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Because the oscillator strength associated with the holds in regions where 10) is appreciable. Accordingly, 
resonant transition is nearly unity for the alkalis, for z= R, the ratio of \le) to |0)is 
Eq. (A9) is virtually equivalent to /2mE\x'2 /R\/ E\ ™ 

(0\z\ky=W2mE), k=U (A10) C(R)=B\V) W W ' ( M 2 ) 

= 0, k^U. 
Combining Eqs. (A12) and (A5), we finally obtain for A 

Consequently, the relation R AES r (R) 
A(R)= . (A13) 

*|0>«((fta/2«fiO)1/2|l.> (All) aQ(EEHyi* 

P H Y S I C A L R E V I E W V O L U M E 1 3 6 , N U M B E R 6A 14 D E C E M B E R 1 9 6 4 

One-Dimensional Electron-Phonon Model* 

STANLEY ENGELSBERG AND B. B. VARGA| 

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey 
(Received 2 July 1964) 

The properties of a one-dimensional system of degenerate electrons coupled to long-wavelength phonons 
are investigated. The equivalent model Hamiltonian of Tomonaga, which describes the electrons by density 
waves, is diagonalized to normal modes. These are calculated for the Einstein model and constant coupling, 
and used to get the ground-state energy. A physical interpretation of the model is given. The breakdown of 
the system for strong coupling is discussed. The many-body perturbation theory is used to assess the validity 
of the Tomonaga model. The electron-phonon ground-state energy diagrams may be grouped in two sets as 
Tomonaga and non-Tomonaga. The latter cancel among themselves exactly to a high order. The extent of the 
cancellation in three dimensions is treated in fourth order and found to be significant, but not exact. 

1. INTRODUCTION 

THE properties of an electron-phonon system are 
investigated for the case when the electrons are 

degenerate and the shortest wavelength coupled phonon 
has wave vector kc much smaller than the Fermi 
momentum kf. For these phonons the wavelength is 
large compared to the average electron spacing, and 
the electron density fluctuations which couple to the 
phonons are well-defined collective "sound" waves. 
Most of the work is on a one-dimensional model; Sec. 
10 discusses the possibility of extending the results to 
three dimensions. 

The method of Tomonaga1 is used in Sec. 2 to derive 
an equivalent Hamiltonian for the system where the 
electron kinetic energy for momentum p is Vf \ p |. The 
electron kinetic energy operator is expressed in terms 
of boson operators which create and annihilate electron 
density waves. The validity of the description of the 
electron-phonon system by the Tomonaga Hamiltonian 
is discussed using Tomonaga's results, and an extension 
is given which is proved by perturbation methods in 
Sec. 7. The physical interpretation of the boson kinetic 
operator in Sec. 3 splits the operator into two parts. 
The first gives the Fermi-Thomas energy of degenerate 
electrons with long-wavelength density oscillations; the 

* Work supported in part by a DuPont Research grant. 
t Leeds and Northrup Foundation Predoctoral Fellow. 
1 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 (1950). 

second is the energy of the collective motion in these 
oscillations. We may consider the description to be a 
dynamical Fermi-Thomas method which accounts for 
the correlations in the long-wavelength motions of the 
electron gas. 

The Tomonaga Hamiltonian is diagonalized by a 
canonical transformation in Sec. 4 into a set of inde
pendent harmonic oscillators, three for each wave 
vector when the electron spin is included as a variable. 
One of the independent modes is a spin density wave 
whose frequency is unaffected by the phonons, because 
it leads to no change in the electron density in space. 
The dispersion curves of the oscillators are calculated 
in a specific model: Einstein-model phonons of fre
quency o), and the electron-phonon vertex matrix 
elements gk taken as constant=g for \k\ <kc and zero 
for \k\ >kc. When Qk = Vf\k\ is not close to a>, the two 
other displaced normal modes contain a phonon and a 
density wave with no spin wrave, one of the modes being 
mainly a phonon and the other mainly a density wave. 
For vf\k\ close to w, neither mode is mainly phonon or 
density fluctuation. The mode which is a phonon 
(density wave) for &fc<̂ co becomes a density wave 
(phonon) for 0/t̂ >w. 

The ground-state energy ET of the system is plotted 
against the coupling strength g and the cutoff mo
mentum kc. It is shown that in the general case, ET is 
analytic in the coupling constant, so that perturbation 
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theory is valid for coupling strength smaller than the 
critical coupling, beyond which the Tomonaga Hamil-
tonian has no lowest eigenvalue. 

The behavior of the system beyond critical coupling 
is considered in Sec. 5. For coupling slightly less than 
critical, the number of phonons and density waves 
present in the system increases rapidly, and the 
Tomonaga Hamiltonian no longer gives a good de
scription of the electron-phonon system. With the use 
of a variational wave function it is shown that above 
critical coupling the binding energy goes as the square 
of the number of electrons. The wave function also 
suggests the collapse of the electrons into a region of 
length comparable to lir/kc* 

The perturbation-theory rules for the ground-state 
energy diagrams of the system are given in Sec. 6, in 
both the electron and the density wave pictures. An 
argument is given in Sec. 7 that the two perturbation 
series must agree to order 2k//kc in the coupling 
strength. The Tomonaga or "bubble" diagrams have 
the form of electron-hole pair bubbles linked to phonons 
at the ends. The electron-phonon perturbation series 
contains the Tomonaga diagrams as a subset. If the 
two series agree, the extra diagrams must cancel in 
each order. They are first present in fourth order, where 
the cancellation is demonstrated explicitly. In Sec. 8 
the perturbation rules for the electron distribution in 
momentum space are given. It is shown that the non-
Tomonaga diagrams do not cancel for this property, 
because the Tomonaga diagrams only affect the dis
tribution in the momentum interval kf—kc to kf-\-kc, 
while it is evident that higher orders of perturbation 
lead to particles well above kf and holes well below. 

The Green's function method is used to calculate the 
Tomonaga energy in Sec. 9. It is pointed out that the 
phonon self-energy calculated from the lowest order 
diagram is actually correct to order 2kf/kc. This is not 
true of the electron self-energy. 

The last section discusses the possibility of extending 
the results to three dimensions by analyzing the fourth-
order ground-state energy diagrams. The non-
Tomonaga diagrams no longer cancel exactly. It is 
shown from phase space considerations that the 
"bubble" diagrams dominate in the high-density 
region,2 where kp$>kc, so that in fourth order the phase 
space alone reduces a non-Tomonaga diagram as com
pared to Tomonaga by a factor (kc/kf)

2
y however when 

the non-Tomonaga diagrams are added, the total is 
down by a factor (kc/kf)

z. 

2. REVIEW OF THE TOMONAGA MODEL 

Tomonaga showed that a one-dimensional assembly 
of degenerate free electrons can be described by a 
quantized field of density waves obeying Bose sta
tistics.1 This section reviews the results of Tomonaga 

2 N. Hugenholtz, Physica 23, 533 (1957). 

and discusses the validity of his model. The density 
wave description is a convenient starting point for 
treating the properties of phonons coupled to density 
waves of the same wave vector k.z We assume that only 
phonons of long wavelength are coupled, so that 
\k\ <kc, where kc is the cutoff wave vector. The length 
\c=2ir/kc is taken large compared to the length which 
contains one electron on the average, so the electron 
density varies smoothly within the density waves. 
This means kc<Kkf, where kf is the Fermi momentum 
of the free electrons. 

The system is on a line of length L with periodic 
boundary conditions. The second quantized electron 
field operator for spin a at the point x may be written 
in terms of plane-wave amplitudes 

^ ( * ) = E * i - 1 / a ^ c * , o 
k = 2irn/L, » = 0 , ± 1 , •••. 

The density operator Pc(x)=\l/a*(%)\l/<r(x) has the plane 
wave amplitude 

pkl0= / L-We-^pa^dx 
Jo 

= L~112 Eff M/2 ,A# /2 , f f . (2.2) 

It is convenient to take the free-electron energy as 
€p=vf\p\, where vf is the Fermi velocity. Let S be the 
space of many-electron wave functions such that the 
single electron levels deep in the Fermi sea between 
momenta — %kc and +%kc are fully occupied. The 
operators p&, |&|<&c (spin index omitted) have a 
simple time behavior when acting within the space S. 

