report, ANL-
5990, 1959 (unpublished). 
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FIG. 2. Deviations of 
Cameron's mass equa­
tion from the experi­
mental values of nu-
clidic masses. 
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We have also studied the possibility of developing a 
mass formula by correcting ZA for the shell effects. We 
know that the charge of the beta-stable isotope is not a 
smooth function of A, but shows fluctuations due to 
shells.3 This approach will be discussed in the Appendix. 
The resulting mass equation, referred to as the alternate 
equation to avoid confusion, is not as simple and as 
successful as the present one and is listed only for 
reference. In addition to the shell correction for ZA, the 
terms 5 remains indispensable and again appears to be 
asymmetric with respect to the shell edges. The present 
mass equation includes all shell corrections in the 
asymmetric S term and thus is simpler; the empirical 
variation of the charge (integral) of the beta-stable 
isotope is thus a manifestation of the S term. 

III. DISCUSSION 

The nuclidic masses predicted by the present equation 
are compared with the experimental data by plotting 

the differences in Fig. 1. No large systematic deviations 
are observed in the mass region of A = 60 to 220. For 
^4>230, there is a wide spread of almost 5 MeV of 
differences; the neutron-rich nuclides have positive 
deviations and the neutron-deficient nuclides have 
negative deviations. This wide spread of differences is a 
result of inadequate treatment of the isobaric mass vari­
ation in this region (BA and ZA small compared with the 
experimental data). Improvement of the present mass 
equation could be made with additional adjustable 
constants especially for the BA and ZA expressions. 
However, this was not done because we did not want to 
add any more adjustable constants into our present 
equation. A more refined expression for ZA is given in 
the Appendix, which may be used for the purpose of 
determining the stable isobar of a given mass number A. 

For comparison, we have also plotted the differences 
between the experimental and the calculated (masses 
or binding energies) values, for the mass equations of 

TABLE I. Values of the constants in Eq. (8). 

Ni* 

28 
50 
82 

126 
152 

di 

3.49 
5.99 
5.75 
7.76 
5.02 

(N 

bi+ 

-Ni*)^0 

4.04 
5.96 
2.49 
2.90 
6.88 

(N-
h-. 

-Ni*)^0 

1.44 
2.88 
5.32 
5.36 
5.29 

Zj* 

28 
50 
82 

aj 

3.07 
2.74 
4.22 

bj+ 

(Z-Zy*)^0 

2.27 
4.31 
1.51 

bj-

(Z-Z*)$0 
2.77 
3.10 
2.35 
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FIG. 3. Deviations 
of Seeger's mass equa­
tion from the experi­
mental values of nu-
clidic masses. 
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Cameron,9 Seeger,10 Levy,11 Baker,12 and Green6 in 
Figs. 2 to 6. In the mass region of A > 201, Cameron and 
Baker used, for the evaluation of their constants, the 
experimental masses13 which are about one MeV lower 
than those we used.4 We have, therefore, allowed for 
a one-MeV correction in the calculations using the 
equations of Cameron and Baker in this mass region. 

I t has long been recognized that a liquid-drop-model 
mass formula, such as Fermi's, deviates from the experi­
mental results by a uniform shift plus systematic 
fluctuations related to shells.3 The former may be 
eliminated by proper changes of the parameters of the 
formula, but the latter cannot be expressed in terms of 
simple functions of N and Z. We are thus led to expect 
a nuclidic mass formula consisting of two parts: a 
smoothly varying part similar to the liquid-drop model 
formula plus a rapidly varying shell correction term. 
How to formulate the shell correction is thus the central 
problem. 

Levy11 and Green6 tried to fit the experimental data 
between the shells with smooth functions, this being 
obviously the simplest approach because the variation 
of mass between the shells is the least drastic. The 
fitted smooth functions expectedly lead to large devi­
ations near the closed shells. Yet the most undesirable 
feature of this approach is that the formulas are dis­
continuous over the shell boundaries. Levy divided the 
mass surface into sections by the magic number lines. 

9 A. G. W. Cameron, Can. J. Phys. 35, 1021 (1957). 
io P. A. Seeger, Nucl. Phys. 25, 1 (1961). 
11H. B. Levy, Phys. Rev. 106, 1265 (1957). 
i2 G. A. Baker, Phys. Rev. 112, 954 (1958). 
13 J. R. Huizenga, Physica 21, 410 (1955). 

