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In elastic electron scattering atomic screening is shown to affect the cross section both at very small and
at very large angles. However, for energies above approximately 200 keV the large-angle screening effects are
small, and the cross section may be written as a product of two factors, one depending on the screening effect
only and the other on the spin and relativistic effects only. The cross section thus obtained is shown to be in
good agreement with previous exact numerical calculations for all angles and all elements. Approximate

expressions for large-angle scattering are obtained.

I. INTRODUCTION

HE effect of atomic screening on the elastic
electron-scattering cross section has been con-
sidered previously by various authors,! in the first- and
second-order Born approximation,? in the Moliére ap-
proximation,? and more recently for electron energies in
the range from 50 to 400 keV using phase-shift calcula-
tions.* The inclusion of the screening effect in the cross
section is complicated by the presence of the spin and
relativistic effects for the electron. The purpose of the
present paper is to point out that spin and relativistic
effects may be treated separately from the effect of
atomic screening over a wide range of elements and
atomic numbers. It is found that if the electron energy is
larger than approximately 200 keV, then for any
element and any scattering angle the cross section may
be written as a product of two factors, one depending
only on the atomic screening and the other only on the
spin and relativistic effects. The evaluation of the first
factor follows the method of Moliére,® although the
derivation given here is different. Since Moliére was the
first to apply the WKB method to scattering by screened
nuclei we would like to call this approximation Moliére
approximation. For larger scattering angles two even
simpler approximations can be applied, namely, a sta-
tionary phase approximation which is identical to a
classical computation, and an expansion leading to
integrals which can be performed analytically. The
present treatment of the screening effects is much
simpler than the exact phase-shift calculations and yet
yields values which are sufficiently accurate.
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Tekniske Hggskole, Trondheim, Norway.
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II. ESTIMATE OF SCREENING EFFECTS

In order to estimate the relative importance of the
atomic screening and the spin, it is convenient to treat
separately the case of small angles, for which the
momentum transfer ¢=2p sinf/2<p, and the case of
large angles, for which ¢g~2p. Here p is the momentum
of the electron and 6 the scattering angle. Throughout
this paper energies and momenta are measured in units
of mc? and mec, and lengths are measured in units of the
electron Compton wavelength.

a. Small Angles, ¢<p

Since for small angles ¢<<p the field in which the
electron is scattered is weak, it is sufficient for an esti-
mate to consider the first-order Born approximation
cross section for a potential V= — (Z/137r)e A" where
the screening radius 1/A is of the order 1372713, With E
as the total electron energy, the cross section becomes

do 4( Z >2 E? g i
—=4{ — ) ——(1—p2%sin%/2). 1
dQ 137 (q2+A2)2( B sin’/2) @

The factor (¢>4-A2)~? accounts for the atomic screening
and the factor (1—p?sin?9/2) describes the spin effect.
Thus, the latter is unimportant when

Bsind/2=q/2EK1, (2)
whereas screening effects are important when
gSA=23/137. @A3)

It is possible then to treat spin and screening effects
separately as long as both conditions (2) and (3) are
maintained simultaneously. This requirement can be
stated as

Z3/13TX2EK1 4)

which is easily fulfilled for all elements and energies.
Thus, in the region of small values of ¢, spin and screen-
ing effects may always be treated separately.
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b. Large Angles, ¢g~2p

For large angles, g~ 2p, the field in which the electron
is scattered is no longer weak and the first-order Born
approximation is not adequate for estimating the effects
of spin and screening. From Dalitz’s calculations per-
formed in second-order Born approximation, we may
obtain an estimate of these effects. The condition for
small overlap of spin and screening effects for large
angles is®

VALY
—<1. (5)
(137)*Bp

In Table I, £is given for Z=29 and Z=T79 for several
electron energies. Since in the present treatment we do
not try to incorporate the overlapping of the spin and
screening effects, the values of £ in Table I indicate the
order of magnitude of the error to be expected. It then
follows that for electron energies above 200 keV the
errors are small for all elements and for all angles. For
lower energies the overlapping of the spin and screening
effects may be appreciable for heavy elements and
large angles.

