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screened potential were calculated and compared with 
the result of exact phase-shift calculations, JRCX. Table 
III lists these results in detail and permits the recogni­
tion of the following: 

(1) The Moliere approximation renders R by Eqs. 
(15) and (16) with an error of the order £ [Eq. (5) and 
Table I ] . 

(2) The classical approximation renders Rc\^s by 
Eqs. (22) and (23) with an error which is comparable to 
that of R for scattering angles larger than 10°. 

(3) The large-angle approximation renders RL.A. by 
Eqs. (25) and (26) with errors generally larger than 
° f ^class* 

(4) The first-order Born approximation gives values, 
i?Bom, the errors of which exceed those of all the other 
approximations. Even for the light element Z=29 and 
for small angles the errors are larger than 10%. 
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The analytical self-consistent field (SCF) theory, based on the relativistic Breit equation generalized for 
many particles, was developed for closed-shell systems. The relativistic SCF equations, both of the absolute 
and of the expansion method type, were derived in the four-component spinor representation. The Breit 
operator was considered in the first-order perturbation theory. The formulas for the relativistic atomic inte­
grals were derived in terms of simple functions. 

INTRODUCTION 

IN this work the relativistic Breit equation1 is con­
sidered generalized for many-particle systems. Then 

the relativistic self-consistent field (SCF) theory for 
closed-shell systems is developed, partially using an 
analogy with the expansion method2,3 of the nonrela-
ti vis tic theory. The applications4 of the expansion 
method encourage such an attempt at a relativistic 
extension. 

While this work was outlined,5 an approach related 
to the numerical SCF method appeared in the litera­
ture.6 Recently, another approach was made.7 

* The work was originated at the University of Chicago, 
Chicago, Illinois. 

1 H. A. Bethe and E. E. Salpeter, in Encyclopedia of Physics, 
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. XXXV; 
Sec. 38. 

2 C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951). 
3 C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960). 
4 For further references see, e.g., M. Synek, Phys. Rev. 131, 

1572 (1963); 133, A961 (1964); C. C. J. Roothaan and M. Synek, 
ibid. 133, A1263 (1964). 

5 A brief notice (by M. Synek) appeared in a circular, Division 
of Physical Sciences, The University of Chicago, 1961, p. 25 
(unpublished). A version of the presented work was deposited as a 
Research Report No. SY1, Department of Physics, DePaul 
University, Chicago, Illinois, 1963 (unpublished). See also M. 
Synek, Bull. Am. Phys. Soc. 9, 563 (1964). 

• I . P. Grant, Proc. Roy. Soc. (London) A262, 555 (1961). 
7 G. L. Malli and C. C. J. Roothaan, Bull. Am. Phys. Soc. 9, 

101 (1964). 

GENERAL CONSIDERATIONS 

The validity of the Breit equation for two electrons 
has been proved both theoretically1 and by practical 
applications.8 It is quite plausible to assume that even 
in a many-electron system mutual interactions between 
electrons can be approximated by interactions within 
all possible pairs of electrons where in every pair only 
the two-electron Breit interaction is considered. Similar 
although simpler consideration was performed already 
by Swirles9 in an atomic case, by going from the Dirac 
equation to the approximate many-electron relativistic 
equation (while omitting the Breit operator). In the 
molecular case the influence of nuclei can be approxi­
mated as an external field.10 

Hence we introduce the generalized Breit equation for 
a system of N electrons (and M nuclei) as follows: 

/ N N 1 \ 

N l r (^•r^)(« I '-r^)l 
= - I , 2 E _ J a M . a , + \U9 (1) 

8 G. Araki, Proc. Phys. Math. Soc. Japan 19, 128 (1937). 
9 B . Swirles, Proc. Roy. Soc. (London) A152, 625 (1935). 
10 K. S. Viswanathan, Proc. Indian Acad. Sci., Sec. A 50, No. 1 

(1959). Diatomic molecules are considered. 
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where 

#"=— e<p(tlx)+l3'inic2+oi>i-[cpfl+eA(rii)']. 

Here the notation introduced earlier2 is applied as widely 
as possible. E is the "electronic" energy of a system. The 
wave function U depends on the positions r1, r2, • • •, rN 

of the N electrons and has 4^ spinor components. The 
operator H11 is the Dirac Hamiltonian (considered here 
for M nuclei). Dirac matrices a" and ^ operate on the 
spinor components of U (for the /xth electron) in the 
usual way. The momentum operator pM is, of course, 
given by — ift grad". <p(rM) and A(rM) are the scalar and 
vector potentials of an "external" electromagnetic field 
(including the potentials of all nuclei), rMV is the distance 
between the /zth and *>th electrons. The operator on the 
right-hand side of the generalized Breit equation (1) will 
be called the generalized Breit operator and denoted by 
B. If we neglect the operator B we obtain the zeroth 
approximation expressed by the equation 

( N N 1 \ 

EffM-i* 2 E — )Uo=EoUo, (2) 
which will be called the generalized Swirles9 equation 
(scalar and vector potentials of an "external" field in­
cluding the potentials of all nuclei are now included). 
Equation (2) can also be written as 

3COUQ—EQUOJ (2') 

where the quantities 3C0, EQ, and U0 are the zeroth-ap-
proximation Hamiltonian, "electronic" energy, and wave 
function (with 4^ spinor components), respectively. 

