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The expression (3.12) gives the exact answer for the 
thermal conductivity of a superconductor, but it has 
been used already1 as an extremely accurate approxi
mate expression. The somewhat crude justification for 
this is that if one takes (1.3) for a normal metal it is 
easy to see that it only differs from (3.12) by an 
amount of relative order of magnitude (kT/n)2, which 
is completely negligible at the temperatures of im
portance for superconductivity. Since (3.12) makes 

ONE of the present authors1 with Cooper and 
Schrieffer derived an expression for the free-

energy difference between normal and superconducting 
states, Os—Qn, based on a model subject to the follow
ing approximations: 

(1) The Fermi surface is isotropic. 
(2) The gap parameter A is independent of energy 

over the important range of integration, a few times A. 
(3) The self-energy 2Ji is the same in normal and su

perconducting states, and is also independent of energy 
over the relevant range. One may then include Si in the 
renormalized quasiparticle energies. 

With these assumptions, 0S—12„ may be expressed 
as a function of A and T. The specific interactions which 
give rise to superconductivity enter only through A. 
Thus one may use the expression to derive an empirical 
A(r ) from experimental measurements of the free 
energy difference, as obtained for example from the 
critical field.2 

The latter two assumptions are presumably valid in 
the weak-coupling limit, A<^COJ0, where coo is an average 
phonon energy. The purpose of the present paper is to 
derive more general formulas for the free-energy differ
ence between normal and superconducting states and 
thus to estimate the errors involved in the Bardeen-
Cooper-Schrieffer (BCS) expression. The calculations 

* On leave from the University of Illinois, Urbana, Illinois, 
February-June, 1964. 
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sense in the superconductor (i.e., remains finite) and 
is extremely accurate for the normal metal, it was 
natural to assume it valid to a high degree of approxi
mation for a superconductor. 
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are based on a theory of Eliashberg3 which includes 
electron-phonon interactions in a general way but omits 
effects of Coulomb interactions, except as they may be 
included in the renormalization of the quasiparticle 
energies. The major corrections arise from differences in 
Si between normal and superconducting states arising 
from the phonon interaction. 

The general expression derived by Eliashberg4 for the 
free energy per unit volume of the superconducting 
state is 

0.= -(2/70)2; Bln(-*(P)) 
p 
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The Eliashberg expression for the free-energy difference between superconducting and normal states for an 
electron-phonon interaction model is evaluated so as to estimate the errors involved in expressions based on 
the weak-coupling limit. It is shown that the major correction comes from the difference in self-energy terms 
Si , and 2Jm and is relatively of order [(A/co0) ln(A/w0)]2, where «0 is an average phonon energy. The cor
rection may be appreciable for strong-coupling superconductors such as lead. 
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The energies ep are measured from the Fermi energy 
JJL, co g° is the unrenormalized phonon energy, and ap_p> 
is the coupling constant entering the electron-phonon 
interaction. We assume everywhere that ep is small com
pared to JJL so that, there is symmetry between electrons 
and holes. Then p will be independent of temperature 
and the same in normal and superconducting states. 

The expression (1) for 0S is analogous to a similar ex
pression given by Luttinger and Ward5 for the free en
ergy of an interacting electron system. I t has the useful 
feature that it is stationary with respect to variations 
in 2Ji, 22, and TT if these quantities are given by 

S i . (P )= ( 1 / 7 J 8 ) Z a^GiP'WP-P'), 

S 2 s (P)= ( 1 / 7 J 8 ) E ap^F(P')D{P-P'), 

(5) 

(6) 

*• . («)=- (2a e V 70) 

XT.tG(P+q)G(P)-F(P+q)F(-P)l. (7) 
P 

The corresponding expression for ttn, the free energy 
in the normal state, is similar to (1) except that now 
2 2 = F = 0 and Si„ and irn differ by small amounts from 
their values Xu and ws in the superconducting state. 
The free energy difference 12s—Qn may be calculated by 
making use of the fact that tin is stationary with re
spect to variations in Si and T. If in the expression for 
Qn we replace Si« by S i s and irn by irs and call the result 
ilns, then Qns will differ from 12n by terms quadratic in 
the differences (Sis—Siw) and (Vs—7rn). The magnitude 
of these errors is estimated below and shown to be 
negligibly small. 