Pk(t)=pk+ exp(—ivfkt)+pk- exp(ivfki), 

Pk±=Lr112 X) cq-k/2*cq+k/2. (2.3) 
±q>0 

For k>0, pk~ behaves exactly as a creation operator 
and pk+ as an annihilation operator, while for k<0 
they are reversed. The "quanta" of these operators are 
density waves made up of particle-hole pairs excited 
from the Fermi sea, which all propagate in phase with 
velocity doVf because of the choice of ek. The com
mutation rules of these operators within S are best 
expressed in terms of the properly normalized boson 
creation and annihilation operators. 

akt<,= (2T/\k\yi2pk,„±9 ^ 0 , 

ak.*=(2ir/\k\yi*p-b,.± k%0, (2.4) 

3 Several papers have been written on the application of the 
Tomonaga model to an electron-phonon system. G. Wentzel, 
Phys. Rev. 83, 168 (1951); J. Bardeen, Rev. Mod. Phys. 23, 261 
(1951); K. Huang, Proc. Phys. Soc. (London) A64, 867 (1951); 
Y. Kitano and H. Nakano, Progr. Theoret. Phys. (Kyoto) 9, 370 
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The kinetic-energy operator of the electrons, 

p,a 

may be written in terms of the boson operators: 

K=T'+Ho', (2.7) 
where 

#o '=2 E <k) (2.8) 

IkKkf 

is the energy of the filled Fermi sea, and 

r = E QmSak,,, Qk=vf\k\. (2.9) 
\kl<hfl2,(T 

Tomonaga proved that (2.7) is an equality within a 
subspace Sr of states characterized by having no holes 
below absolute momentum fkf and no electrons above 
(5/4)&/. All the operators in (2.9) have boson com
mutation rules within $', which is a subspace of S. 
The density wave operators in Eq. (2.9) with label 
\k\ >kc are not coupled to phonons and do not play a 
role in the dynamics of the system. We may define a 
kinetic operator in which these are omitted. 

T= E Qkakt,*ah,,. (2.10) 
IkKkc 

We shall consider the validity of the model within 
the context of perturbation theory. Let \f/ be an eigen-
state of the coupled system which is obtained by 
perturbation theory from ^0, an eigenstate of free 
density waves and phonons. In the perturbation ex
pansion of $ the low-order terms will have no holes 
present in the small-momentum region, so they are in 
the space S. It is shown in Sec. 7 that for the parts of 
\p in 5, the operator T acts exactly as K—Hof. Choose 
\f/ to be the ground state and î o the Fermi sea. The part 
of \p coming from perturbation order up to but not 
beyond \kf/kc is in 6", while the corresponding order 
for S is kf/kc. From the viewpoint of perturbation 
theory the model is valid to a higher order than indi
cated by the criterion of Tomonaga. The critical factor 
is that the main part of \p be in S, so that there are few 
holes at small momenta. If this is not the case, the 
model ground state is not close to the ground state of 
the electron-phonon system. In the case of weak 
coupling the excited electrons and holes will be mostly 
in a small region of momentum space about =b&/, where 
the second derivative of the usual electron kinetic 
energy p2/2m may be neglected. The excitation energy 
of an electron or hole measured from the Fermi energy 
is then vj\p—pf\, and the free-electron energy spec-
tram €p=vf\p\ leads to the same ground-state wave 
function. 

3. PHYSICAL INTERPRETATION OF THE 
TOMONAGA HAMILTONIAN 

The excitation kinetic-energy operator T is a sum of 
independent harmonic oscillators, each of which may 

be separated into a "-kinetic" and a "potential" energy 
term by introducing coordinate and momentum 
operators 

(3.1) 
P*.,= -i(Qk/2)^(akt9-a-kt*), 

T=h E (Pk.**Pk.,+aftk,**Qk.*-nk). (3.2) 
lkl<kc,<T 

The "potential" energy represents the energy needed 
to compress a degenerate Fermi gas when a density 
wave propagates. The "kinetic" energy comes from 
the collective motion of the large number of electrons 
within each wavelength of the density wave. 

From the definitions (2.3) and (2.4) the potential 
energy is 

1 
v=iT,nk2Qk,«*Qk,*=- E h*v/Pk,*fL-k,: (3.3) 

k,<r L IkKkc,<r 

In the electron-phonon system only the long wave
lengths play a role, and we may imagine the restriction 
on k in (3.3) to be removed in order to write V in 
coordinate space. 

rL 

V=fa>fT, / {pf(x)-p*)dx. (3.4) 
a Jo 

The term containing pff, the average density of electrons 
of either spin, comes from the absence of k — 0 in (3.3). 

It has been pointed out by Huang3 that the Thomas-
Fermi method4 is relevant for a physical interpretation. 
This statistical method ascribes a possible electron 
state to each "cell" of phase space of size ApAx—h. 
The statistical energy belonging to a length Ax of the 
system is obtained by adding the kinetic energies of 
electrons in the occupied cells. The cells are occupied 
up to the local Fermi level, which depends on the local 
density. The statistical energy found this way is the 
first term of (3.4), which shows that it is the extra 
energy due to density fluctuations. 

When a long-wavelength X density wave propagates 
through the system, a region Ax<\ still contains many 
electrons so that the electron gas has a well-defined 
average velocity. In the rest frame of the particles in 
this region, the cells are occupied to the local Fermi 
level, but in the laboratory frame the occupied cells are 
seen to be displaced in momentum and centered about 
the average momentum. Let pc(x, + ) and pff(x, —) be 
operators which measure the density of those electrons 
at a point x which are moving to the right and left, 
respectively. The statistical energy of the region Ax, 

4 F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com
pany, Inc., New York, 1940), pp. 384. 



O N E - D I M E N S I O N A L E L E C T R O N - P H O N O N M O D E L A1585 

taking the average motion into account, is Again the restriction |k\ <kc may be removed in (3.9), 
and E Mf\j)v

2(x, +)+Pa2(x, - ) ] . 

' = i ? " > / E / U<T
2(x)dx=W. 

On subtracting the potential energy V we obtain the 
kinetic energy W of collective motion. 

The operator T gives a better description of the 
w_i v /Y ( -X-^— ( —WJ C\*s\ °^ynamics of the degenerate electron gas than the simple 

" *TVf ^ J LP*W -r) P* W ; j ^ . V-V statistical method which keeps only the term V, since 
the correlations between electrons moving in density 

We show this is the first term of (3.2). waves are taken into account in W. The zero-point 
The expectation value of p(x, + ) in a one-electron oscillator energies in (3.2) were not obtained by these 

state <p(x) is | <p+(x) |2, where quasiclassical arguments. 

/

oo The interpretation suggests that the degenerate 

<p(k)eikxdk, electron gas in three dimensions cannot be described 
-oo by a quadratic form constructed from density wave 

anc* ^ operators. For example, with the electron kinetic energy 
v+(x) = f tpfryt'dk p2/2m t h e e x P r e s s i o n f o r v i s 

f 
is the part of <p which represents a particle moving to / (207r2^) X E (67r2pff(x))5/3d3#. 
the right. In the second-quantized form, 

, , • ' ' ! ^ A ., s. 4. GROUND-STATE ENERGY 
p f o + ) = — E cm*cne^n~m)* 

L m>o,n>o In this section we calculate the ground-state energy 
(3.6) for an electron-phonon system. The interaction to first 

_ * ^ ^ ikx order in the lattice displacement couples the longi-
~~£ i>0^:ki2<iCl~k/2 Cl+kI2e ' tudinal lattice normal-mode coordinate gfc = #_fc* of 

wave vector k to the density wave p-k,* with matrix 
For l<^kc, the creation operator acting on a state in element gk = g-k=gk*-
S gives zero. Since the only density wavelengths of 
importance in the problem are longer than Xc, the sum Hi—2*, gkP~k,ffqk 
for k>kc in (3.6) is unimportant, and the restriction on 
k can be dropped. = 11 gh(\k\/2ic)u*(aktSqk+akttfk*)r (4.1) 

k,<r 

p(x, + ) = ~ E Ci-ki2*ci+ki2exkx (3.7) where co* is the frequency of the bare phonon. The 
L l>0,\k\<kc ' * . * . • i , £ i L T T - ^ • 

nomnteractmg phonon part of the Hamiltonian is 
and similarly 

Ha=h E (pk*Pk+o>k2qk*qk), (4.2) 
1 * 

p(x,~)=T E ci-k/2*ci+k/2e
ik*. (3.8) . 

Z, z<o,|fc|<&c where ^fc is canonically conjugate to the phonon co
ordinate qk. The "kinetic" energy from (3.2) is 

&*,#*'*] = *?*,*'• 
\k\<kc,<r '* '* The total Hamiltonian in the Tomonaga approximation 

v-. (2.8), (2.10) is 
= 5 ^ / E (pfc,<r+-pfc,ff~)*(pA;((r

+-pA;,<r~). (3.9) 
•*«*-* HT=Ho'+T+Hs+HT=j:Hk, (4.3) 

Define fc 

n<r(^) = £~1 / 2 E (pk,<r+—pk,<r)eikx where the individual Hk commute. 
l*Kfcc The Hamiltonian (4.3) can be diagonalized exactly. 