III. THE CROSS SECTION

The estimates made in Sec. II show that screening
and spin effects may be treated separately for all angles
when condition (5) is fulfilled. The separate treatment
suggests that the exact cross section may be written as
a product of two factors, one of which takes into account
screening effects but neglects spin, while the other takes
into account spin effects but neglects screening. Thus
the exact cross section is given by

do do
I P G
aQ ex aQ ex, 1o s¢

where [do/dQ]ex, nose is the exact cross section for elastic
scattering of an electron in an unscreened Coulomb
field.® The factor R takes into account screening, but
does not contain electron spin effects,

L/,

& The Dalitz cross section of Ref. 2 is given by (see Ref. 1 for
this particular form of the cross section)

do_ o ZNVET _pg ¢ YV, Z 42)1
de_4(137) q4[<1 § sin't/ 2)(q2+A2) +137(42+A2 B

a4 g 22, 1 2 Y tan—2L
X{tan 12A sing/2 tan 1X+A(A2+4E2 2 tan 12A

where 4 = (p*+4p*A2+A9"2 and A= Z13/137. For ¢~2p>>A the
second-order Born term in the square bracket becomes
Z Q-fIA_ 2% 2
137 Bp T (A37)8p
which leads to the condition Eq. (5).
6 Tables for the exact relativistic electron Coulomb scattering

cross section are given by J. A. Doggett and L. V. Spencer, Phys.
Rev. 103, 1597 (1956) ; N. Sherman, 4bid. 103, 1601 (1956).

TasLE 1. Values for £=243/(137)2(2/8p).

T (keV) 50 100 200 400
Z=29 0.05 0.025 0.014 0.01
Z=19 0.19 0.10 0.05 0.03

where [do/dQ]s and [do/dQ Jnose are the cross sections
for scattering of a spinless electron in a screened and
unscreened potential, respectively.

The ratio R may also be expressed in terms of the
T matrices, ’

R=|Tsc‘2/lTnoscl2' ®)

The T matrix for a spinless particle is

T=/ etV () (D dx, ©)

where ¢, is the scattering-state solution of
(V24 p2—2EV+ V2 (r)=0;

here the subscripts 1 and 2 refer to initial and final
state, respectively.

In Egs. (9) and (10) the pure Coulomb potential
V=—2/137r is used for obtaining T'yos, while the ap-
propriate screened potential is used for finding Ts.

If we introduce y1(r)=¢®1F(r), the T matrix, Eq.
(9), becomes

(10)

T= / 'V (r)d3x (9a)
and the wave equation, Eq. (10), becomes
(V2+2ip;- V—2EV+V?)F (r)=0. (10a)

The T matrix for small values of ¢ is obtained in the
same manner as in a previous work’ where the case of
high energies was considered. From Eq. (9a) we observe
that for the case of the first-order Born approximation,
F=1, the most important region in the integral is
r~1/q. Since, as discussed in Sec. II, screening effects
are only important for small values of ¢ when the condi-
tion (5) is satisfied, the important region of » in the
integral (9a) is #>>1. Moreover, since for these large
values of 7 the field is weak, F(r) is a slowly varying
function. Therefore, the estimate based on the first-
order Born approximation is valid. Thus the important
region in the integral (9a) including F (r) isr~1/¢>>1. In
this region the terms V2F and V?F are of the relative
order ¢/2E and Zq/137X2E as compared to the term
2EVF, and may be neglected. We are therefore left with

(ip- V—EV)F(r)=0,

7H. Olsen, L. C. Maximon, and H. Wergeland, Phys. Rev. 106,
27 (1957). Note: Sec. 9.
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which has the solution

F(p,z)-——exp[——'[—ifz V(Pyﬁ')di'],

—%0

where the z axis is along p.. The T matrix Eq. (9a) then
becomes, upon introducing cylindrical coordinates p, ¢,
and 2z,