The goal of this treatment is to find a relativistic 
analogy to the SCF expansion method for the solution 
of Eq. (2) and, using an obtained approximation to the 
wave function U0, to find the correction due to the 
generalized Breit operator B by the first-order11 pertur­
bation theory. 

Let us introduce the /cth relativistic (atomic or 
molecular) orbital spinor for the juth electron as follows: 

* V = ^ 2 " (3) 

the pKth component of this spinor is 

W s W W ) i P K = 1 , 2 , 3 , 4 . 

Now let us consider a closed-shell ground state. We 
know that in the nonrelativistic SCF the wave function 

11 The reason for using the first-order perturbation theory is 
based on the discussion given in Ref. 1, following Eq. (38.7). 
(This discussion does not find it correct to use a higher order 
perturbation for treating the Breit operator.) Otherwise it would 
not be difficult to associate Breit operators with Coulombic 
electron-repulsion terms and to treat both on the same footing 
by an SCF treatment; in case of the analytical atomic SCF treat­
ment the same integrals would be used as calculated at the end 
of this article. 

is represented by one antisymmetrized product. In the 
relativistic SCF we expect that the wave function will 
consist of 4^ components where each component will 
be a certain antisymmetrized product: 

tfo«$s 
9i 

02 

fa* 

4>„=(Nl)-v* 

= 1,2, 

^ l p i V 2 p 2
1 * 

^ i P i ¥ 2 P 2
2 • 

• , 4 * . 

" ^NPN1 

' ^NpN
2 

'^NPN
N 

;(4) 

Components of <£ are built by letting pi, p2, • • •, PN be 
equal to 1, 2, 3, 4 for every pK independently. Obviously, 
the spinor $ could also be built by using ^ ^ instead 
of ^Kp/ (cf. Swirles9); then the components of <£> would 
only be arranged in a different order. It is easy to see 
that the spinor <f> can also be written as 

$ = ( i V ! ) - l / 2 
\D\2 \ l / 0 2 . , 

*N2 

<q,1*ry2N...<qfNN 

(5) 

where the determinant is defined in the usual way except 
that the product of two spinors is here always defined 
as if it were a direct product of two vectors; e.g., 

VK^X" 

> K l M " 

^ K 2 M 

^ K 3 M 

J M . 

X 
nr 
$\2V 

Jt\A\ 

== 

I ^ I V M ^ 
^KI^X2V 

^KlVxs" 
^Kl^M" 

^K2^X1V 

rpK^\4\ 

(6) 

The form (5) of the spinor <i> can also be considered as a 
plausible analogy to the nonrelativistic antisymmetrized 
product. 

Clearly, the spinor SF/ can now be treated in many 
respects in the same way as the nonrelativistic molecular 
spin orbital2 and a number of analogous statements 
could be proved. 

Now we assume that 

/ 
¥«*'3M»=a«; (7) 

where dv is the one-electron volume element and 

^ K * = ( & 1 & 2 & 3 & 4 ) , ( 8 ) 

\pKp being the complex conjugate of ^Kp; p = l , 2, 3, 4 
(barred quantities will always be understood as complex 
conjugates); the integrand in (7) is simply evaluated as 
if it were a scalar product of two vectors. Equation (7) 
implies 

f**$dv=l; (9) 
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I t is easy to see that 

£ o o = I f f « + I E ( / « x - ^ ) , (11) 

the expansion method in the form 

FcK=eKScK; (22) 

where 

where F and S are matrices, their elements being given 
as follows: 

K*HVKdv, 

J r^ 

KKX=KXK=KKX=Ku=e* f */**x"*—¥x*¥. 
J r^ 

(12) 

(13) 

q= Xp*FXqdv, Spq= Xp 

the vector cK is given by 

clearly 

J KK J^ KK* 

' J ^ ; (14) 

(15) 

cK= 

*Xqdv; (23) 

(24) 

THE ABSOLUTE (HARTREE-FOCK) RELATIVTSTIC SCF 
EQUATIONS FOR A CLOSED-SHELL GROUND STATE 

Applying the variational treatment to the Eq. (11) 
it is easy to derive the absolute SCF equations 

F*K=eK*K; K = 1,2, • • - , # ; (16) 

F=H+G, G = E ( A - i Q ; (17) 

where 

(the pseudo-eigenvalue eK is of course a scalar). Equations 
(22) form the basis for the SCF procedure applied to the 
expansion vectors cK. 