The expression for 12s—tins can be simplified by use of 
(5) and (6). We find 

G a - O n . = - ( l / 7 0 ) 

X Z LH<ps(P)/cpns(P))-UP)F(-Pn+C, (8) 
p 

where C is given by 

C = - ( l / m i « ^ 2 [ G ( P ) - - G „ . ( P ) ] 
pp' 

XD{P-P')[_G(P')-Gns(P')-] (9) 

and is a small correction in the weak-coupling limit. Here 
Gns is the electron Green's function for the normal metal 
except that Sm is replaced by Si s . Similarly cpns is ob
tained from <ps by setting S 2 = 0 . 

The momentum dependence of Si and S2 is unim
portant and following Nambu6 we define 

rz(f)=r+2i(r), 
A(r)=s2(f)/z(r). (10) 

The integration over momenta in (8) can then be 
carried out, and we find: 

1/2 a-ows^[27rA(o)/^]i:{(-^2)l/2-(A2(^)~n2) 

+iA2(f z ) / [A^(n) - rz 2 ] 1 / 2 }Z s (n )+C, (11) 

where A(0) is the density of states of one spin at the 
Fermi surface. 

One may evaluate C in a similar way by integrating 
first over momenta coordinates. I t should be noted that 
if Si depends only on the energy variable, the sum 

(l/mTt<*P-P>*Gn.(P')D(P-P') 
p' 

is independent of the values of Si used in Gns and is 
thus equal to Siw. Thus we find 

C = [ x A ( 0 ) / / 3 ] L ( Z s - Z w ) { ( A 2 - ^ ) i / 2 
i 

_ ( _ r z 2 ) l / 2 _ A 2 / ( A 2 _ f z 2 ) l / 2 ^ ( 1 2 ) 

Inserting this result in (11), we find 

0 . - 0 » . = [>tf(0)/£l E {(Zs+Zn) 
i 

X [ ( - i V ) 1 / 2 - ( A 2 - n 2 ) 1 / 2 + A V 2 ( A 2 - ^ ) i / 2 ] 

+ (Z, -Z s )A 2 /2 (A 2 - fz 2 ) 1 / 2 } . (13) 

In the zero temperature limit one may replace the 
sum by an integral along the imaginary co axis. By use 
of the summation methods of Luttinger and Ward5 and 
others, one may express (13) at an arbitrary temperature 
as an integral along the real axis: 

Sls-Qns = ReN 1(0) f 
J o 

[Z s (co)+Z n (co)] 

X - c o + ( c o 2 - A 2 ) 1 / 2 + -
A2 

2(co2-A2)1/2> 

[Z„(aO-Z.(aO]A2 | (3a> 

2(co2-A2)1/2 J 2 
(14) 

Here Re means the real part. 
Values of Z(co) and A(co) have been determined for 

lead by Schrieffer et al.7 and by Scalapino et al.s Equa
tion (14) gives a rapidly convergent expression for cal
culating the free-energy difference and thus Hc

2/&w. 
I t can be shown to be equivalent to an expression de
rived by Wada9 by a different method. Wada's less 

5 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1418 (1960). 
6 Y. Nambu, Phys. Rev. 117, 648 (1960). 

7 J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev-
Letters 10, 336 (1963). 

8 D. J. Scalapino, Y. Wada, and J. Swihart, Bull. Am. Phys. 
Soc. 9, 267 (1964). 

9 Y. Wada, Phys. Rev, 135, A1481 (1964). 
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rapidly convergent expression is 

[ 1 + Z „ ( « ) > 
Jo 

-Z s (co 2 -A 2 ) 1 / 2 
fa 

tanh—dco. (15) 
(co2-A2)1/2J 2 

The difference between (14) and (IS) vanishes if it can 
be shown that 

ReN(0) F 
Jo 

OJ[ZS(W)—1]" 
co2[Zn(co)-l] 