T= / eitnrtesl (p,z) eXp[—é f V(p,f)ds“:'dwpdpdz,

where q, and q; are the components of q parallel and
perpendicular to pi, respectively. For small angles,
¢:Lq, ¢—q<<q and, since z~1/q, the factor ei%*=~1
+0(q./q)- Neglecting small terms of the order ¢./q, the
% integration may be performed, giving ®

8 i
-’ / e‘q'P{exp[—é / v<p,;)d;]_1]d¢pd,,
1 —00

— —2ni8 / Jo(ap)
0

-
xlexp[—é / V<p,r)d§]——1}pdp, (11)

where Jo(gp) is the Bessel function of zeroth order.
Equation (11) is the Moliére approximation® for the
T matrix. The same formula has been derived by several
authors® in different ways. The only application to
atomic screening, however, is in Moliére’s paper.
For the case of an unscreened potential V=—Z2/137r,
| Taose| €quals the Born approximation expression’

| Those| =4m(Z/137¢%).
Thus R [Eq. (8)] may be written in the form

137\2 ¢'8?
Rk

Z 4
where V (r)= V (p,{) is the appropriate screened potential.

The cross section is then given by Eq. (6) with R as
given by Eq. (12). The quantity ¢ in Eq. (5) and Table I

2

, o (12)

/ Tolap) }pdp

8 Tt might be shown that the phase-shift analysis at small angles
leads to the same expression as Eq. (11); see Refs. 3 and 7.

9T.. D. Landau and E. M. Lifshitz, Quantum Mechanics (Ogiz,
Moscow, 1948), (in Russian), Part I, pp. 184-203, 470-473
[ (English transl.: Pergamon Press, Inc., New York, 1958)7; G.
Parzen, Phys. Rev. 81, 808 (1951); R. J. Glauber, Phys. Rev. 91,
459 (1953); E. W. Montroll and J. M. Greenberg, Proc. Symp.
Appl. Math. 5, 103 (1954); B. J. Malenka, Phys. Rev. 95, 522
(1954); 1. I. Gol’dman and A. B. Migdal, Zh. Eksperim. i Teor.
Fiz. 28, 394 (1954) [(English transl.: Soviet Phys —JETP 1,
304 (1955)7; L. I. Schiff, Phys. Rev. 103, 443 (1956); D. S. Saxon
and L. I. Schiff, Nuovo Cimento 6, 614 (1957).
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TaBLE II. Parameters in screened potential Eq. (13).

a 12 as bl ba ba
Z=29 0.22 0.78 0 0.319 1.081 0
Z=179 0.19 0.56 0.25 0.257 0.779 3.16

represents the error to be expected in the expression for
R Eq. (12).

Although we have assumed small scattering angles in
deriving formula (12), we shall henceforth assume this
formula to be valid for all angles. This assumption is
justifiable on the grounds that for large angles screening
is unimportant and the potential approaches the pure
Coulomb potential V' =—Z2/137r. The ratio R as a func-
tion of ¢ Eq. (12) approaches the value unity, which is
the correct value for large angles in the absence of large-
angle screening effects as discussed in Sec. IIb. The
ultimate justification for extending the assumption to
all angles will be the close agreement between the results
of the approximated and the exact calculations.

IV. NUMERICAL INTEGRATION

To establish the accuracy of the present theory we
have integrated Eq. (12) numerically for the values of Z
and electron energies shown in Table I which are the
same parameters as those used by Lin? in his exact
phase-shift analysis thus making a direct comparison
with his results possible. We also use the same Hartree-
Byatt!® potentials as does Lin. These are of the form

V(r)=— (Z/137r)§ @bl (13)

where the constants @; and b, are given in Table II,
and where A= Z1/3/0.885X137.
The integral in the exponent in Eq. (11) then becomes

oo 3
—@/8) / V)i =2ia % akolbp), (14

where a=Z/1378. For the numerical calculation it is
convenient to perform a partial integration on the

integral in Eq. (12); using qoJo(gp)=d/dp[ pJ1(gp)] we
obtain with y=¢/A and x=pA,

R=y?