THE EXPRESSION FOR THE ENERGY £00 

We define the supermatrices Jg and ^ by giving their 
elements: 

* W . = e 2 / X/*X/*—XfX/dv'"', (25) 
J r^ 

(H is the Dirac Hamiltonian which could generally be 
considered for M nuclei); JK and KK are, of course, the 
Coulomb and exchange operators forming bases for the 
integrals JK\ and KK\] ^K is again a four-component 
orbital spinor of one electron; e« is an eigenvalue of the 
operator F (and it is of course a scalar). 

THE EXPANSION METHOD RELATIVISTIC SCF 
EQUATIONS FOR A CLOSED-SHELL 

GROUND STATE 

UVrj s = e 2 / x / * X / * — X . " X , 
J r*v 

•dv"'; (26) 

Let us employ the expansion 

^K= Z) XpCpK; K=1, 2, ,N; 

where 

X-B 

Xpi 
Xp2 
Xpt 
Xp^j 

(18) 

(19) 

is a four-component basis spinor satisfying 

/ 
xp*Xj4v=l, 

where 
Xp — \XPiXP2XpzXP4j ] 

(20) 

(21) 

m is the total number of basis spinors, tn^N;CpK'sa,re 
the coefficients of expansion. By applying the variational 
procedure we can easily derive the SCF equations of 

3 and $ are symmetrical to the exchange pq <-> rs and 
Hermitian to the simultaneous exchange p^ q, r<r->s. 
We construct the supermatrix *{$ by 

$ = 3-St (27) 

From a set of vectors cK satisfying, of course, 

CK*SCX=SKX , (28) 

we construct the density matrix 

D = E c * c K * . (29) 

With these definitions it is easy to show that 

F = H + $ D , (30) 

where F, H, and D are to be understood as rearranged 
(F and H by rows, D by columns) into the form of 
supervectors. (H is given by Hpq=fXp*HXqdv.) Then, 
considering supervectors (all by rows), 

£oo=4 E ( a r K ) = i ( H + F ) t D . (31) 
K = l 

DEFINITIONS OF SOME INTEGRALS BASED 
ON SPINOR COMPONENTS 

Denoting by Xpp
11 the pth component ( p = l , 2, 3, 4) 

of the pth. basis spinor (p=l, 2, • • •, m) for the /xth 
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electron we introduce the following notations: 

&pq,p<r==1 I Xpp X-qadV^, 

To define in Eqs. (36) and (37) the summation operators 
over spinor components let us consider some spinor 
quantity, say, £)p(r. Then we define 

%><*,/>*= / W<K*M )V^M> 

(P: 

ct, 

x,pq,pa = XpSpx^Mv*, 

similarly for y and z, 

)<T= \Xv/Ax{^)XqMv^ 

similarly for y and z; 

(32) 

(B« 

(B, xy,pgrs,par<p 

= f-
,p<TT<p J 

J r" 

- / 

^ p p Xqff^XrT XS(p wO^ \ 

"Xpp X-qo Xrr X.S(p (11)^ , 

%p.Vyp.V 

(S3) 

(34) 

similarly for any other pair selected from x, y} z, pro­
vided that x^ means the x component of rM", etc.; 

Zw <^pp—2L> ^PP\ 
p p = i 

X7 30PP=2D„+S)22-SD33-SD44; 

( £ + ± £ - ) © = i ; + 3 } ± £ - D ; (38) 

per per 

£ 0 £>p„ = £ > 1 8 - 3)24+ © 8 1 - ©42 • 
per 

[ In electronic structure computations the rest energy 
mc2 of an electron in Eq. (37) could be appropriately 
subtracted.] In addition to the Eqs. (36) and (37), 
we have 

s~ & 2s 2Lt ^>pqrs,ppaa\ W - V 
P <r 

" & 7 * 7 J (jfipsr psrq,pp<T(r • (40) 

(B. H—,pqrs,p<rr<p =yWi •^^Xp^X^Xrr^/dv^, (35) 

similarly for any other pair selected from the three 
operators 

S V , O-", and 120, 
where 

12±"= ±i , SV = — . 

ZEROTH APPROXIMATION IN TERMS OF SPINOR 
COMPONENT INTEGRALS 

FIRST-ORDER APPROXIMATION IN TERMS OF 
SPINOR COMPONENT INTEGRALS 

According to the first-order11 perturbation theory, 
the total energy E is given by 

E=E0+AE, 

where 

- / 
AE= / $*J3$<fo, 

B=h E B>», 

B»v= — 

The zeroth approximation is outlined by Eqs. (18), 
(22), (29), (30), and (31). [The difference between E0 

and Eoo is caused mainly by the correlation energy which 
is comparatively smaller than the relativistic effect for 
medium and heavier elements.12 We are neglecting the 
Lorentz noninvariance of Eq. (2).] 