(co2-A2) 1/2 

Xtanh—dco = 0, (16) 
2 

which follows from a momentum integration of 

£G n (P )Z l s CP) = E G s C P ) 2 l n ( P ) . (17) 
P P 

Both sides of this equation are equal to 

( 1 / W £ ap-9,*Gn(P)G.(P')D(P-P') 
p,pf 

if it is assumed that 7rn = 7ra. 
We are particularly interested here in estimating 

errors involved in use of the weak-coupling approxima
tion. If Z and A are constants over the important range 
of integration, Z may be included as renormalization of 
the quasiparticle energies ep. This neglects small terms of 
order T^lnT" which come from the temperature de
pendence of Z (Ref. 4). The first line of (14) then re
duces to the original expression of BCS, given in 
Eq. (3.37) of that paper. After a change of variables of 
integration, Eq. (14) reduces to (3.37) plus a correc
tion C±: 

Qs-nns=-iN(0)A2-2N(0) 

[2e2+A2 

X 
/ 
J o 

-f(E)-2ef(e) rfe+Ci, (18) 

where / is the Fermi function and E= (e2+ A2)1/2. Here 
Ci is given by the second line of (14): 

Ci = ReiV(0) 
J 0 

00 [Z„(a/)-Zs(a;)]A2 £co 

2(o>2-A2)1/2 
tanh—dco. (19) 

2 

For simplicity in estimating the magnitude of Ci, we 
make the following approximation: The coupling con
stant aq

2 is replaced by a constant ^=X0/A r(0), where 
Xo is a dimensionless constant of order unity. The phonon 

spectrum is assumed to be of the Einstein type con
taining a single frequency co0. Then the phonon Green's 
function is independent of momenta, A and Z are re
garded as constants, and Z is absorbed into the defini
tion of the single-particle energies ep. With these ap
proximations we find at zero temperature 

Zu—Ziri~X0(A/co0)
2 ln(coo/A) co<o>o 

~Xo(Aco0/co2)2ln(cVA) ^>co0 , (20) 
which gives 

Ci/(a.-0»)»X0[(A/co<>) ln(co0/A)]2. (21) 

In the weak-coupling case this term is negligible, but 
cannot be neglected when the coupling is strong. Thus 
for lead A/co 0~| and d may give a correction of more 
than 10%. 

We turn now to a discussion of the approximations 
made. No error is introduced by replacing 2Ji„ by 2 i s in 
the calculation of 12„, provided that Si depends only on 
the energy variable and is independent of momentum, an 
excellent approximation. By integrating first over the 
momentum variable, we find 

O»-a».= - ( l / 0 F ) £ {lrWP)M s(P) 
p 

+Si» (# )G»(P) - (2S 1 . -S l n )G„ .} = 0. (22) 

Here <pn and Gn are the correct normal-state functions 
and ipns and Gns the function with S i n replaced by Si«. 

The error introduced by replacing wn by ?rs is to 
second order: 

A G = ( 1 / 4 0 7 ) E L^(q)/87r(q)T^n(q)-Ts(q)J. (23) 

To estimate the magnitude of Trn(q)~Trs(q) we use the 
simplifying assumptions made above. The difference 
depends in an unimportant way on momentum and 
energy and is roughly 

KX0/8)(A2/M
2)ln(2co0/A). (24) 

Since A/n is of order 10~3, (24) leads to a change in 
velocity of sound of the order of one part in 106. The cor
rection (23) is completely negligible. 

Thus the major correction to the BCS expression 
comes from Ci, and is dependent on the difference in 
the renormalization factors, Zn—Zs, between normal 
and superconducting states. For weak coupling, cor
responding to A<coo/10, the correction is small, and the 
expression may be used to estimate empirically the tem
perature dependence of A from critical field or thermo
dynamic data. However, errors are appreciable for 
strong-coupling superconductors such as lead. A rapidly 
convergent integral is given for calculating Qa — Qn 

from Z(co) and A (a?) when the coupling is strong. 