3 0
> akbk/ xdx1(xy)K1(brx)
1 0

Xexp{2ia 3_ a;Ko(bjx)}|
=002, 15)

10 W. J. Byatt, Phys. Rev. 104, 1298 (1956).
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where

]

O1=y i a;cbk/ xdxJ 1 (xy)K1(brx)
’ Xcos{2a Y a;K(bx)},
(16)

©

xdxJ 1 (2xy) K1 (bx)
Xsin{2a 3 a;K(bx)} .

Q2= -y 23: akbk/

0

The partial integration thus produced the factor
K1(byx) in the integrands of Q; and Q. The integrals are
then rapidly converging for large values of x by virtue
of the exponentially decaying Ki(bsx). Moreover, the
infinite oscillations of the integrand due to the loga-
rithmic divergence of Ko(b;x) for small x are suppressed
by the vanishing Bessel function J1(xy).

The computations were programmed in Fortran and
run on an IBM-7090 computer. Subroutines for the
Bessel functions J1(x) with accuracy better than 0.089,
were available. A program for the Hankel functions
Ko(x) and Ki(x) was developed, with an accuracy
better than 0.1%,. The results of the integration are
given in Table III. It is seen that the magnitude of the
maximum error in R is very close to the errors given by
the values of £ in Table I as was anticipated in Sec. II.

From Table III it is seen that errors of the ratio R
given by the present theory are of the order of 59, or less
for all angles and for energies above 50 keV in the case
of the light elements, and for energies above 200 keV in
the case of the heavy elements. The errors for small
angles §<10° where screening is most important are
much smaller, of the order 19, or less for all elements.

The present method of calculation, which is much
simpler than the exact phase-shift analysis thus provides
values of the cross section sufficiently accurate for most
experimental applications for all elements and all
angles in a wide range of energies.

V. STATIONARY-PHASE APPROXIMATION

Although the expression Eq. (15) gives R in a form
which readily may be used for numerical integration, it
might be of interest to derive approximate expressions
for R valid in restricted ranges of y=g¢/A. One way of
doing this is to use the method of stationary phase.!!

In our case the magnitude of 2a=2(Z/1378), which is
crucial for the application of the stationary-phase ap-
proximation, does not seem large enough to give ac-
curate values for R. Since, however, the method gives
an expression for R which in the case of moderately
small angles is identical to the classically derived expres-
sion as we shall see, the procedure should be reliable as
long as the effect of screening is not too strong. In other
words the stationary-phase approximation should be
accurate for large values y=¢/A. Here we use the same
arguments in extending the small-angle results to large
angles as at the end of Sec. ITI.

1 See also G. Moliére, Ref. 3, Sec. 5.
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We write Eq. (11) in the form
1= (/) [ et rsohdndp, (17)

where

+0
o= (1/6) / V)it

The second term in Eq. (11) which is equal to — (8/1)
X (27)25(q) is zero for finite angles and has been left
out. The point of stationary phase (¢o,p0) is given by
Vp[q'9~¢(P)]=0: or ‘190:07 and

q(p0)=| 3¢ (p0)/dpo] . (18)
Then the scattering matrix is
T=21r6[i 99 (po) 32¢(P0)]—”2. (19)
po 9po  9%pg
The cross section is
do/dQ=|T|2E%/(2r)2. (20)

When T Eq. (19) is substituted into Eq. (20) and the
relations d¢/dpo=gq, 9%p/8%pe®=3q/dpo from Eq. (18)
are used, we find
2po sinfdo
do= 27r~p——-0
qdq/dpo

= 2mpodpo.

1)

Equation (21) is identical to the classical expression
for the scattering cross section in terms of the impact
parameter po. Equation (18) giving the impact param-
eter in terms of the momentum transfer is identical to
the classical small-angle relation between the scattering
angle and the potential.!? Since the classical cross
section for an unscreened potential (the Rutherford
cross section) is exact, we conclude that the stationary-
phase method is reliable as long as the screening is not
too strong, i.e., for large values of yo=gq(po)/A.