The mass surface in each section is approximated by a 
quadratic surface, the parameters of which change from 
section to section. Besides large deviations at the shell 
edge (Fig. 4) there is also a constant deviation of about 
1.5 to 2.0 MeV for the heavy elements region. Green's 
shell correction term consists of a set of parabolic curves 
with vertices located midway between two magic 
numbers. The discontinuity at the shell edge is con­
siderable (Fig. 6). 

The other alternative is to correct the shell effects in 
the neighborhood of the shell edges; this approach is 
mathematically more difficult but physically more 
reasonable. Seeger10 expressed the shell effects by a 
series of sine functions of N and Z with cross product 
terms. The systematic oscillation of his deviations 
(Fig. 3) is probably a result of the symmetric nature of 
the sine functions with respect to the shell edges. 

Since this leaves the asymmetric correction over the 
shell edges as the only alternative, we adopted it. From 
the point of view of nuclear structure we have no reason 
to expect a nucleus with extra nucleons outside a closed 
shell to behave exactly the same as one with an equal 
number of unfilled levels (holes). The nuclear level 
spacing behaves differently for these two types of 
nuclides. So does the nuclear mass which fixes the posi­
tion of the ground level. Apart from the shell correction 
term, the rest is empirically fitted into a smooth formula 
in the present approach. The formula is similar to the 
liquid-drop model formula in its quadratic dependence 
on Z, though the expressions of MA, BA, and ZA are 
purely empirical. 

Cameron9 empirically determined the combined 
effects of the shell and pairing interactions for each 
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FIG. 4. Deviations 
of Levy's mass equa­
tion from the experi­
mental values of nu-
clidic masses. 
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value of N and Z. There is a notable systematic devi­
ation in the rare-earth region (Fig. 2). This may be due 
to the fact that very few and perhaps poor experimental 
data were available in this mass region for the evalu­
ation of Cameron's constants. The complication of his 
formula is brought out by the fact that more than 200 
parameters are involved. Many of the deviations in 
Cameron's, Seeger's, and Levy's mass equations become 

very large for nuclides far away from the beta stability 
line, indicating inadequate treatment for the isobaric 
mass sequences. 

Baker12 expressed the binding energies of nuclides by 
polynomial functions of neutron excess and mass 
number. No shell effect was included in his binding 
energy formula. The spread of his deviations (Fig. 5) is 
wider than those we have examined so far, except for 

TABLE II. Frequency distributions of deviations. 

Mass region 

40$A $ 70 

7 0 < ^ 1 1 5 

115 <A $162 

162<o4^208 

208 <A ^255 

40$A ^255 

Deviation 
(MeV) 

<0.5 
0.5-1.0 
1.1-2.0 
>2.0 
<0.5 

0.5-1.0 
1.1-2.0 
>2.0 
<0.5 

0.5-1.0 
1.1-2.0 
>2.0 
<0.5 

0.5-1.0 
1.1-2.0 
>2.0 
<0.5 

0.5-1.0 
1.1-2.0 
>2.0 
<0.5 

0.5-1.0 
1.1-2.0 
>2.0 

Camerona 

(232) 
89 
26 
8 
3 

146 
44 
11 
2 

96 
70 
27 
0 

29 
21 
38 
57 

158 
11 
0 
0 

518 
172 
84 
62 

Seeger 

(25) 
45 
51 
23 

7 
50 
75 
53 
25 

101 
68 
23 

1 
65 
43 
33 

4 
106 
50 
13 
0 

367 
287 
145 
37 

Levy 

(81) 
16 
8 
5 
6 

132 
40 
16 
6 

127 
55 

8 
3 

40 
33 
46 
14 
1 

12 
133 

6 
316 
148 
208 
35 

Bakera 

(63) 
66 
38 
19 
2 

118 
70 
15 
6 

72 
63 
45 
13 
24 
28 
54 
39 

154 
12 
2 
1 

434 
211 
135 
61 

This work 

(34) 
76 
35 
13 
2 

137 
65 
6 
1 

92 
78 
21 
2 

107 
37 

1 
0 

68 
65 
30 

6 
480 
280 

71 
11 

The alternate 
equation 

(47) 
57 
38 
27 
4 

93 
76 
33 

7 
103 
65 
23 
2 

46 
60 
34 

5 
50 
65 
44 

9 
349 
304 
161 
27 

a Corrected for 1-MeV error in these equations for nuclides with A >201. See text. 
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FIG. 5. Deviations of Baker's formula from the experimental values of nuclidic binding energies. 

the heavy elements region. These deviations are ob­
viously related to the shell effects which are not ade­
quately accounted for. 