The integrals occurring in this approximation can be j t j s e a s y t o s e e ^ a t 
expressed in terms of spinor component integrals. 

>Jpq~2-i vpq.pp') (36) 

2r"vL 
cr-<r 

(a^-r^Xa"-!*^)" 

AE=i £ CBMx-58f«x), 
K , X = 1 

•*-* pq ^ / f Upq ,pp\~f t tC 7 J &pq,pp 
P P 

+(Il++T,~)Lc((PXtpq,po)+e(ax,pq>pff)^ 
pa per 

+KIl+-lL~)lc((S>y,pqtP(r)+e(ay,pq,p(r)2 
p<r pa 

where 

Bi,A= / •&Kl>*^&^••*Bl'"$Kl'y\*dv>'•• 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

+S°Lc((?z,pq,P<r)+e(®z,pq,p<r)~}' (37) After deriving explicit formulas for Bi,K\ and B2,K\ and 
p(T after some rearrangement of intermediate expressions 

12 A. Froman, Rev. Mod. Phys. 32, 317 (1960). in terms of integrals (34) into integrals (35), we.finally 
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obtain the expression 

£ N m _ 

&E— ZL LL C p x C r \ ( C S K C q \ — CQKCsx) 
A K,\=l p,q,r,s=l 

X[2(4 L - + + ZM)®ParS„,,rV 
pa,np p<r,T<p 

2—d ^>+ + ,pqrs,p<TT<p 2~/ v® ,pqrs,por<p 
P<J,T<p P<T,T<p 

2Ls v$OQ,pqrs,p<TT<p ^ \ 2—t 05-}- — ,pqrs,par<p 
pa,Tip pa,rip 

1 2LJ 0 5 + 0 , p q r s , p a r < p ~T~ 2s v&—0,pqrs,paTip) J j \ ^ * * / 
pa,Tip pa,rip 

the sums (summation operators) are to be understood 
in the sense of the following example: 

L- + =E-L + - (49) 

In these expression j , m, and I are the quantum num­
bers of the total angular momentum, of the z component 
of the total angular momentum and of the orbital 
angular momentum, respectively. Fz,w(#,<£>) is a usual 
spherical harmonic of the polar angles # and <p. r is the 
distance of an electron from the nucleus, fnj is an effec­
tive exponent depending on the principal quantum 
number n and on j . Z is a nuclear charge, a is the fine 
structure constant. 

In Eqs. (52), each function f(r) is approximated by its 
function g(r) multiplied by a proportionality constant 
obtained from an exact Dirac solution by a reduction 
to the zero distance from the nucleus. This approxima­
tion is justified by the fact that the greatest differences13 

BASIS SPINORS AND THE NUCLEAR POTENTIAL 

The question arises what kind of basis spinors (19) 
should be used for computations. If we used exact solu­
tions of the Dirac equation then the evaluation of corre­
sponding integrals over hypergeometric functions would 
be rather tedious, particularly if we consider voluminous 
expressions arising from linear combinations for many-
electron systems. I t seems to be plausible to use Slater-
type orbitals for the components of basis spinors; then 
the absolute relativistic SCF solution can be approached 
by taking sufficiently large set of basis spinors.13 Using 
Slater-type orbitals would enable the use of experiences 
obtained in computations of nonrelativistic integrals. 

The unnormalized components of the basis spinors 
(19) will be denoted by uh U<L, Uz, and u^; we shall use 
for them the following expressions14: 

between the relativistic and nonrelativistic orbitals 
occur for very small distances from the nucleus, and by a 
computational convenience. Equations (52) are actually 
suggesting only initial trial quantities for an SCF pro­
cedure. In an actual computation further improvement 
would be obtained by a variational optimization of the 
effective exponents fnj as well as of the proportionality 
constants f/g (later introduced as Qnpjpipz/>). 

For a better description of the atomic situation it is 

13 The comparison of Schrodinger and Dirac orbitals is discussed 
in Ref. 1, Sec. 145. 

14 Approximated on the base of the exact solution of the Dirac 
equation as given in Ref. 1, Sec. 14; for "higher" spinors see 
W. B. Payne, Ph.D. thesis, Louisiana State University, 1955 
(unpublished). 

«,= - [ ( / - w +f) / (2/+3)] I ^/( f )F i + 1 , m _ 1 / 2 ( t? ,^) , 

u4^-[.(l+m+l)/(2l+3)J'Hf(r)Yl+1,m+1/^,<p); 

j=l-l; u1=l(l-m+W(2l+m/2g(.r)Yl,m^/^,<p), 

ui=l(l+m+l)/(2l+im(r)Yl,m+in(&,<p), 

«i=-[ ( /+«- i ) / (2 / - i ) ] 1 / VWFj- , . M - i / , ( i» ,«») , 

ui=t(l-m-%)/(2l-l)y'Hf(r)Yl_i,m+1/2(#,>p). 