Written in terms of yo and xo= poA, the stationary-
phase approximation for R, which is identical to the
classically computed Reiags, is

-Rclass=x02(y0/20)3[(y0/20)+x0 Z dibi2K0(bix0)]_l ) (22)

where we have used the potential given in Eq. (13) and
Table II. The quantity «o in terms of vy, follows from
Eq. (18)

y0/20= Z aibiKl(bixo) . (23)

Values for Raes calculated numerically from Egs.
(22) and (23) given in Table III are seen to be close to

2 The classical action function S(r) satisfying (¢ S)*+42EV
—V3+m?=E is for large impact parameters S=piz— (1/8)
XS - V(p,$)dt, where the z-axis is along p;. The transverse

momentum at Z — e which is equal to qy is
as a1 [+
ol =|m3 [ venal

and thus equal to Eq. (18) for small angles.

L=
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TasLE ITI. Values for the exact cross-section ratio Rex; the Moliére approximation R, Eqs. (15) and (16); the classical approximation
Rolass, Eqs. (22) and (23); the large-angle approximation Rr.a., Egs. (25) and (26), and the ﬁrst-order Born approximation Rgorn,

€= (R Rex)/Rex

Z=29
50 keV 100 keV
0 € €
(degrees) Rex R (%) Rclass RL.A. RBarn Rex R (%) Rclass RL. A, RBorn
2 0.118 0.248 0.137 0.240 0.445 0.267
4 0.352 0.459 0.426 0.552 0.681 0.620
6 0.527 0.609 0.638 0.714 0.766 0.792
8 0.638 0.689 0.763 0.799 0.844 0.872
10 0.732 0.711 —2.83 0.758  0.696  0.835 0.869  0.853 —1.82  0.895 0.849  0.915
20 0910  0.878 —3.55 0.900 0.883 0.953 0.966  0.949 —1.78 © 0.963 0.951 0.977
30 0.966  0.933 —3.47 0.945 0.937  0.979 0.986  0.974 —1.28 0.981 0976  0.990
40 0996  0.957 —3.88 0964 0960  0.983 1.005 0.985 —1.91 0.988  0.985  0.994
50 1.016 . 0.970 —4.58 0975 0.972 0.992 1.011 0.989 —2.20 0991 0.990  0.996
60 1.023  0.976 —4.56  0.981 0979  0.994 1.013 0.992 —2.09 0994  0.992 0.997
70 1.030 0981 —4.72 0.985  0.983 0.996 1.012 0.994 —1.75  0.995 0994  0.998
80 1.033 0.984 —4.75  0.987 0986  0.996 1.015 0.996 —1.84 0996  0.995 0.998
90 1.036  0.987 —4.74 0989 0988  0.997 1.022 0.997 —243 099 099  0.999
100 1.041 0.988 —5.04 0.991 0.990  0.997 1.018  0.998 —195 0997 099  0.999
110 1:042 0.989 —-5.10  0.992 0.991 0.998 1.008  0.999 —0.93 0997  0.997  0.999
120 1.045 0.990 —5.26 0.992 0.992 0.998 1.042 0.999 —4.09 0.997 0.997 0.999
130 1.045 0.991 —5.17  0.993 0.992 0.998 1.022 1.000 —2.18 0.998  0.997  0.999
140 1.047 0991 —5.32 0.993 0.993 0.998 1.012 1.000 —1.15 0998  0.997  0.999
150 1.050 0.992 —5.41 0.994 0.993 0.998 1.010 1.000 —0.96 0.998 0.998 0.999
160 1.053 0.992 —5.82 0994  0.993 0.998 1.089 1.001 —8.06  0.998 0.998 0.999
170 1.045  0.992 —5.09 0994 0994  0.998 1.001 1.001 —0.05 0998 0998  0.999
Z=29
200 keV 400 keV
2 0.427 0.660 0.465 0.643 0.825 0.677
4 0.735 0.845 0.786 0.866 0.933 0.897