Table I I lists the frequency distributions of devia­
tions (absolute difference between the experimental and 
calculated values) found in the nuclidic mass equations 
which we have considered. The number of the adjust­
able constants used in a given mass equation is placed 
in parentheses. The present mass equation has the 
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FIG. 6. Deviations of Green's mass equation from the 
experimental values of nuclidic masses. 

fewest deviations greater than 2.0 MeV, and, next to 
Cameron's, has the highest percent (and number) of 
deviations smaller than 0.5 MeV. No deviation in the 
present mass formula is larger than 3.10 MeV, whereas 
all the other mass equations we have examined so far 
have one or more deviations larger than 4.0 MeV. In the 
mass region of A — 60 to 220, our calculated values are 
in good agreement with the experimental data. How­
ever, in the heavy mass region (^4>210), Cameron's 
and Baker's predictions are much better than ours. 
Finally, it may be mentioned that the present mass 
equation has only 34 adjustable constants while all the 
others, except Seeger's, require more than 40 adjustable 
constants. 

The nuclidic mass excesses, neutron and proton bind­
ing energies, alpha-particle binding energies, and total 
beta-decay energies predicted by the present mass 
equation for Z—13 to 110 and A = 22 to 315 are tabu­
lated in an Argonne National Laboratory report.14 

APPENDIX: THE ALTERNATE EQUATION 

The basic form of the alternate equation is again 

M(Z,A) = MA+hBA(Z-~ZAy+PASy (10) 
14 J. Wing and J. D. Varley, Atomic Energy Commission 

Report, ANL-6886, 1964 (unpublished). 
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FIG. 7. Deviations of the calculated values of ZA using Eqs. (5) (solid points) and (12) (open circles) from 
Dewdney's ZA values. Experimental errors greater than 0.25 units are indicated by vertical bars. 

where the symbols have been defined previously. We 
took the values of BA and ZA derived by Dewdney15 

from experimental total beta-decay energies and tried 
to find expressions to fit them. A least-squares fit of 
Dewdney's BA values for nuclides away from the closed 
shells gave the following expression: 

BA= 1.646- (2SA1/Al'2) + (292/A)MeV. (11) 

A plot of the differences between Dewdney's ZA values 
and those obtained with Eq. (5) is shown in Fig. 7. The 
relatively large deviations shown in this figure may be 
attributed to shell effects on ZA.3*15 [[Note that, in the 

TABLE III. Values of the coefficients in Eq. (12). 

A* 

40 
48 
57 
83 
105 
130 
147 
206 
250 

0.32 
-0.28 
0.50 

-1.03 
1.32 

-1.56 
0.97 

-0.61 
0.61 

1.14 
3.06 
3.25 
15.74 
24.21 
14.97 
5.79 
4.28 
16.10 

15 J. W. Dewdney, Nucl. Phy's. 43, 303 (1963). 

heavy mass region, Eq. (5) gives ZA values which are 
too small compared with Dewdney's values, and these 
small ZA values account for, at least partly, the wide 
spread of deviations observed in Fig. 1 in this mass 
region.] We, therefore, modified Eq. (5) to include the 
shell effects on ZA by adding a series of Cauchy dis­
tribution functions: 

ZA = -
2+0.0L4 

Ji&i' 

(A-At*y+g* 
(12) 

where 4̂* is the mass number at which maximum 
deviation of ZA is observed in Fig. 7. The values of fi 
and gi were obtained by a least-squares fit and are listed 
in Table III. A plot of Dewdney's ZA values minus the 
ZA values of Eq. (12) is also shown in Fig. 7. 

TABLE IV. Values of the coefficients in the 
expression for S (alternate approach). 