/ = -C(l— 60/(1+ g l = [ l + ( a Z / 7 l )
2 ] - 1 / 2 , Yi=(l-«2Z2)1 / 2 . (52.1) 

25i/2: g=re-t»r, 

/=_[(l_g2)/(l+8 2)]i/2[(Af2+2)/Ar2]g, s 2 ={l+[aZ/( l+7i) ] 2 }- 1 / 2 , iV2=[2(l+7i)]1 /2 . (52.2) 

2Px/i: g=reS*r, 

/ = - [ ( 1 - s2)/( l+ ft)]1'W(#»-2)]g. (52.3) 

2P3/2: g=rerto', 

/ = - [ ( ! - 8 3 ) / ( l + S 8 ) ] 1 / 2 g , s 3 =[l+(aZ/ 7 2 ) 2 ] - 1 / 2 , T2=(4-a2Z*)^. (52.4) 
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recommendable to consider a finite size of the nucleus 
with its specific nuclear potential.15 Then it is possible 
to justify the use of "nonfractional principal quantum 
numbers" used in our approximation in terms of Slater 
type orbitals.13 The introduction of the specific nuclear 
magnetization and charge distribution has its import­
ance in a more accurate calculation of the hyperfine 
structure.15 

Considering the calculational convenience, the form 
of final formulas and the Lorentz noninvariance of 
Eq. (2), it seems to be a matter of discussion if a basis 
spinor should be taken as a fixed combination of two 
spinors of the samej fory=/ i+i andy=Z2—§, or if this 
should be taken care of by an SCF expansion (as it is 
assumed in this work). 

CONCLUDING REMARKS 

The specific case of an atomic system is treated in 
the appendices. 

The treatment presented in this article is, of course, 
not to be considered closed or completed. It rather 
developes a background on the base of which further 
new developments can be imagined. 

In particular, a detailed description of the symmetry 
restrictions,16 of the open-shell theory and of other 
features, as well as an extension to molecular and solid 
state systems, are subjects for a future treatment. 

APPENDIX I 

Now we shall consider an atomic system (without an 
external field). We shall present the formulas for the 
atomic integrals occurring in the final expressions both 
for the zeroth and for the first-order approximation. 

Every basis spinor Xp will be considered as being 
determined by nPJ jpy mp, lp, f p and Z, where the first 
five quantities are assigned to the ̂ th basis spinor and 
represent the usual four quantum numbers and the 
effective exponent. 

From the formulas (50) and (51) we can see that the 
pth component of a basis spinor Xp can be written as 
follows: 

XpP=Np-^ulp-] 
= Np~^C(jpmplp; p)&npjpip!pzP(r) 

x«yWpP(tf,¥>), (53) 

where up\_p~\ is the pth component of an unnormalized 
>̂th basis spinor of the form (50) or (51); Np is the 

normalization factor (to be determined) for the pth 
basis spinor; (ft is given either by g(r) or f(r); <y is given 
by the appropriate spherical harmonic; C is given by the 
remaining factors in the spinor component considered. 

More explicitly, for (ft we can write 

&npJplptpZp V) — ®npjplpZpgnptp(r) 

^ W , Z P ^ - V - ^ ; (54) 

where 
VnpjpipzP=l for p= 1,2 

(independently of other indices); 

Vnp3pipzP7*l for p=3,4 

and its initial trial value is given on the base of formulas 
(52) or their analogs for "higher" spinors.14 

The normalization factor Np is determined by the 
requirement (20), or 

N^Z1 [ulplulp2dv=l. (55) 

p J 

Using (53) and (54) we find that 

(2np)l Nv=- Z1\C,(jPmplp;p)\HenphipzP)^ (56) 
(2f„)2^+1 P 

In order to obtain the formulas for the atomic inte­
grals in a condensed form we introduce the notation 

where 

Xpp~N(Z,pp)r«r>-h-^Ylpptmpp{^<p), (57) 

N(Z,pP) = Np-^C'(jptnplp; p)enpJpipZp; (58) 

lpp and mpp are "orbital and magnetic quantum num­
bers," respectively, describing the spherical harmonic of 
the pth component of the ̂ th basis spinor. We require 
that Zpp^O, —lpp^mpp^lPp] if this is not fulfilled the 
spherical harmonic Yippt7npp vanishes17 and hence also 
an integral in whose integrand it occurs; our formulas 
for the integrals were derived assuming that the require­
ment mentioned is fulfilled. 