6 0.849 0.919 0.894 0.931 0.963 0.952
8 0.904 0.939 0.938 0.958 0.979 0.972
10 0.939  0.931 —0.77 0959 0934  0.959 0.986  0.971 —160 0984 0972 0.982
20 0994 0979 —1.53 0.987  0.980  0.989 1.017  0.993 —2.39 0995  0.992 0.995
30 1.001 0.990 —1.06 0993 0990  0.995 1.025.  0.997 —2.71 0998  0.996  0.997
40 1.011 0.995 —1.57 099 0994  0.997 1.007  0.999 —0.82 0998  0.998  0.999
50 1.002 0.997 —047 0997 099  0.998 0.989 1.001 117 0999 0998  0.999
60 1.005 0.999 —0.62 0998  0.997 0999 0.980 1.002 222 0999 0999 0999
70 1.006 1.000 —0.62 0.998 0.998 0.999 0.982 1.004 226 0999  0.999 1.000
80 1.003 1.001 —0.21 0.999 0998  0.999 0.979 1.005 2.68  0.999  0.999 1.000
90 0.999 1.002 0.30  0.999 0.998  0.999 0.984 1.007 229 0999  0.999 1.000
100 0.998 1.003 046 0999 0999 0.999 0.996 1.008 116 0999  0.999 1.000
110 0.995 1.004 0.85 0999  0.999  0.999 0.996 1.009 1.32 0.998 1.000 1.000
120 1.007 1.005 —0.82 0.999  0.999 1.000 0.996 1.010 145  0.999 1.000 1.000
130 1.005 1.006 0.05 0.999  0.999 1.000 1.005 1.011 0.61 0.999 1.000 1.000
140 1.005 1.006 0.09 0999  0.999 1.000 1.019 1.012 —0.65  0.998 1.000 1.000
150 1.011 1.006 —0.43 0.999  0.999 1.000 1.034 1.013 —2.01 0.997 1.000 1.000
160 1.036 1.007 —2.82 0999 0.999  1.000 1.054 1.013 —3.86  0.997 1.000 1.000
170 1.009 1.007 —0.19 0999  0.999 1.000 1.075 1.014 —5.50  0.997 1.000 1.000
Z=79
50 keV ] 100 keV
2 0.049 0.054 0.082 0.109 0.131 0.162
4 0.133 0.136 0.263 0.240 0.249 0.397
6 0.200 0.201 0410 0.330 0.340 0.544
8 0.254 : 0.257 0.515 © 0400 0.404 0.643
10 0.307  0.298 —2.83 0.299 22.06 0.594 0.469 - 0.464 —235 0464 1996  0.715
20 0.495 0.470 —4.84 0.474 1.874 0.808 0.673 0.661 —2.66 0.661 0.629 0.889
30 0.631 0.586 —7.04 0.588 0.825 0.895 . 0.794 0.756 —4.77 0.765 0.699 0.944
40 0.733 0.663 —9.58 0.668  0.691 0.934 0.869  0.817 —5.93 0.827  0.776  0.967
50 0.810  0.720 —11.2 0.725 0.696  0.955 0.919  0.860 —6.42 0.866  0.829  0.978
60 0.870 0.759 —12.8 0.767 0.727 0.967 0.957 0.890 —7.01 0.892 0.864 0.984
70 0.923 0.786 —14.8 0.798 0.758 0.975 0.981 0.909 —7.34 0.910 0.888 0.988
80 0967  0.811 —16.1 0.822 0.785 0.980 1.003 0.921 —817 0923 0905  0.990
90 1.004 0.833 —17.0 0.841 0.807 0.983 - 1.018 0.933 —8.32 0.933 0.918 0.992
100 1.044 0.851 —184 0.856 0.825 0.986 1.037 0.944 —8.97 0.940 0.927 0.993
110 1.086  0.861 —20.7 0.867  0.839 - 0.987 1.052  0.947 —10.0 0.946  0.935 0.994
120 1.112 0.868 —21.9 0.876  0.850 " . 0.989 1.067 = 0.949 —11.0 0950  0.940  0.994
130 1.142 0.876 —23.3 0.883 0.859 0.990 1.076 0.953 —114 0.953 0.944 0.995
140 1.174 0.882 —24.9 0.888 0.866 0.990 1.095 0.957 —12.6 0.956 0.947 0.995
150 1.191 0.885 —25.7 0.892 0.870  0.991 1.105 0.958 —13.4 0957 0949  0.996
160 1.202 0.889 —26.0 0.895 0.874 0.991 1.107 0.961 —13.2 0.959 0.951 0.996