Zj* 

28 
50 
82 

aj 

2.61 
0.04 
6.70 

bj 

2.62 
3.19 
3.16 

Ni* 

28 
50 
82 
126 
152 

ai 

3.30 
4.09 
3.91 
5.96 
3.28 

hi 

4.28 
4.23 
4.36 
3.09 
3.52 
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FIG. 8. Deviations of the alter­
nate equation from the experi­
mental values of nuclidic masses. 
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We used Eq. (6) without change for the pairing 
energy term here. We have not attempted to correct for 
the shell effects1 o n ^ and PA since we intended to 
include these effects in the shell correction term S. 

Having obtained BA and ZA, we then calculated the 
quantity M^-\BA{Z-ZA)2, using Eqs. (10) to (12) 
and the experimental masses4,5 of the stable isobars of 
odd A not containing closed shell configurations. A plot 
of these calculated quantities versus A exhibited a shape 
of two slightly different half-parabolas joined at their 
vertices. By means of least-squares fits, we obtained 

the following expressions for these two half-parabolas: 

For 10 <A ^ 120, MA = 0.009008 A2 

-2.130,4+36.751 MeV, (13) 

For 120<^[<260, MA = 0.008189 A2 

— 1.763-4+ 4.221 MeV. (14) 

We then determined S with the substitution of the 
experimental mass data in the mass equation specified 
by Eqs. (6) and (10) to (14). We adopted Eq. (7) for 
the expression of S instead of Eq. (8) in order to mini-

TABLE V. Empirical expressions of BA, PA, and ZA. 

Author (s) 

Wing and Fong 

Fermi 
Ayres et al.a 

Wing and Fong 
Fermi 
Friedlander and 

Kennedy 
Green 
Ayres et al.a 

Wing and Fong 
Fermi 
Tsen 
Green 

Reference 

Present work 

16 
17 

Present work 
16 

18 
6 

17 

Present work 
16 
19 
6 

BA(MeV) 

Eq. (9) 3.258- (60.22/A^)+431.6/A 
Eq. (11) 1.646-(28.41/^1/2)-|-292/^ 
78.064(1.98067+0.014962442/3)/4 
2(4aa+acAW)/A 

PA(MeV) 

U.51/AW 
33.5/4'/* 

132/4 
11.2/41/2 

Or/2A 

ZA 

Eqs. (5) and (12) 
4/(1.98067+0.014962442/3) 

0 . 8 6 6 6 7 4 Z ^ / 3 + 1 4 7 . 5 7 6 Z A = 74.6274 
§(2004-0.64 2)/(4+200) 

1 aa, ae, and av ate smooth functions of A. 
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FIG. 9. Comparison of the calculated values 
of BA with Dewdney's values. 

FIG. 10. Comparison of the calculated values 
of PA with Dewdney's values. 

mize the number of adjustable constants. Applying the 
variable metric minimization method with the S values 
determined here as the input data, we obtained the 
values of the coefficients for 5, which are listed in Table 
IV. Iteration was not necessary here. 

Figure 8 shows the deviations of the alternate equa­
tion from the experimental data. This equation has 
more large deviations than the previous equation (see 
Table II), and has several notable systematic dis­
crepancies. However, this equation has a narrower 

spread of deviations than the previous one in the heavy 
mass region, probably a result of better BA and ZA 
values here than in the previous equation. The oscil­
lating variation of the discrepancies of the alternate 
equation originates from the asymmetric nature of the 
shell effects on nuclidic masses with respect to N* and 
Z*, which is not taken into account by Eq. (7). 

Several empirical expressions for the parameters BA, 
PA, and ZA in terms of smooth functions of the mass 
number have been developed,6>16~19 and these are listed 

FIG. 11. Deviations of 
Fermi's and Tsen's cal­
culated ZA values from 
Dewdney's values. 
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16 E. Fermi, Nuclear Physics (University of Chicago Press, Chicago, 1950). 
17 R. Ayres, W. F. Hornyak, L. Chan, and H. Fann, Nucl. Phys. 29, 212 (1962). 
18 G. Friedlander and J. W. Kennedy, Nuclear and Radiochemistry (John Wiley & Sons, Inc., New York, 1957). 
19 Tsin-Yan Tsen, Acta Phys. Sinica 13, No. 5, 357 (1957). 
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in Table V. A comparison of these expressions including 
ours with Dewdney's values15 is shown in Figs. 7 and 
9-11. Except for the closed-shell regions, our expressions 
are in fair agreement with Dewdney's values. Our 
empirical expression for ZA with the shell effect terms 
included £Eq. (12)] is in much better agreement with 
Dewdney's values than other ZA formulas none of which 
contain shell effects on ZA* 