__ 1 ^ ikx/Tr * We make the canonical transformation (3.1) introducing 
~L \k\<kf X hoCl~k/2,<T Cl+k/2,<r the operators Qkt0 and Pfc>(r which obey the canonical 

commutations relations 

= P<r(#, +)—Pa{x, —). (3.10) Under this transformation the kinetic operator becomes 
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FIG.I 

FIG. 1. The excitation spectra A /̂co, \k/co, Qk/co of the inter
acting system as a function of v/ \ k \ /a> for various values of the 
coupling constant a2. The excitation spectra of the noninteracting 
system &k/oo and cok/ca are also included to illustrate the splitting 
of the modes when the interaction is turned on. 

(3.2) and the interaction operator becomes 

Hr^Z (\k\Qk/^)^gk(qk*Qk,w+q^kt*). (4.4) 
k,<r 

An orthogonal transformation on the vectors 

diagonalizes the Hamiltonian HT. In terms of the new 
vectors, whose components are canonical, 

** '=!?***, (4.6) 
the Hamiltonian is 

HT=HO'-ZJC vk+i T,k (iik'mk'+$k'mk*W), (4.7) 

where the matrix Mk
2 is diagonal: 

fe2 0 0 ] 
Mk

2= 0 A,2 0 (4.8) 

[ o o xfc
2J 

with 

A*2 = H^fc2+^^+C(^.2-0,2)2+«,2^212,2]1 /2} (4.9) 

and 

Xfc
2 = |{cofc

2+0,2-[(cofc
2-12fc

2)2+a,2co&
2fi,2]1/2}. (4.10) 

The excitation energies of the system, Ak and X&, are 
plotted in Fig. 1, for the model in which we have optical 
phonons, co/c = co and constant coupling ak

2=a2. 
The quantity ak

2 appearing in the eigenvalues is a 
dimensionless coupling term 

ak
2=16gk

2N(0)/a>k
2, (4.11) 

where N(0) = \/2irvf is the density of electron states of 
one spin at the Fermi level. 

The transformation matrix R has for its three rows 
the components of the three orthonormal vectors 

« i = ( 2 ) - ^ { 1 , - 1 , 0 } , 

e2= [2(co2-A2)2+«212V/2]~1/2 

X {a>2-A2, co2-A2, -aftco/v2} , (4.12) 

e,= [2 (co2-X2)2+a2OV/2]~J/2 

X{co2-X2, co2-X2, -aftco/V2} , 

where we have suppressed the momentum index. 
I t is interesting to note that one of the normal modes 

of the Hamiltonian oscillates with the unperturbed 
frequency of the density fluctuations Qk. The trans
formation vector ei shows that this mode is a spin wave, 
that is a linear combination of spin-up and spin-down 
density fluctuations having equal amplitudes and 
opposite phases. With the Hamiltonian in the form 
(4.7) we may immediately write an expression for the 
ground-state energy 

Fo' = H0'+h Z * (Ak+\k-Qk). (4.13) 

As pointed out by Wentzel and Bardeen,3 the root 
\k becomes imaginary fora&2>4. 

The lowering of the ground-state energy by the 
interaction 

= i E * ( A * + X * - 0 * - u t ) (4.14) 

is plotted in Figs. 2, 3, and 4 for the constant-coupling, 
optical-phonon model. As mentioned earlier the mo
mentum transfer to the phonons in the interaction is 
taken to have a cutoff ke. This limits, the maximum 
2k to Vfkc=xa). The quantity x introduced above should 
certainly be chosen greater than 1, since it is just at 
this value that the unperturbed modes Uk and GO crossed. 
In Fig. 2 we plot the energy lowering ET as a function 
of x for ak

2= 1, an intermediate-coupling case. 
In Figs. 3 and 4 ET is plotted as a function of coupling 

constant for x=2 and 4. For values of # > 4 , the extra 
contribution to the energy lowering is coming almost 
entirely from the depression of the lower mode energy 
from co to X - » «(1—a2/^)1 '2 for Q*>4a>. The physically 
important effect of the electron-phonon interaction is 
the splitting of the modes, which is largest at OA=W. 

The electron-phonon interaction also changes the 
specific heat of the system. As pointed out by Wentzel,3 

the low-temperature specific heat of the free electrons 
is identical with that of the free density waves, as 
expected from Sec. 2. Only the low-lying modes, which 
have longest wavelength, contribute to the low-tem
perature specific heat, and the result is 

CF=(4/3)7r2A7(0)yb27\ 

where kB is Boltzmann's constant. 
When the interaction is turned on, one of the two 
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low-lying modes with energy Qk is lowered to energy 
A&, which for very long wavelengths is 

We can state the results for the specific heat of the 
interacting system in terms of the renormalized density 
of states of the lowered mode 

N'(0)=N(0)(l-a2/4)~1i2, 

Cv=fr*kJTtN(0)+N'(O)l. 

As the coupling constant goes to its critical value, 
a2 = 4, the small slope of the mode \k leads to a di
vergent specific heat. 

An important point to be noted is that the expression 
(4.14) for the ground-state energy is analytic in the 
coupling constant for a&2<4. The only terms that 
depend upon coupling constant in (4.14) are 

A+X=[J{co2+122+[(co2-02)2+aVl22]1/2}]1/2 

+ [|{co2+122-[(a;2-122)2+o:2co2^2]1/2}]1/2. (4.15) 

Fora2<4 

a=co2+fi2> [(co2-^22)2+a2co202]1/2= b 

and we may expand the outer square root in each term 

A+Hi) I(1+-J + H 
-0" 1 b2 

2— — 
4 a2 

5 ¥ 

64 a4 
(4.16) 

Since only even powers of b appear in the expansion 
(4.16), no terms with square roots arise. Thus there is 
a power-series expansion of the ground-state energy in 
terms of the coupling constant. At a*2=4, the de
rivative of the ground-state energy with respect to 
coupling constant goes to minus infinity. If we were to 
continue evaluating the ground-state energy in terms 
of its power-series expansion for ak

2 greater than 4 we 
would obtain infinite results. The fact that the ground-
state energy is analytic in the coupling constant means 
that within the region of analyticity we could evaluate 
the ground-state energy of the Tomonaga Hamiltonian 
by perturbation theory and sum the series to obtain 
(4.14). We will go into the detailed analysis of the 
perturbation theory treatment in Sec. 7. However at 
this stage we may note that contrary to Tomonaga's 
conjecture,5 whenever the Tomonaga Hamiltonian is 
positive definite the results for the ground-state energy 
do not go beyond the realm of perturbation theory. 

This result precludes the comparison of the 
Tomonaga model with the Bardeen-Cooper-Schrieffer 
(B.C.S.) model of superconductivity.6 We cannot com-

6 Reference 1, pp. 545-547. 
6 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 

108, 1175 (1957). 
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FIG. 2. The energy lowering by the interaction ET/hN(0)a>2 is 
plotted as a function of the cutoff x^=v/kc/co} with a2 chosen equal 
to one. 

pare the two, since the B.C.S. pairing correlations are 
in addition to any correlations found strictly within 
perturbation theory. The B.C.S. pairing correlations 
lead to a lowering of the ground-state energy of the 
form A£oc-iV(0)co2-expC-2co2/iVr(0)g2]. For small 
enough coupling constant this will be dominated by 
the lowering due to the collective excitation. A mani
festation of the B.C.S. instability within perturbation 
theory is the existence of an imaginary pole of the T 
matrix for ladder diagrams.7 The Tomonaga Hamil
tonian does not include these diagrams. 

5. THE BREAKDOWN OF THE SYSTEM 

When the coupling constant a2 approaches the critical 
value 4 from below, the lower mode \& approaches zero 
for all k. If now a2 increases beyond 4, \k

2 becomes 
negative, and the spectrum of the Tomonaga Hamil
tonian is not bounded from below.3 In this section we 
investigate the breakdown and determine whether the 
electron-phonon system itself is unstable. 

The average number of phonons of wave vector k is 

hk=(bk*bk)=(d/da>k)ET 

= (d/dQ)k)%(Ak+\k—a)k—Qk). (5.1) 

7 C. Bloch, Compt. Rend. Congr. Intern. Phys. Nucl. Paris 
(1958), p. 243; V. J. Emery, Nucl. Phys. 12, 69 (1959); L. Van 
Hove, Physica 25, 849 (1959); M. L. Mehta, Nucl. Phys. 12, 333 
(1959). 
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FIG. 3. The energy lowering Z£r/JiV(0)co2 as a function of 
coupling constant a2 for cutoff x = 2. The straight line is the result 
obtained from second-order perturbation theory. 

In taking the derivative, the coefficient |o:(12co/2)1/2 of 
the term (a+a*) (&+&*) in Hi is to be fixed. 

co/1 1\ 
h=-[ -+- +[co(y -122)+iQ!2col22] 

4\A X/ 

1 
X 

UA(A2-X2) 4X(X2-A2) 2 - A 2 ) / 2< 
(5.2) 

As a2 —> 4 the largest part comes from the terms that go 
as 1/X which came from the derivative of X 

&->a>02/4XA2. 