For the one-electron integrals the following formulas 
were derived (employing the Kronecker's 5# notation): 

7 = 5 J. pp,lq<r"'rnpp,mq, ̂ (Z^NiZ^qa) 

c^PQ,P<r=diPI)tiq<r8mp()fmqffZeN(Z,pp)N(ZJqa) 

(np+nq)! 

(f*>+f*)np+nfl+1 ' 

(np+nq—1)1 

(f*>+f*)n»+n* 

(59) 

(60) 

16 H. H. Stroke, R. J. Blin-Stoyle, and V. Jaccarino, Phys. Rev. 123, 1326 (1961). 
16 Mentioned in Appendix III. 
17 A related discussion is in Ref. 1, Sec. 14a. 
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(for a point nucleus; a related expression would be obtained for a finite size nucleus); 

(np+nq—1)1 
(?z,pq,p<r= —ifi8mpit1mgllN(Z,pp)N(Z9q(r} 

X 
/ np+nq\/(lqff+mq<r+l)(lq(T~ mq<r+l)\1/2 

fopp.itr+ii nq—lqa—l—t;p )( — ) 

QlP<r±i(?y,pq,p<r= — i^dmpPimqff±1N(Z,pp)N(Z,qa) 
ttp+{q)

np+n« 

f p + ^ / \ (2/„+3)(2/fl,+ l) 

/ np+nq\/(lqa+mq(T)(lq<T—mq(T)\1/2-\ 

(np+nq—l)l 

np+nq\/(lq<Tzkmq(T+2)(lq(rzLmq(J+l)\1/2 r / np+nq\/{lqffzhmqi,+2)(lqv±mqo+l)Y 
X =kfoPP,iq1+i[nq-lqir-l-?q ) J 

=Fft„ 
( np+nqS/ilq^m^ilqa^mqa— 1 ) \ * 

,_]( nq+lq<r—£q ]( 1 
\ fp+fa/ \ (2L,+ 1)(2L,-1) / 

np+nq\/{lq^mq«)(lq^rnq(T--l)\112-

fp+fgA ( 2 ^ + l ) ( 2 ^ - l ) 
. (62) 

In order to present the formulas for the two-electron integrals, let us introduce some auxiliary quantities.18 

r (2 /„+l) (2 / . ,+ l)-|i/*_ 
— — N(Z,pP)N{Z,qa)n(Z,rr)N{Z,s<p); (63) 

L(2/pp+l)(2/rr+l)J 
Vi(x)=x-'-1i\; ( i !=0, if *<0) ; (64) 

Cap(t) = (all3l)-Ha+1 duu«e~tu dvv^e-% (65) 
Jo Jo 

which can also be written as19 

c^(0=(i+0-^-^1E( K (66) 
x=o\ X / 

as can be seen by an induction; C(ji,J2,j', m\,mi) is a Clebsch-Gordan coefficient as defined by Rose20; 

Ii(pqrs;pcrrcp\l) 
= {(2Z+3)-1[4/(/+2)+3]Fw H^^ 

— ( 2 / H - l ) Vnr+ns-l+l(£r+t s) V'np+nq+l-2 \Sp~\~b q)^nr-\-n3— Z+l,np-\-ng+l— 2 

; fnpp—mq<r, mq(r)C(l—2, lq(T, lpp; 00)C(/,/s^,/rT; mrr—ms^ ms<p)C{l,ls^lrT) 00); (67) 

Io(pqrs;p(TT<p\l) 
— 2{ F » p - f n g - Z - l G " P + f «) ^ n r + n , + z ( f r + f « )Cn p + n f l -^ - l , »^n a +«C( f P + f ff)/(rr+f « ) ] 

+ F « H - n « - l - l ( ? r + ? * ) J ^ + n g + z ( f p ^ 

XC(l,lq<r,lpp; mpp—mq(r, nhq<r)C(l,lqa,lPP\ 00)C(l,ls<p,lrT; mrr~ms^ ms<p)C(l,ls<p,lrT; 00); (68) 
I-i(pqrs;po-T<p\l) 

= { — ( 2 Z + 1) Fnp+Wg-Z-ltf p + f a) Vnr+na+l(£r+f * )Cnp+w f f -^ l ,n r +n,+z[ ( f p + f g ) / ( f r + f «)[] 

+ (2 /+3 ) - 1 [4 / (H-2 )+3]^^ 
mqa)C(l+2, lq<rj lpp\ 00)C(l,ls<PJlrT; mrT--ms<p, ms<p)C(l,ls<p,lrT; 00). (69) 

18 The functions Vi(x) and Cap(t) were also used for the nonrelativistic treatment. See, e.g., C. C. J. Roothaan, L. M. Sachs, and 
A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960). 