I. INTRODUCTION 

THE study of the magnetic dipole moments of 
mirror nuclei should be particularly useful in 

helping to find good nuclear wave functions. Assuming 
that these functions are sufficiently well known it may 
then be possible to check on the form of the magnetic 
moment operator. Of interest are contributions to this 
operator from meson currents in the nucleus; these 
contributions are expected to arise from the exchange 
of mesons between nucleons (exchange moments) and 
from the quenching of the anomalous part of the nucleon 
moment (quenching effects). A theorem due to Sachs1 

states that the exchange moments must be equal and 
opposite for the members of a mirror pair. A similar 
theorem should apply to the quenching calculations of 
Drell and Walecka2 as they consider only the isotopic 
vector part of the anomalous magnetic moment. From 
these considerations it is clear that the sum of the 
moments of a mirror pair should be more useful in 
determining the wave function than either of the indi­
vidual moments. Other effects such as the moment 

f This work was supported by the U. S. Atomic Energy Com­
mission and the Higgins Scientific Trust Fund. 
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contribution arising from the spin-orbit force must also 
be taken into account and the reader is referred to 
Ref. 2 for a further discussion. 

Such a program has been carried out for the H3, He3 

pair resulting in the first direct indication of exchange 
currents in nuclei,1 and recently the magnetic moments 
of the radioactive members of three more mirror pairs 
have been measured. These nuclei are N13,3,4 O15,5 and 
Ne1*9 ;6 the moments of the stable members are, of course, 
known. Unfortunately it is not yet possible, for these 
heavier cases, to do nuclear structure calculations with 
sufficient accuracy so that the mesonic effects can be 
detected. 

In this paper we report on measurements on the radio­
active member of the A = 11 pair, 20.4-min C11. Previous 
measurements7 have determined the spin to be §. In 
the next section we shall discuss the necessary hyperfine 
structure theory. The experimental details are presented 
in Sec. Ill , the data and results in Sec. IV, and in Sec. 
V we discuss the results. 

The 4̂ = 11 pair is the first one for which both electric 
quadrupole moments are now known. 

3 R. A. Haberstroh and D. R. Hamilton, Bull. Am. Phys. Soc. 
7, 25 (1962). 

4 A. M. Bernstein, R. A. Haberstroh, D. R. Hamilton, M. 
Posner, and J. L. Snider, Phys. Rev. 136, B27 (1964). 

5 E . D. Commins and H. R. Feldman, Phys. Rev. 131, 700 
(1963). 

6 E. D. Commins and D. A. Dobson, Phys. Rev. Letters 10, 
347 (1963). 

7 J. L. Snider, M. Posner, A. M. Bernstein, and D. R. Hamilton, 
Bull. Am. Phys. Soc. 6, 224 (1961). 
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Hyperfine Structure and Nuclear Moments of 20.4-Min O f 

R. A. HABERSTROH,* W. J. KOSSLER,J O. AMES, AND D. R. HAMILTON 

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey 
(Received 19 June 1964) 

We have measured the hyperfine structure in the ZP<L and 3Pi states of the ground state configuration of C11 

by the atomic-beam magnetic-resonance technique. The values obtained after corrections for perturbations 
by nearby fine-structure states are 3P2 : A/h= (-)68.203±0.007 Mc/sec, B/h = (-)4.949±0.028 Mc/sec; 
3Pi: A/h = (-)1.242±0.010 Mc/sec or (~)1.200±0.010 Mc/sec depending upon the choice of zero-field 
level ordering, where B (J — 1) = — B (J=2) /2. From these data it is possible to calculate the nuclear mo­
ments of the mirror nucleus, C11, using a theoretical value of (1/r3) for the p electrons. The results are 
M= (-)1.027±0.010 nm, <2uncorrected= (+) (0.0308±0.0006) X10~24 cm2.No signs were measured in these ex­
periments; the indicated signs assume /*/ <0 in C11. A value of ^.5011 ±0.0006 for gj was also obtained in the 
3P2 state. 