The large number of phonons in each mode makes the 
interaction in higher orders of the lattice displacement 
important in any physical system. Similarly, the average 
number fa of bosons of wave vector k and either spin is 

fa=h E , (ok,.*akt9)=h(d/dak)ET 

12/1 1\ 
= H - + " )+i[12(122-co2)+ia2co212] 

8\A X/ 

X 
1 

+ 4A(A2-X2) 4X(X2-A2) 2 - A 2 ) / 4* 
(S.3) 

As a 2 -* 4, Z->Oco2/8XA2. 
As the energy of the lower mode goes to zero, the 

number of phonons and bosons present in the zero-
point motion of the mode blows up as 1/X&. The ratio 
hk/2fa is just Qk/coy the inverse ratio of the free mode 
energies. This follows from (4.12), for the ratio of 
phonon to boson in the mode e$k is aS2&co/(co2—X*2) 
which goes to 20&/a> as a—> 2. We see that in the 
collective mode that becomes unstable it is mainly the 

electrons that break down at low momenta, and mainly 
the phonons at high momenta, but both participate in 
every mode to some extent. 

Since the system contains many bosons and phonons 
we may consider the operators a**, bk* as c numbers of 
magnitude fa112, W / 2 , respectively. A classical calcu
lation can be done to determine the critical coupling 
strength. 

ET=T, &*/*.,+£ c o f c - E adwSiyiWk112. (5.4) 

The relative phase of the c numbers has been chosen 
as negative so the interaction term has the largest 
negative value. Since (5.4) is homogeneous, first order, 
in the variables hk, fay the energy can be scaled arbi
trarily by any positive constant. Thus we can only 
hope to obtain the criterion for breakdown, where 
(5.4) can first begin to go negative. Fix fa and vary hk 

to minimize (5.4). 

fa,<r/hk = W(W®k) , 

£r=£0*Ml-aV4). 
k,<r 

(5.5) 

As expected, a 2 = 4 is critical, and fa/hk=co/2Qk-
For a system of finite length L the modes of HT 

break down if a 2 >4 . We show now that the electron-
phonon system in this length has a lower bound on 
the energy for arbitrarily strong coupling. This can 
even be estimated by a simple classical argument. 
Notice that as the system breaks down, hk and fa 
increase indefinitely. In a system of length L containing 

LU 
I 

FIG. 4. The energy lowering ET/iN(0)co2 as a function of 
coupling constant a2 for cutoff x=4. As in Fig. 3 we include the 
result of second-order perturbation theory. 
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N electrons the maximum eigenvalue of 

2̂ <r (^-fc,a+^A;,<r*)=( "J '—J S Cp+k/2,a*Cp-k/2,<r 

\\k\L/ P,<r 

( 2TT V'2 N 
= — ) ][>**'/ 

\ | f t | £ / y-i 

(*7 is the position of the jth electron) is iV(27r/|&|£)1/2, 
and the maximum fa is about jwN2/ \ k \ L. From (5.5) 
the lowest energy is about 

(l-<*2/4) £ SlkTrN2/2\k\L = ( l -a 2 /4) 
h 

X / JMftt t = iV2(l - a 2 / 4 )#co/2. (5.6) 

The energy depends on N2 instead of N and is not an 
extensive quantity. 

We may obtain a more precise lower bound by neg
lecting the kinetic energy which is a positive definite 
operator, in the electron-phonon Hamiltonian. The 
eigenstates of the operator O—Hi-j-Hs are products 
of two functions, one of the phonon, the other of the 
electron coordinates. 

*=*('y)x(ff*). (5.7) 

The function rj is an eigenstate of the commuting set of 
operators pk—L~112 X)j erikr*' with eigenvalues p / . Then 
X satisfies 

( 4 E {pk*p*+<*q**qk)+gT.f^h%}x=EnX, (5.8) 

where Em is the eigenvalue of 0. The lowest Em is 

i E ( « - - | p * T ) . (5.9) 
\k\<kc \ CO2 / 

Choose | pk | to take the maximum value of NLr112 for 
all ky which can be done by placing all electrons at the 
same point of space. The lower bound is 

Ei/L=xo2N(0)tl-a2EjN/a>2. (5.10) 

To demonstrate the breakdown of the electron-
phonon system we seek an upper bound for E/L which 
has a term of the form const XiV. For large a2 we expect 
the constant to be negative. Choose a variational wave 
function of the form (5.7). The idea is that for strong 
coupling we can let {nlpklv) be large for |&|<&c by 
placing all the electrons inside a region of width t com
parable to Ac=27r/&c. The kinetic energy of such a 
configuration 77(77) of N electrons with spin confined 
to a box of length t=y\c is 

2 £ * > / - = — ( - ) . 

Take the expectation value of 0 in the state y\%. The 

minimum energy is obtained by choosing x to satisfy 
(5.8) with pk replaced by the expectation value 
(v\pk\ri)=(pk)> The upper bound is 

E a i / Z = ^ W ( 0 ) [ l - (Wg(y)-h)EfN/a>J, (5.11) 

where 

g(7)= E IWIV £ W/L 
\k\<kc \k\<kc 

= E I M I V O W T ) (5-12) 
\k\<kc 

and (pk) is the &th Fourier component of a density 
function which is N/t inside the length 2 and zero 
outside. The discrete sum in (5.12) may be replaced 
by an integral provided t<^L. 

4 rkc dk kt 
g(y) = — / — sin2— 

PkcJo k2 2 
sinVy 1 

= + — Si(27ry). (5.13) 
(7ry)2 7T7 

At the critical coupling the coefficient of Â  in (5.11) 
is zero and ac

2= 2/yg(y). We shall choose y to minimize 
ac

2. Thus yg(y) is a maximum, which occurs when 
sin7ry = 0 or y—integer = v> 0 and 

*«(?)= ( W S i M . (5.14) 

For example, one maximum occurs at v=S, wherea Si 
is 1.55 and so ac

2 is 4.05. It is possible to reduce ac
2 by 

choosing v larger and larger, for as v—> <*>, Si—>T/2 
and thus a c

2-^4. This indicates that at a2 = 4 the 
system is still distributed over a large region, which 
however cannot be taken comparable to L, since then 
|(pfc)|2 varies so rapidly between the allowed values 
of k in the sum (5.12) that the integral replacement of 
the sum is no longer valid. 

For a2>4 we minimize \o?g{y)-~\y1 giving 

4 z 2TT 
-sin2H =Si(z), z=2wy. (5.15) 
z 2 a2 

If we let a2= 2T the solution for z in (5.15) lies between 
T and 2x, so t is between Xc/2 and Xc. For larger a2, i 
decreases further. We conclude that as a2 increases 
beyond 4, the system of electrons rapidly collapses to 
small dimensions of about Xc, independent of N. As a2 

continues to increase, t approaches zero as 1/a, and the 
interaction term in (5.11) dominates the kinetic term 
by a factor a, so the upper bound (5.11) approaches 
the lower bound (5.10). 

If the electron energy-momentum relation is p2/2my 

the type of trial wave function (5.7) would give a 

8 Natl. Bur. Std., Appl. Math. Ser. 32. 
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kinetic energy 

2 N/2 / m r \ 2 7T2 /N\3 

2m n=o\tJ 3mA 2 J 

going as Nz, which gives to Ec^/L a term going as N2 with 
positive coefficient. For large N this term dominates 
the negative term linear in N. It is evident that the 
faster increase of ep with large p acts to prevent the 
electrons from coming together into a small region of 
space to take advantage of the large lattice displace
ment which lowers the energy. As pointed out by 
Bardeen,3 this system cannot be approximated by the 
Tomonaga model when the coupling is strong. 

6. PERTURBATION-THEORY RULES 

The perturbation-theory rules for the ground-state 
energy of an electron-phono n system may be derived 
by the method of Goldstone.9 A method which combines 
time-dependent and -independent perturbation theory10 

could also be used. Bloch and De Dominicis have given 
the rules for the Gibbs function of the system at non
zero temperature.11 

The Hamiltonian H is the sum of Ho and Hi of (4.1). 
In the "electron picture" Ho=K+Hs describes free 
electrons and phonons, and in the "density wave 
picture" Ho=T+Hs, the electron variables are re
placed by density waves. If \f/o is the ground state of 
Z7o, the Fermi sea with no phonons, then e~HS4/o ap
proaches the ground state \f/ of H for large positive S 
if (^,^o)^0. The ground-state energy difference of H 
and Ho is 

AE=E-E0= Km (Hie-
HS)/(e~HS), 

S->oo 

(6.1) 

where ( ) denotes expectation values in the state \po. 
The expression (6.1) may be written in the interaction 

representation where, for example, Hi(S) = eHoSHie~HoS. 