19 C. C. J. Roothaan (private communication). 
20 M. E. Rose, Angular Momentum (John Wiley & Sons, Inc., New York, 1957). 
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For the two-electron integrals the following formulas were derived21: 

(Bpgrs,p<rT?=i5mpPimrrtmfl^mw 9l(Z; pqrs; parcp) ]T(2) IQ(pqrs',paT<p\l); (70) 
Z=max( | lpP— lq9\ , | lrT— h<p\) 

^a^.PSrs.po-r^—Om2)p+WrTtWflff+m<r|.Wa/5 9 l ( Z j pQTS] p<JT<p) 
l=m.in(lpP+lq(T-\-2k,lrT+h<p) 

X E Z ( 2 ) ak(al3;rs;T<p\l)Ik(pqrs;p<TT<p\l), (71) 
&=—l,0,l l=>ma,x(\lpp— lq<T\+2h,\lrT— h<p\) 

where a/5 can become any of the combinations + + , , 00, + —, +0 , —0, and the summation over I in (71) is 
defined to be equal to zero if the upper limit becomes smaller than the lower limit. The explicit expressions for 
the coefficients ak(ap;rs] r<p\l) which will now be written (for brevity) as a&(aj3), and the expressions for ma^ 
are as follows: 

m++=2; a _ 1 ( + + ) = [(2Z+l)(2Z+3)]-1[ I I (l-mrT+ms<p+i)J^; 
1=1,2,3,4 

«o(++)= - (2 /+ l ) - 1 [ (2 / - l ) - 1 +(2 /+3) - 1 ] [ I I (l+mrr-ms9-i)(l-mrr+msv+l+i)J/2; (72.1) 
i=0,l 

« i (++) = [ (2 /+l ) (2 / - l ) ] - 1 [ I I (l+nirr-ms,-i)J<*; 
i=0,l,2,3 

m _ _ = - 2 ; <*_!( ) = [(2;+l)(2/+3)]-1[ I I (l+mrr-msv+i)J"; 
i=l,2,3,4 

«o( )= - (2 /+ l ) - 1 [ (2 / - l ) - 1 +(2 /+3 ) - 1 ] [ I I (l-mrT+msv-i)(l+mrr-msV+l+i)Jn; (72.2) 
i=0,l 

«i( ) = [(2/+l)(2/-l)]-1[ II (l-m„+msv-i)-]
m; 

i=0,l,2,3 

woo=0; a_1(00) = [(2;+l)(2/+3)]-1[ I I (l+mrr-msv+i)(l-mrr+msv+i)J/2; 
»—1,2 

aa(00)=(2l+iyil(2l-l)-l(l+fnrr-msv)(l-mrr+msv) (72.3) 

a1(00) = [ (2 /+ l ) (2 / - l ) ] - 1 [ I I {l-m„+mSv-i){l+m„-msv-i)Jii; 
i=0,l 

m+_=0; a _ i ( + - ) = - [ (2 /+ l ) (2 /+3)J - 1 : I I a + w „ - w s p + i ) ( / - ? « r r + w ^ + i ) ] 1 / 2 = -a_i(00); 
i=l,2 

«o(+- ) = (2/+l)- I [ (2^- l ) - 1 jQ ( / -« r r +OT^-i )+(2^+3)- 1 I I • ( / + « « - » . , + * ) ] ; (72-4) 
i=0,l i=l,2 

« i ( + - ) = - [ (2^+ l ) (2 / - l ) ] - 1 [ I I ( * - » , r + » . , - 0 ( H - « r r - « . , - * ) ] l r t = - a i ( 0 0 ) ; 
»=0,1 

w+o=l; a_1(+0) = [ ( 2 / + l ) ( 2 / + 3 ) ] - i a + w „ - w ^ + l ) 1 / 2 [ I I ( / -»r ,+«. ,+*): i 1 / 2 ; 
*=1,2,3 

ao(+0) = (2/+l)- ia+m r r-w s s , )
1 / 2( /-w r r+OT s v+l)1 / 2 

Xl(2l-l)-1(l-mrr+msv)-(2l+3)-1(l+mrr—msip+l)']; (72.5) 

a 1 ( + 0 ) = - [ ( 2 ; + l ) ( 2 ; - l ) ] - i a - ^ r + m s p ) 1 / 2 [ I I a + m r r - w s „ - i ) ] 1 / 2 ; 
1=0,1,2 

*w_o= —1; ff_1(-0)=-C(2Z+l)(2^+3)]-1(^-^r+w^+l)1/2[ I I (^+w r T-m s p+i)]1 / 2 ; 
€=1,2,3 

a o ( -0 ) = (2/+l)-1(;-w rT+m^)1 /2(/+w ) .T-w s»,+ l)1 /2 

X [ ( 2 ^ + 3 ) - 1 ( ; - w r r + m ^ + l ) - ( 2 / - l ) - 1 ( / + w „ - m s ? ) ] ; (72.6) 

«1(-0) = [ (2 /+l ) (2 ; - l ) ] - l ( /+m r T -w s v ) 1 / 2 [ I I (l-mrr+m3V-i)J/2. 