170 1217  0.892 —26.7 0.897 0876  0.991 1119  0.962 =140 0959 0952  0.996
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TABLE III (continued)

Z=179
200 keV 400 keV
0 € €
(degl‘ees) Rex R (%) Rclass RL.A. RBorn Rex R (%) Rclass RL.A. RBorn

2 0.204 0.237 0.285 0.336 0.363 0.440
4 0.377 0.387 0.538 0.528 0.552 0.682
6 0.484 0.497 0.677 0.646 0.668 0.803
8 0.569 0.579 0.766 0.726 0.744 0.870
10 0.636  0.630 —1.03 0.643  0.582 0.826 0.771 0.779 1.02 0.797  0.700  0.910
20 0.812  0.802 —-1.19 0816  0.747 0.943 0.903 0.903 —0.00 0913 0.883 0.974
30 0.891 0.879 —145  0.887 0.851 0.973 0934 0.943 0.12 0950 0.937  0.988
40 0.942 0.916 —2.73 0.922  0.901 0.984 0.962 0.961 —0.15 0968 0960  0.993
50 0.970  0.936 -3.35 0.943 0.928  0.989 0.991 0.969 —2.18 0977 0972  0.995
60 0.987  0.950 —=3.76 0955 0945  0.992 0.995 0.973 —2.22 0.982 0979  0.997
70 0.993 0.957 —3.63 0964 0956  0.994 0.997  0.977 —2.06 098  0.983 0.997
80 1.001 0.962 —-3.80 0970 0.963 0.995 0.998  0.980 —1.81 0.988 0986  0.998
" 90 1.013 0.964 —4.79 0974 0968  0.996 0.997  0.980 —1.82 0990 098  0.998
100 1.020  0.965 —5.41 0.977 0973  0.997 1.000  0.982 —1.79 0991 0.990  0.999
110 1.026  0.968 —=5.64 0979 0976  0.997 1.006  0.982 —2.36  0.992 0.991 0.999
120 1.032  0.969 —6.14  0.981 0.978  0.997 1.009  0.986 —2.32 0.993 0.992 0.999
130 1.037  0.967 —6.77  0.982 0.979  0.998 1.012 0.986 —2.54  0.993 0.992 0.999
140 1.046  0.966 —7.67 0.983 0.980  0.998 1.023 0.986 —3.62 0.994  0.993 0.999
150 1.050  0.967 —7.88 098 0981 0.998 1.024  0.987 —3.45 0.994  0.993 0.999
160 1.053 0.968 —8.04  0.985 0.982  0.998 1.026  0.989 —3.55 0.994  0.993 0.999
170 1.057 0.968 —8.43 0.985 0.982  0.998 1.030  0.990 —392 0994 0994 0.999

the values obtained by the numerical integration in
Sec. IV for 62> 10°, i.e., for values of y somewhat larger
than one. Note that 2> 3.1 when 72> 50 keV and 6> 10°
for Z=29, and under the same conditions y>2.2 for
Z=19.

The incorrectness of Eq. (22) for small angles may be
seen explicitely if the error in the stationary-phase
expression is computed. This is found to be of the order
(Zyo/137)72 for small values of yo, and thus becomes
very large for small yo. It should also be pointed out that
the cross section Eq. (20) with T given by Eq. (19) gives
an infinite total cross section even for an exponentially
screened potential. The classically computed cross
section is thus infinite for any continuous potential ; it is
only finite for a (discontinuous) potential which is
identically zero outside a given distance from the
scatterer.

From Egs. (22) and (23) it follows that Re14. depends
on the scattering angle and energy through the variable
Yo/2a=gB137/2ZA. Thus for a given element Rejaes iS
constant for g¢B8=2B2E sinf/2=const. Note that the
Born approximation which is less accurate for low
velocities predicts R=const for ¢g=28E sinf/2= const.