A£= lim / # / ( 5 ) r exp - f HT(t)dt\ J 

/ r e x p - J Hi(f)dtS. (6.2) 

T is the standard ordering operator with respect to the 
integration parameter, which for convenience shall be 
called "time." In the electron picture 

Hr=L-W E gk(2^k)~^cp+}c^cPAh+b^), (6.3) 
p,k,cr 

where bk= (cok/2)1/2qk+i(2o)k)~1,2pk is the phonon an
nihilation operator and bk* the creation operator, with 

9 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
10 C. Bloch, Nucl. Phys. 7, 451 (1958). 
11 C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958). 

boson commutation relations. In the density wave 
picture 

# r = E gt(|*|/4arw*)1/2(«*^*+fl-*..)(S*+ft-»*). (6.4) 

The equations of motion show that annihilation oper
ators have time dependence like 

Cp(S) = ereP8cp, ak(S) = e-nkSak, 

and creation operators like bk*(S) = e0}kSbk*. 
The perturbation series is obtained by expanding the 

exponential in (6.2) and using Wick's theorem to 
evaluate the expectation value of the various terms. 
The only terms which survive in (6.2) are those in 
which all contractions are made. 

In the electron picture the first term in the numer
ator of (6.2) is 

-/HT(S)[ HzQdtS 

1 

= — £ 
gkgw 

L P,k,<r;p'',k'>' (4c0&C0&>) 1/2 

= < • 

XiCp+k^Ck^r-*^8 

X (bke-""s+b^k*eMS) / <&„+*.„%. 

Xe-u"'-e"'+k,)t(bk,e-uk,t+b^*e' * " ) ) • (6-5) 

For the phonon contraction the only nonvanishing term 
is :Jjfc6jfe*:=l, and in the electron contraction we must 
put (p+k^^^ip'^), (p,<r)=(p'+k',<r') and obtain 
1 if \p\>kf, \p+k\<kf and 0 otherwise. As 5—> <*> 
only the upper limit of the integral over / in (6.5) is 
important and the result is 

L \k\<kc,P,(T 2(x)k 

(ep— €p+k-\-Ct)k) (6.6) 

with the restrictions \p\>kf, \p+k\<kf in the sum. 
The diagram representing this term is shown in Fig. 5. 
The straight line going up is a particle outside the 
Fermi sea, the straight line going down is a hole in the 
Fermi sea, and the wavy line is a phonon, which may 
be directed either way. Momentum and spin are con
served at each vertex which contributes a matrix 
element gk/(2ukLyi2. 

Terms of odd order in Hi from the expansion of (6.2) 
lead to the contraction of an odd number of phonon 
operators, which vanishes. In fourth order there are 
linked as well as unlinked diagrams, with examples 
shown in Fig. 6. This unlinked diagram gives a con
tribution to AE going as L2, and therefore must be 
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FIG. 5. Second-order 
ground-state energy dia
gram in the electron pic
ture. 

P,o-

mcreasmg 
time 

p + k,o* 

cancelled by the denominator. An outline of the proof 
of the linked cluster theorem may be given following 
Goldstone. All the diagrams in the numerator of (6.2) 
may be grouped in sets with a common linked sub-
diagram whose vertex begins at time zero. In one such 
set fix the time labels on this linked subdiagram and 
perform the integrals over the other time variables; 
in the set there are present diagrams in which these 
time variables take all possible orders with respect to 
the fixed time labels. If all the members of the set are 
now added, the result is the special linked subdiagram 
times a numerical factor equal to the denominator of 
(6.2). This demonstrates the possibility of expanding 
AE in terms of linked diagrams. 

I t remains to perform the straightforward time inte
grations, which lead to energy denominators as in 
(6.6). We can now state the rules for the evaluation of 
the contribution of a linked diagram. At each vertex, 
spin and momentum are conserved, and the matrix 
element is gk/(2cokL)1/2, where k is the phonon mo
mentum. Write the (positive) excitation energy of each 
intermediate state in the denominator, multiply by 
the matrix elements and sum over all the momenta 
and spins, observing the rule that holes are within the 
Fermi sea and particles are outside the sea. The sign 
of the diagram is — (—l) p where the first-sign comes 
from expanding the "exp" in the numerator of (6.2) 
into an odd number of Hi, and P is the parity of the 
Fermion contraction, which is given by the sum of the 
numbers of closed electron loops and hole lines.9 

In the density wave picture the development is quite 
similar. The first term in the numerator of (6.2) is 

1 g*&b'/|*ft'|\1/a 

L k,k',<r,<r' 47T \Oi]^k 

X ( fa,* *eQkS+a-kt^
Q*s)(bk(T»*s+b-k*ea*8) 

i + / dtiav.aW't+a-v,,>*-*»«) 

The only nonzero boson contraction is \ak^ak>*\. The 
diagram obtained this way is shown in Fig. 7, where 
the dashed line indicates a propagating density wave. 
The result for (6.7) after performing the time inte
grations is 

gk2 | * | 
- £ (Oa+u*)-1. 

\k\<kc,<r 2o)k 2 T 
(6.8) 

The linked-cluster theorem holds. The contribution of 
a linked diagram is determined by the same rules as 
before, but the matrix element at a vertex is gk(\k\/ 
47rco;01/2, and the sum is over all possible momenta less 
than ke9 since the reference state ^o contains no phonons 
or density waves. The sign of each diagram is negative. 

7. PERTURBATION-THEORY DIAGRAMS 

The arguments of Tomonaga show that the model 
Hamiltonian should describe the properties of the 
electron-phonon system quite well. The extent to which 
this is true may be determined by comparing the per
turbation series of the two pictures of Sec. 6. 

The Brillouin-Wigner perturbation formulas12 for the 
ground-state energy and wave function are 

t=to+BHrt, 

AE^ZiHiiBH!)1), 
Z=0 

(7.1) 

(7.2) 

J3 = P / ( J E - f f 0 ) , P = l - | * o > < l M , (7.3) 

where E is the ground-state energy of H and AE is the 
energy shift from the interaction. The electron and the 
density wave pictures have different forms for the 
electron kinetic operator, but they lead to the same 
result when acting on the various terms of (7.1) which 
are members of 5 . For example, the second term in the 
expansion of \4>) is 

(P/E-Ho) Z * gk(b-**ok*) |*o>. (7.4) 

A particular term in the sum, £_**#&* | ^ 0 ) , is an 
eigenstate of K—Ho with eigenvalue Vf\k\ = £2k. Now 

(a) (b) 

FIG. 6. (a) Linked fourth-order diagram. 
(b) Unlinked fourth-order diagram. 

X (Jjb'Cr"w*"+&_^*cw*") > . (6.7) 12 E # p . Wigner, Math. Naturw. Anz. Ungar. Akad. Wiss. 53, 475 
/ (1935). 
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S 

k,cr ^ Y L FIG. 7. Second-order ground-state 
\ \ energy diagram in the density wave 
\ ( picture. 

0 

consider 

Tb-k*ak*\f0)= (E O*^*'*a*0*-**fl**|̂ o) 

= 0*i.Jb*aJb*|^o>. (7.5) 

In the last step the commutation rule (2.4) was used, 
and the property ap |^0)=0. The second-order cor
rection to the wave function agrees in the two pictures, 
and is a sum of terms of the form b-k*ak*\ipo) with 
various coefficients. The third-order term for \\f/) is 
obtained by another application of BHi. The effect of 
Hi is to give terms like (6_j*ai*) (6—**«**) |^o), 
&Aj*&_fc*|lAo), and #&*#_&* | ̂ o), and application of K—Ho 
and T gives the same result, by the argument used in 
(7.5). The argument breaks down only when the boson 
commutation rule is not true, which occurs when T 
acts on a state not in S. Hi acting once on |^o) gives a 
state containing holes of minimum absolute momentum 
kf—kc. Each successive Hi lowers the minimum by ke, 
so after k//ke steps of Hi the holes are in the critical 
region near k=0, and this part of \\f/) is not in S. In 
the series (7.2) for the energy shift we can let B act 
either to the left or right. The Tomonaga model | \p) is 
therefore correct to order k//kc and the energy E to 
order 2k//kc. For the one-quantum excited state of the 
normal modes of Sec. 4 these limits are (kf—kc)/kc and 
2(kf—kc)/kc, respectively. 

The second-order diagrams for the energy shift AE 
are shown in Figs. 5 and 7 in the electron and density 
wave pictures. That these diagrams are equal can be 
seen from the results of Sec. 6, where the contribution 
of the electron-picture diagram was (6.6) 

1 gfc
2 

— E —(Ojb+w*)"1-
L \k\<kc,P,<r 2i0k 

From the particle and hole restrictions on (6.6), p must 
lie for k<0 between k/ and &/+I&I and for k>0 
between —kf and —(kf+\k\). The sum over p gives 
the factor (L/2w)\k\, and the remaining sum over k, a 
is the result (6.8) for the contribution of the density 
wave diagram which may be called a Tomonaga 
diagram. The density wave propagator (dashed line) 
therefore sums up the electron-hole bubbles of the first 

diagram for different p. The Tomonaga diagrams have 
the structure of particle-hole bubbles linked to phonons 
at both ends. The method of Sawada13 can be used to 
sum these diagrams, but the procedure cannot be 
justified from the Sawada Hamiltonian in which each 
particle-hole pair of momenta p+k, p is treated as a 
boson. It is only the coherent superposition of pairs 
with different p that behaves as a boson density wave. 