21 A description of the derivation is given in Appendix II . 
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APPENDIX II 

In order to outline the derivation of the formulas for 
the two-electron atomic integrals let us start with 
(&pqrstP<TT<p> This integral is calculated by using the ex­
pansion22 of 1/VM" in terms of spherical harmonics and 
hence splitting the integral into products of feasible 
radial parts and angular parts. A radial part is then 
calculated in a customary way.23 An angular part can 
be considered as a product of two integrals, each integral 
taken over the product of three spherical harmonics; for 
such integrals a formula given by Rose24 can be used. 
Then we realize that25 

C{hM) Wi,W2,w) = 0, 

uniess 

is valid, and unless 
m=mi+m2' 

Furthermore, 
C(/i,/2,Z;000) = 0 

(73) 

(74) 

(75) 

(76) 

unless h+h+l is even. Hence the total expression for 
the integral (Rpqr8,p<rTv must consist of: 

(1) A summation over / only between the limits 
satisfying A(lxhl) for each C(h,h,l; m^m^m). 

(2) Two Kronecker's symbols of the type 
which can be contracted into one symbol. 

(3) The expression of the type 

* [ ! + ( - 1 ) ^ 2 + ^ 4 ] 9 (77) 

for each product C(lhh,l;00) C(k,k,l;Q0). Since (76) 
and (77) require that h+h and h+h be simultaneously 
either even or odd it is necessary to perform the sum­
mation over I in the steps of two. The formula (70) is 
finally obtained with the help of the definitions (63) 
and (68). 

Now we consider the integral (Ba/5,pgrs,pcrT?. This inte­
gral is of a similar type as (&Pqrs,P(TT<p, except that \/ry,v 

is substituted by tia^^r**". We are looking for an ex­
pansion of r^ in terms of spherical harmonics in order 
to facilitate the application of the operators Q,^ and 
120

M. This expansion can easily be obtained26 through 
multiplying the expansion27 for l/rM" in terms of 

22 H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry 
(John Wiley & Sons, Inc., New York, 1944), p. 371. 

23 See Ref. 22, p. 103 and definitions (64) and (65) of this 
article. 

24 Reference 20, formula (4.34). 
25 For the definition of A(hhh) see Ref. 20, p. 36; for an explana­

tion of (74), (75), and (76) see Ref. 20, pp. 34, 36, and 42. 
26 C. C. J. Roothaan (private communication). 
27 Reference 22, Appendix V. 

Legendre polynomials by 

(r^y= {r^)2+{rvy-2r^rv costf""; (78) 

then we can come to the expansion 

00 l \-K 

^=Z E bi(r»,f')Ylm(&>,<p*)Yim(»1',<p'), (79) 
1=0 m=_z 2/+1 

where 
(r<)1 r 

bi(r*f) = (fy+ir")2 

(r>)ml ( I r> l+l r<\-] 
- 2r"r*[ + J . (80) 

\ 2 / - l r < 21+3 r> J J 

Now the application of the operators Q±f* and SV on the 
expansion (79) for r^ can easily be performed, using the 
known formulas.28 Hence every integral (SSa^iVqrs%p(rT(p is 
split into the four addends, each addend representing 
an integral of a type similar to (SSvqrSipaT^ however, 
with a more complicated radial part caused by the 
addends in (80). Using a similar technique as for the 
derivation of the formula (70), one obtains, after a 
straightforward calculation, formulas (71) and (72). 

APPENDIX III 

Regarding the solving of Eqs. (22) it is to be remarked 
that the group theory could be utilized in a similar way 
as in the nonrelativistic case. This can be associated 
with a requirement that, e.g., in an atomic system with­
out an external field, the properly optimized spinors 
transform under the (2y+l)-dimensional representa­
tions DU)({afiy}), j half-integer, of the rotation 
group.29-30 Also, the "averaging out" over the subspecies 
represented by the quantum number m, might be uti­
lized similarly as in the nonrelativistic SCF calculation.3 
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28 Reference 1, formulas (A37)-(A39). 
29 B. L. van der Waerden, Die gruppentheoretische Methode in 

der Quantenmechanik (Lithoprinted by Edwards Brothers, Inc., 
Ann Arbor, Michigan, 1944), p. 100; E. O. Wigner, Group Theory 
(Academic Press Inc., New York, 1959), Chap. 15; M. Hamer-
mesh. Group Theory (Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1962), Sec. 11-5. 

30 Furthermore, as we know, the form of Eq. (22) is similar to 
the one for the nonrelativistic SCF expansion method (for closed 
shells), which might enable a utilization of some computer routines 
used in current programs. 