VI. LARGE-ANGLE APPROXIMATION

Another approximate formula for R for large values of
v may be obtained by observing that for large values of
g in Eq. (11) only small values of p are important.!
Expanding the exponent in Eq. (12) we find introducing
as before y=g¢/A and x=pA

y2
R="—
4q2

2

/ dxxt=%](xy) exp[ 2¢ax?(p1— 2 Inx) ]
' (24)

where asin Sec. V we have left out the term proportional
to 8(q) and where

¢1= i ab(In(2/vb)+1),

3

$o= 2 aid?,

1
with y=1.7807 (Euler’s constant).
Expanding the exponential function in Eq. (24) and

keeping terms of order x? all integrals can be per-
formed, and the final result is

Rya.=(Q240Q:)r.a., (25)
with
4q? 3a2—1
Q1=1—[¢1+¢2(In(y/2) “P)]_Z‘i'(ﬁz ;
y y (26)
2a(1—a?) 4a
Q2= —[¢1+¢o(In(y/2) — P) }—— +¢2—
y?

where

P=Re[y(ia)].

For the values of a; and b; of Moliere,® Egs. (26) reduce
to Moliére’s Eq. (8.4)3 when terms of the order a3 and a*
are omitted.

" Values for the large-angle approximation Ry.a, are
given in Table ITI. The accuracy is of the same order as
for the classical result Reiaes, but the errors are always
somewhat larger particularly for heavy elements.

VII. CONCLUSIONS

Four approximations for the ratio R of the scattering
cross section of a screened potential to that of an un-
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screened potential were calculated and compared with
the result of exact phase-shift calculations, R.x. Table
IIT lists these results in detail and permits the recogni-
tion of the following:

(1) The Molitre approximation renders R by Egs.
(15) and (16) with an error of the order £ [Eq. (5) and
Table I].

(2) The classical approximation renders Reiues by
Egs. (22) and (23) with an error which is comparable to
that of R for scattering angles larger than 10°.

(3) The large-angle approximation renders Rr.a. by
Egs. (25) and (26) with errors generally larger than
Of Rclass'

ZEITLER AND H. OLSEN

(4) The first-order Born approximation gives values,
Rgom, the errors of which exceed those of all the other
approximations. Even for the light element Z=29 and
for small angles the errors are larger than 109,
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The analytical self-consistent field (SCF) theory, based on the relativistic Breit equation generalized for
many particles, was developed for closed-shell systems. The relativistic SCF equations, both of the absolute
and of the expansion method type, were derived in the four-component spinor representation. The Breit
operator was considered in the first-order perturbation theory. The formulas for the relativistic atomic inte-

grals were derived in terms of simple functions.

INTRODUCTION

N this work the relativistic Breit equation! is con-
sidered generalized for many-particle systems. Then
the relativistic self-consistent field (SCF) theory for
closed-shell systems is developed, partially using an
analogy with the expansion method?? of the nonrela-
tivistic theory. The applications® of the expansion
method encourage such an attempt at a relativistic
extension.
While this work was outlined,® an approach related
to the numerical SCF method appeared in the litera-
ture.® Recently, another approach was made.”

*The work was originated at the University of Chicago,
Chicago, Illinois.
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GENERAL CONSIDERATIONS

The validity of the Breit equation for two electrons
has been proved both theoretically! and by practical
applications.® It is quite plausible to assume that even
in a many-electron system mutual interactions between
electrons can be approximated by interactions within
all possible pairs of electrons where in every pair only
the two-electron Breit interaction is considered. Similar
although simpler consideration was performed already
by Swirles® in an atomic case, by going from the Dirac
equation to the approximate many-electron relativistic
equation (while omitting the Breit operator). In the
molecular case the influence of nuclei can be approxi-
mated as an external field.1?

Hence we introduce the generalized Breit equation for
a system of IV electrons (and M nuclei) as follows:

(E—]ijH*‘—%e2 f i)U

k=1 wmy=1; k¥
nFEy
(au . rm') (av . rw)

()
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0 K. S, Viswanathan, Proc. Indian Acad. Sci., Sec. A 50, No. 1
(1959). Diatomic molecules are considered.
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