In the fourth order there are six diagrams in the 
electron picture shown in Fig. 8, from which all the 
fourth-order Tomonaga diagrams with the same con
tributions are obtained if the bubbles are replaced by 
dashed lines. There are twelve extra diagrams which 
fall into two groups of six, and each group is the " time-
reversed" image of the other. One of the groups is 
shown in Fig. 9. Time reversal reverses the arrows in a 
diagram, so that electrons become holes, and vice versa. 
The contribution of a diagram is unchanged under time 
reversal, from the particle-hole symmetry about the 
Fermi level. 

Since the Tomonaga energy should be correct to 
high order, the sum of the contributions of the extra 
diagrams is zero, even for an arbitrary phonon spectrum 
ojjb and coupling g&. The phonon structure determines 
the matrix elements and the intermediate-state energy. 
The excitation energy of the particles and holes is 
proportional to the magnitude of the excitation mo
mentum, which equals the magnitude of the net phonon 
momentum. This means we can fix the phonon momenta 
in the diagrams, and group the diagrams of the same 
phonon structure in time when all the particle and hole 
lines are removed. Since Fig. 9(a) is the only diagram 

(a) (b) (c) 

(d) (e) (f) 

FIG. 8. The six Tomonaga diagrams which occur in fourth-
order perturbation drawn in the electron picture. 

13 K. Sawada, Phys. Rev. 106, 372 (1957). 
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lk+q+q' 
M ( \ T k1 

k*q-q'i 
W 

k+qT f 
k*q-q' 

FIG. 9. The six non-Tomonaga diagrams which occur 
in fourth order. 

with no phonons present in the second intermediate 
state, it forms a group with one member, and so must 
be zero. The requirement that holes be in the sea and 
particles outside places the following restrictions on its 
momenta if we choose k positive: 

(i) k<kf, (ii) k+q+tf<kf, 
(iii) k+q>kf, (iv) k+q'>kf. 

Adding (i), (ii), and the negative of (iii), we obtain 
k+q'<k/ contradicting (iv). The sum over momenta of 
diagram 9(a) is vacuous. 

The diagrams of Figs. 9(b) and (c) form the second 
group. The sign rule gives minus and plus, respectively. 
It remains to check that the restrictions on momenta 
are identical. For (b), 

(i) k+q>kf, (ii) k<kf, 

(iii) k+q'>kfl (iv) k+q+q'>kf. 

For (c), 

(i) k+q>kf, (ii) k<kf, (iii) k+q'>kf. 

The condition (iv) of (b) can be obtained by adding 
(i) and (iii) and subtracting (ii). 

In the last group of Figs. 9(d), (e), (f) the signs are 
+ , —, + . The momentum conditions are: 
For (d), 

(i) k<kf, (ii) k-q'<kf, 

(iii) k+q>kf, (iv) k+q—qf>kf. 

For (e), 

(i) k<kf, (ii) k—q'<kf, (iii) k+q>kf. 

For (f), 

(i) k<kf, (iii) k+q>kf, (v) k+q—q'<k/. 

Now (v)+(i)—(iii) gives (ii). Given (i), (ii), and (iii), 
then one and only one of (iv) and (v) is true, so dia
grams (d) and (f) cancel (e). 

The same kind of cancellation must occur in higher 
orders, although it becomes quite difficult to check 
directly. We can characterize the diagrams which are 
not included in Tomonaga, and which do not cancel, 
but give corrections to the Tomonaga energy £ r . The 
diagrams in a specific phonon structure group in an 
order less than r~2kf/kc add to zero, and contain no 
hole lines which scatter from one side of k=0 to the 
other. Now consider a group of high enough order so 
that this scattering is present, for example, one such 
that the hole moves from k>0 to k<0 and back. If we 
imagine increasing kf sufficiently, the structure of these 
diagrams does not change, but the hole stays entirely 
on the side k>0; the group then has order less than the 
new r and so gives zero. Setting kf equal to its original 
value, we see that the reason the group does not cancel 
is due to the kink in the energy-momentum relationship 
ejc as k passes through zero. The energy of the inter
mediate state when the hole is near ^=0 is at least the 
Fermi energy Ef. The effect of the kink in €k in a 
specific diagram is negligible until the change caused 
by it is comparable to E/, so the hole has moved over 
near to — kf; this argument is also valid for several such 
holes. If the order of perturbation theory is above 2r 
we obtain diagrams of a new structure. For example, a 
hole which started near kf moves all the way over to 
— k in many stages and is annihilated there by a particle. 
But these diagrams have many intermediate-state 
energies above £/ , and thus represent a very small 
correction to ET> 

8. THE ELECTRON DISTRIBUTION 

The perturbation expansion of the electron distri
bution in the momentum space may be obtained from 
the formula 

(^\nit(J\\l/)= (\l/\ci,^cit(r\\p) 

= lim (e~HSnit(re-HS)/(e-2HS) 

= lim < ^Texp / —Hi(u)duni>a{S) 
**» \ Js 

Xexp/ -Hi(t)dtS/ 

/rexpf -H r(0*V (8.1) 

In the expansion there must be an even number of Hi 
in each term, so the sign is determined by the parity 
of the contraction. The contraction :citV*(S)cit<r(S): 
gives exactly (nit<r) which is 1 or 0 as I is inside or 
outside the sea. 
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£,<r4 

» FIG. 10. Second-order diagram for 
]£+k1cr the occupation number of a particle 

state. 

The lowest order contraction of citV*ci,a with the Hi 
can be represented by the diagram of Fig. 10 in the case 
|Z |>£ / . The x on the particle line of momentum /, 
spin a denotes the effect of ni,a(S) in first removing the 
particle in state / and then returning it. When the x 
appears on a hole line there is an extra — 1 in the parity. 
The time integration leads to the square of the inter
mediate-state energy appearing in the denominator. 
The contribution of the diagram is 

1 gi? 
— X) (co+ez— ei^k)

 2 

L h 2co& 

a' 

32 

= 0, 

1 1 1 • 
, |/-ft, 

i-icf/a 1 + tfJ 
Ll+&_fc//« 1 + 

<kc 

l-kf\>ke. (8.2) 

If \l—kf\>kc there is no phonon momentum large 
enough to put the hole in the sea. 

The linked-cluster theorem for this expansion is 
valid, and the diagrams differ from those for the ground-
state energy only by the presence of an x in some 
intermediate state on a particle (hole) line if \l\>kf 

(<k/), which requires this line to have momentum I 
and spin <r. The excitation energy of the intermediate 
state with the x appears squared in the denominator. 

In second order we have the Tomonaga diagram of 
Fig. 5. In fourth order the x can be put on the Tomonaga 
diagrams of Fig. 8 as well as on the extra diagrams of 
Fig. 9. Is it reasonable to expect that the Tomonaga 
diagrams provide as good a description of the electron 
distribution as of the ground-state energy? This cannot 
be true, because the Tomonaga diagrams give no con
tribution to (\f/\ni\\p) if \l\>kf+kc or \l\<kf—kc, 
since the highest momentum particle in such a diagram 
is at k/-\-kc and the lowest momentum hole at kf—kc. 
I t has been pointed out in Sec. 7 that the second-order 
term in the expansion of ^ already has holes down to 
momentum k/—2kc. There are two reasons why the 
extra diagrams of Fig. 9 with the x on some line no 
longer cancel. Diagrams like Fig. 9 (c) have two particles 
or holes in one intermediate state, and the x can be 
placed on either. In addition, the x fixes the momentum 
of a line, which can restrict the phase space of two 
canceling diagrams (without the x) in different ways. 

In the Tomonaga model the electron-phonon coupling 
has no effect on the paramagnetic susceptibility %. The 

term added to the Hamiltonian is AH=nB(N \—N \), 
where iVt (Ni) is the number operator for spin-up 
(down) electrons, n the electron magnetic moment, and 
B the magnetic field. This term commutes with the 
(zero-field) electron-phonon Hamiltonian. In the 
Tomonaga model we let \po be the ground state of 
K+Hs-\-AH and apply the perturbation expansion 
(7.1) in the density wave picture. The essential property 
of the \po, namely ap\ip0)=0 is still true, and the ex
pansion for AE of (7.2) is unchanged. Therefore the 
ground-state energy shift due to the magnetic field is 
all present in the uncoupled system. The change in 
susceptibility due to electron-phonon coupling in a 
system with electron spectrum p2/2m comes about from 
the curvature of the kinetic energy around the Fermi 
level. In the weak-coupling limit the fractional change 
in x due to the phonons and the curvature is of the 
order of a2(o>/£/)2. 

9. GREEN'S FUNCTION APPROACH TO THE 
TOMONAGA MODEL 

We have seen that the evaluation of the ground-state 
energy in the Tomonaga model corresponds to a sum
mation of the bubble diagrams for the electron-phonon 
system. The Green's function approach to the electron-
phonon problem14 may be used to sum bubble diagrams. 
We use the Pauli-Feynman15 technique to write the 
ground-state energy in terms of Green's functions 

(B)=(H, 0)0=0+ / — 
Jo g g' \ w (2a))1'2 

'Ck-\-q,<T C]ct(x 

X(bq+b^*) 
> 

r dg' r m 
=<#o>,-o+*/ — / ~-m)D{k), 

h g' J (Ivf 
where 

k<kf k 

(9.1) 

(9.2) 

To sum only bubble diagrams, the vertex function is 
chosen to be 1. The phonon self-energy is 

n(*)= = -2ifj(2ir; 

'I 
)-WpGo(p+k)G0(p), 

= -2if\ (2w)-Wp[_p0+h-e(p+k) 

+ide(p+k)2-1LPo-e(p)+i8e(p)lr
1, 

= 4gW(0)0 2 (£) / [£o 2 -a 2 (£)+i5] , 5=0+, 

(9.3) 

14 A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, Methods 
of Quantum Field Theory in Statistical Physics (Prentice Hall, Inc., 
Englewood Cliffs, New Jersey, 1963), pp. 93. 

15 W. Pauli, Handbuch der Physik, edited by S. Flugge (Julius 
Springer, Berlin, 1933), 2. Aufl. XXIV/1, pp. 161; R. P. Feynman, 
Phys. Rev. 56, 340 (1939). 



O N E - D I M E N S I O N A L E L E C T R O N - P H O N O N M O D E L A 1595 

where we have made the linear energy approximation 

e(p-k)-e(p) = ±Q(k) = ±Vf\k\ , (9.4) 

and as before N(0) = 1/2x0/. 
The phonon Green's function D is given by 

D(k)=(D<r\k)-fL{k)Y' 
- (^o2 -02 )C(^o2 -co2 ) (^o2 -02 ) 

-4.g2N(0)tt2+i8~]-K (9.5) 

The poles of D correspond to the perturbed excitations 
(4.9) and (4.10) found in the Tomonaga model 

5(^)=(^o2-0,2)[(^o2-A,2)(^o2-X&
2)+i5]-1. 

The addition to the ground-state energy arising from 
the interaction is 

dg* f d2k 
!<int" 

r« dg' r en 

k 

(2x)2 

0 dg' r dk0 

IL{k)D{k) 

ra dg' r°° 

JO g' i-oc 

4:g'2N(0)W 

k Jo 
dg'*N (0)m 

2x (ko2-A2)(k0
2-\2)+iS 

1 1 

LA(A2-X2) X(A2-A2). 
(9.6) 

Now consider the dependence of A and X on g'2, using 
(9.9), (9.10), and (9.11) 

d(A+\) = W(0)tt2\ 
1 1 

LA(A2-A2) A(A2-

With this one may transform (9.6). 

-A2)J 2 
(9.7) 

h 

A+X 

rf(A/+X/) = 4 L ( A + X - « - 0 ) . (9.8) 
co+O 

The expression for the ground-state energy is then 
identical with (9.14) 

(B) = 2 E €jb+JE(A+X-0) . (9.9) 
\k\<k/ 

It is not very surprising that one could use Green's 
functions to obtain this result. The fact which is sur
prising is that we have a model in which we can obtain 
many quantities simply to any desired order of per
turbation theory. One such quantity is the phonon 
Green's function, D. D may be calculated once its 
spectral function is known. The spectral function in 
turn depends only upon the matrix element of the 
phonon creation operator taken between the ground 
state and any excited states of the system. By our 
previous analysis we know that the ground-state wave 
function is given correctly to a high order of per
turbation theory when only bubble diagrams are 
included. Each phonon operator can be written in 
terms of two normal-mode operators using (4.5), 

(4.6), and (4.12). Each of the two excited states we 
can go to is correctly given to one order lower in the 
coupling constant than is the ground-state wave 
function, as shown in Sec. 7. 

Since D is correct and 

D(*)=[z>0-
1(A)-n(*)]-1, 

we then must have 

n(^)=n(^)+o((gW(o)/co2)^^). (9.io) 
Our expression for fl, 9.3, involves only g2. Thus there 
must be an exact cancellation of all diagrams of order 
higher than second and up to order 2k//kc. Conse
quently we may write 

JdpoU(p)D(p) = j , dp0U(p)D(p)= / dp0ll(p)D(p)+O(£*'i*'). (9.11) 

An equivalent way of writing (9.11) is 

fdp02(p)G(p) = fdpo2(p)Go(p)+0(g2Wk°), (9.12) 

since the left-hand sides of (9.11) and (9.12) are two 
ways of calculating the expectation of the interaction 
term 

\\Q\<kc.c (2o)qyi2 / 

The right-hand sides of (9.11) and (9.12) are identical 
by definition. The quantities 2, ft, and D are obtained 
from the Dyson equations for 2, II, and D by replacing 
the vertex function T by 1 and the electron Green's 
function G by the noninteracting one Go. Although the 
expressions for D and II in terms of bubble diagrams 
only are correct, the expression for 2 is not. 2 is an 
incorrect expression for 2 starting at fourth order; only 
the combination J%dpQ2(p)Go(p) is correct to order 
2k//kc. For fixed cutoff we see that the order of per
turbation theory to which the various quantities are 
exact can be made arbitrarily high by increasing the 
density of the system. 

10. POSSIBILITY OF EXTENSION TO 
THREE DIMENSIONS 

In this section we attempt to carry the diagrammatic 
analysis we have used in the one-dimensional model on 
to three dimensions. A number of workers in the past 
have calculated the ground-state energy of a three-
dimensional system with electron-electron interactions 
by summing only bubble diagrams.16 

16 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 
(1957); K. Sawada, Ref. 13; K. Sawada, K. A. Brueckner, N. 
Fukuda, and R. Brout, Phys. Rev. 108, 507 (1957); R. Brout, 
ibid. 108, 515 (1957); J. Hubbard, Proc. Roy. Soc. (London) 
A240, 539 (1957); A243, 336 (1958); P. Nozieres and D. Pines, 
Phys. Rev, 109, 1009 (1958). 
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We have seen in Sec. 7 that the existence of the 
Tomonaga operators required the sum of the contri
butions of sets of diagrams to vanish. The structure of 
the diagrams does not depend on the dimensionality of 
space. In second order there is only one diagram, which 
is of the bubble type. In fourth order there are 12 
diagrams not of the bubble type. 

We will state the results before going into the details 
of the integrations. There is not exact cancellation of the 
non-Tomonaga diagrams. This is independent of the 
ratio kc/kf. 

The other results are model-dependent; we choose a 
constant optical-phonon spectrum energy co, constant 
matrix element gk=g, and a cutoff on momentum 
transfer, kc^xoo/v/; x is a number having the same 
meaning as in Sec. 3, and is taken equal to 2. In metals 
the ratio of the maximum phonon energy to the Fermi 
energy is a small number, approximately 10~2. The 
electron kinetic energy is chosen to be e{k) = k2/2m, 
The ratio of the sum of Tomonaga diagrams to the sum 
of non-Tomonaga diagrams is of the order (E//a>)3. 
Thus, although there are no boson operators which 
diagonalize the Hamiltonian exactly in fourth order, 
there is the possibility of operators which may be used 
to calculate fourth order to one part in 106. 

Let us first consider the contribution of the Tomonaga 
diagram in Fig. 8(e). Figure 8(f) has the same number 
of particles, holes, and phonons in each intermediate 
state and can be treated in the same way. 

4g4 r d*k<Pk'd?q/k-<i 

4co2 
AEge= — / hco 

(2TT)9 \ m J 

/ ( k + k O - q 
XI +2a> 

\ m r (10.1) 

The factor of 4 in the numerator comes from the sum 
over spins. We neglect terms q2/2m<kc

2/2m=o)kc/kf 
which occur in the energy denominators, since they are 
down by a factor kc/kf relative to co. These terms arise 
from differences of electron kinetic energies e(k-{-q) 
— e(k). We may now easily place upper and lower 
bounds on the integral, since for all allowed values of 
k*q and k'*q, 

/ k -q \ - 2 

ico- 3 ( l+*)- 3 < +o> 
\ m i 

/(k+k')-
x ( 

-2a>) <l (10.2) 

If we were to consider the contributions of diagrams 
8(a) or 8(d), in which one of the intermediate states 
has two phonons but no particle-hole pairs, we would 
obtain as a lower bound of the integrand Jar" 3 ( l+#) - 2 

rather than the result given in (10.2). The contribution 
of any Tomonaga diagram of fourth order with phonons 

in the second intermediate state satisfies the inequality 

"4 r d*kd*k'dsq 

2co5(l+x)! 

C d6kd6k'c 

J (2TT)9 

- < AE8 

<-
2co5 

d*kd*k'd*q 

(2x)9 
(10.3) 

(10.4) 

(10.5) 

Now we approximate the integral 

Js= d*kdsk'd*q 

subject to the restrictions 

k'2+q2+2k'qz'>kf
2, z'=k''q 

k2+q2+2kqz>kf
2, z=k-q 

k2<kf
2, k,2<kf

2. 

To order kc/k/ we may relax these conditions to 

qzr>kf—kf, qz>k/—k, 

k<kf, k'<kf. (10.6) 

The integrals are performed directly and the result for 
J is 

Js= (±/5Wkfkc*[\+0{kc/kf)']. (10.7) 

The bounds are (10.3) are 

&VL , , /g2A7(0)N 
— < \ A E 8 \ < ( ~ 
27 \ 

\ 2 CO4 

) IOTTV 
(10.8) 

where N(0) — mkf/2ir2 is the three-dimensional density 
of states at the Fermi surface. 

Before considering the two Tomonaga diagrams with 
no phonons in the second intermediate state we con
sider one of the non-Tomonaga diagrams with phonons 
in all intermediate states, Fig. 9(b). Actually a part 
of this diagram is cancelled by the diagram in 9(c), as 
we will see later. Even without this further suppression 
we will find we have gone down by a factor (a)/Ef)

2. 

AE95= — 
2X2g4 f&hPqcPq'/k-q 

4u2 

r d3kdsqd*q'/k-q \ " 

J (2TT)9 \ m / 

/k-q' \-yk(q+q') y 1 

(10.9) 

The factor 2X2 comes from the sum over spins and the 
time-reversed diagram. We may put bounds on (10.9) 
as we did on (10.1). 

&k&q&q' 

2co5(l+x) 

r d6kd6q$ 

x) 3 J (2TT)9 

- < | A £ 9 

2co57 

d*kdsqd*q' 
(10.10) 
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We do not impose the restriction (k+q+q ' ) 2 >&/ 2 

which is of higher order in ke/kf once the restrictions 
(k+q)2>&/2 and (k+q')2>&/2 are satisfied. 

To order kc/k/ the restrictions on the integral 

- / 
Jn= d3kdsqd3q' (10.11) 

are 
qz>kf-k, q'zf>kf-k, k<kf. (10.12) 

Performing the integrals we obtain 

J9h<2(2v)*kfke
7/27. (10.13) 

Comparing this result with (10.8) we see that 
E9b~ (a>/£/)2E<u- This result is peculiar to three di
mensions; it does not happen in one dimension. We 
can see this from a simple counting argument on the 
phase space available.2 We label integration variables 
by k's if they are momenta of electrons at about the 
Fermi surface. The integration region is about kc for k 
and also for the momentum transfers labeled by q's. A 
Tomonaga integral has the form 

d*kdskfdsq^kf
4 qHq 

in three dimensions, while a non-Tomonaga integral 
has the form 

/

pkc 

d*kd*qd*q'^kf
2 qHq. 

We have the relative factor (kc/kf)2 quite simply. In 
the one-dimensional case, a Tomonaga integral is of 
the form 

phc 

dkdk'dq— J 
Jo 

qHq. 

A non-Tomonaga integral is of the form 

/ dkdqdq'— i qHq. 

In one dimension all diagrams with phonons in all the 
intermediate states are of the same order of magnitude. 

The Tomonaga diagrams we have not yet considered 
are those with no phonons in one intermediate state, 
Figs. 8(b) and 8(c). We will show that the bounds on 
the contributions of these diagrams are approximately 
the same as those obtained in (10.8). For both diagrams 

g4co-4(l+x)-2(27r)-9/8,< | A£8, | 
<ig4ar4(27r)-V8 , , (10.14) 

where the integral 

J8>= d*kd*k'd*ql J (10.15) 

has the restrictions 

k<kf, k'>kf, 

qz'<kf—kr, qz>k/—k, (10.16) 

neglecting terms of order kc/kf. In the integrand we 
make the approximation 

[q- {k-k,)/m']-l^m{_qkf{z~z,)']-K 

The integrals over k and k' may be performed to give 

JS'=(2T} kfm / • d\dzdzfqzzf{Jzf{z-zf)~]-1. (10.17) 

To within the order we are calculating to, the limits of 
integrations on the polar angles are obtained by setting 
A and &'=;&/in (10.16). 

o<s<i - i < y < o . (10.18) 

After changing the zr variable of integration to — z' we 
have from (10.17) the following integral 

- = § ( l - l n 2 ) = 0.2. (10.19) 
r1 rl zz' 
\ dz dzf = 

^o Jo z+zf 
'0 ./0 Z+2 

The q integration is trivial and we obtain 

J8 ' = 0.1(27r)3m&/&c
4. (10.20) 

The bounds on the contributions of these diagrams are 
evaluated using (10.14). 

i E c l l < | A E 8 , | < E c l l . (10.21) 

Comparing this with (10.8) we find that all Tomonaga 
diagrams are of the same order of magnitude. 

We next consider the sum of two non-Tomonaga 
diagrams which canceled in the one-dimensional case, 
Figs. 9(b) and 9(c). The energy denominators of the 
contributions from these two diagrams are not the same. 
For Fig. 9(b) we have 

AE9&-=-
r d*kd*qd*q'/k-q q2 y 

• J (2TT)9 \ m 2m I 

X +—+co 
\ m 2m / \ 

VMq+q') 

(q+qO 2 . >~x 

-2a; 
2m • ) " 

(10.22) 

whereas for 9(c) we have 

g4 f « y V / k « q q2 X"1 

A £ 9 c = + - / +—+co) 
co2 J (2TT)9 \ m 2m I 

/ W q'2 \-7k(q+q0 

\ m 2m / \ m 

q'2 q2 \~l 

H 1 h2co) . (10.23) 
2m 2m I 
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If we neglected the terms of order kc/kf smaller than 
co in the denominators as we did previously, the de
nominators would be identical and then the sum of the 
two diagrams would give a contribution less than 
Ec[i(o)/Ef)Q in magnitude. However, (10.22) contains 
the term q-q'/ra in the third factor not included in 
(10.23). We will expand (10.22) in terms of this factor, 
keeping only the first-order term 

g4 f<Pk<Pq<Pq'/k'q q2 y1 

A£96+c= / ( 1 ho) 
co2 J (2TT)9 \ m 1m I 

/k.q' q'2 v-i/k-Cq+q7) q2+q'2 X"1 

X +—+co ( + +2co 
\ m 2m I \ m 2m / 

( q-qVk-fo+q') q2+q'2 X"1 , 
x + + a j . (10.24) 

\ m / \ m 2m / 

We may now drop all irrelevant terms 

£4 fd*k(Fiq<Pq'/k-q \ - y k - q ' \~x 

AE9b+c=~— / +co +co 
co2 J (2x)9 \ m J \ m J 

/k-(q+q') \ - 2q-q ' 
X +2co) . (10.25) 

\ m / m 

The conditions on this integral are given in (10.12). 
An upper bound on (10.25) is 

AE9&+c<g4/96+c/4co6(27r)%, (10.26) 

where 

* W = d*kdsqd*qf q-qf. (10.27) 

We may use spherical trigonometry to obtain the cosine 
of the angle between q and q' in terms of z, z', and the 
angle <p between the projection of q and q' on a plane 
perpendicular to k. 

q*q'=q<fW+(l-#)M(l-zPyi*cos<p). (10.28) 

For an upper bound we weaken the conditions in 

(10.12) tos>0 , z'>0, 

79&+c<327r^/
2^c

9/45. (10.29) 

The result for the upper bound is 

8 / w \ 3 

AE9b+c<-( — }EcVi. (10.30) 
9\Ef/ 

A result of the same order of magnitude is obtained 
from the sum of diagrams 9(d), (e), and (f). The con
tribution of Fig. 9(a) can be neglected since it can be 
shown to have a contribution no greater than 
«(a>/£/)BJBu: 

This completes the demonstration of the various 
assertions made at the beginning of this section. For 
this particular model there is little doubt that the 
Tomonaga diagrams give the most important contri
bution to the ground-state energy. Since the phase 
space suppresses long wavelengths the statement above 
can only be true for a physical system if the matrix 
element gk emphasizes long-wavelength interactions. 

11. CONCLUSIONS 

The Tomonaga method provides a technique for 
obtaining a number of quantities to an arbitrarily high 
order of perturbation theory in certain one-dimensional 
electron-phonon models. In three dimensions the bubble 
diagrams which occurred in the Tomonaga method do 
not sum terms beyond second-order perturbation theory 
exactly, but to a very high approximation in models 
which favor long-wavelength interactions. 
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