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The linear response of an imperfect gas in thermal equilibrium to a nonuniform external magnetostatic 
field is studied, using a linked-diagram evaluation of the grand partition function. Account is taken of the 
molecular structure, of short-range molecular interaction and correlation, and of the long-range dipole-dipole 
interaction. In addition, a multipole expansion of the molecular interaction leads to the consideration of 
interaction terms, not heretofore studied, of order lower than or the same as that of the well-known dipole-
dipole terms. The contributions of these terms are eliminated by a summation of graphs, which is an opera­
tional generalization of the conventional gauge transformation. The final result is a virial expansion of the 
Clausius-Mossotti function. 

I. INTRODUCTION 

IN a recent paper,1 to be referred to as KW, Kaufman 
and Watson calculated the linear response of an im­

perfect gas of molecules, in thermal equilibrium, to a 
nonuniform external electrostatic field. The result was 
expressible as a virial expansion of the Clausius-
Mossotti function: 

for a dilute imperfect gas, by which we mean that in the 
Clausius-Mossotti expansion to be derived 

K-l 4TT 

— = _[ w o ; i (e )+^2 a 2 (e )+ . . . ] , 
K+2 3 

(1.1) 

where K(n,&) is the dielectric constant, n is the molecu­
lar density, @ is the temperature (in energy units), and 
on, «2, * • * are polarizability coefficients with a simple 
physical interpretation.2 

I t was at first thought that the treatment of the cor­
responding magnetostatic problem would be entirely 
analogous. However, our investigation uncovered many 
novel features, and the present paper is devoted to an 
exposition of these. Those aspects of the problem which 
are analogous are omitted, with a suitable reference to 
KW. (Hence a familiarity with KW is helpful for an 
understanding of the present paper, but is not essential.) 

The system to be studied is a gas of real molecules 
(of a single species, for simplicity), enclosed by a con­
tainer of volume V with fixed walls, in thermal equili­
brium at temperature ®, and acted upon by a nonuni­
form external magnetostatic field B0(R). The linear re­
sponse is characterized by the permeability /x(^,@), 
which relates the macroscopic fields B and H (to be 
defined in Sec. I I I ) . We shall study the linear response 
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[under contract AT (ll-l)-264], since 1963. 

1 A. N. Kaufman and K. M. Watson, Phys. Fluids 4, 931 (1961). 
2 A. N. Kaufman and K. M. Watson, J. Chem. Phys. 36, 439 

(1962). 
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M+2 3 
-Znai(®)+n2a2(@)+--1 (1.2) 

(now ah OL2, - • • represent magnetic polarizabilities), 
only terms to order n2 are treated. This allows a simpli­
fication of treatment, in that only binary molecular en­
counters need to be studied. 

The de Broglie wavelength of the molecular center-
of-mass motion is assumed to be small compared to 
molecular size. Thus this motion is treated classically, 
and the molecules are considered distinguishable. Let 
Rz denote the position of the center of mass of the /th 
molecule. The set {Rz} (for all /) is called a "configura­
tion." For a criterion of molecular contact, we introduce 
a length Ro, much larger than molecular size <zo, and 
much smaller than the mean nearest-neighbor distance 
n~1/d. Then, if the molecular separation Rim of mole­
cules I and m is less than R0, they are said to be in 
contact. 

Each configuration can be partially characterized by 
the numbers Nh iV2, iV3, • • •; where Ni is the number of 
"free" molecules, i.e., molecules not in contact with 
others, N% is the number of pairs of molecules in con­
tact, Nz is the number of triplets, etc. The total number 
of molecules is N=Y,mNm. For a dilute gas we have 
the relation 

^ i » i Y 2 » A Y - -

for nearly all configurations. Hence we shall neglect A^, 
and shall treat each configuration as if only free mole­
cules and pairs were present. 

We introduce the term "quasimolecule" for either a 
free molecule or a pair. (We shall use the symbols 
a, b,- - - to label quasimolecules; /, m,• • • to label real 
molecules; and i, j , - • • to label their constituent par­
ticles, i.e., electrons and nuclei.) In Sec. I I we shall de­
rive a Hamiltonian for the system in a given configura-
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tion. I t can be expressed in the form 

fl=ES.+ I Hab; (1.3) 
a a<Cb 

Ha involves operators of particles in quasimolecule a 
only, while Hab involves those of a and b. Because of the 
separation of quasi molecules implicit in their definition, 
a multipole expansion is possible for the interaction Hah* 
We find that, in addition to the magnetic dipole-dipole 
interaction (which falls off as jRa&~3), there are many 
other terms of order Rab~n, with n— 1, 2, or 3, involving 
other electric and magnetic multipoles. 

Section I I I is devoted to an exposition of the 
statistical-mechanical formalism based on the quasi­
molecule concept. This is then utilized in Sec. IV to 
evaluate the magnetization, with only the magnetic 
dipole-dipole interactions considered. Finally, in Sec. V, 
the other interaction terms are treated, and it is shown 
that, as expected, they make no contribution to the 
magnetization. Finally, Sec. VI summarizes the con­
cepts studied, and the reasons for the approach used 
here. 

II. THE HAMILTONIAN 

The magnetic interaction between particles is rela-
tivistic in nature, being of order v2/c2 compared to the 
Coulomb interaction. In the present section we wish to 
find the particle Hamiltonian which includes the mag­
netic interaction between the molecules of the macro­
scopic system to be studied. A possible starting point is 
the Hamiltonian of relativistic electrodynamics, whereby 
the particles interact via the radiation field. I t is shown 
by Bethe and Salpeter,3 using lowest order perturba­
tion theory, that the effective interaction between par­
ticles is given by the Breit Hamiltonian if the particle 
separation n, is small relative to an electromagnetic 
wavelength X characteristic of the virtual transitions 
between unperturbed states of the Coulomb Hamil­
tonian. The Breit Hamiltonian, in turn, can be reduced 
to the Darwin Hamiltonian4-5 if the particle speeds v 
are small compared to c. 

Hence we utilize the Darwin approximation, valid to 
order v2/c2 and if r#<<C\. Our discussion of it will be 
classical for the time being. At any stage it may be 
thrown into quantum operator form by means of the 
Weyl prescription.6 Further, the nonclassical spin con­
tributions to the interaction, being well understood, can 
be postponed until the end of the calculation, and then 
included in an obvious way. Later in this section we shall 
discuss the interaction between distant particles, i.e., 
separations violating the condition r#<<C\. 

3 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
Sec. 38a. 

4 C. G. Darwin, Phil. Mag. 39, 537 (1920). 
6 J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 

Inc., New York, 1962), Sec. 12.6 
6 H. Weyl, Theory of Groups and Quantum Mechanics (Methuen 

and Company Ltd., London, 1932), p. 275. 

In a previous paper,7 we have discussed the classical 
Darwin approximation for a macroscopic body with 
both internal and external magnetic interaction, and 
have deduced various thermodynamic expressions for 
magnetic energy and work. Quoting from Eq. (11) of 
that paper, the Darwin Lagrangian is 

L=Z Ki-i: Cy+T, Mtj+Z grfr^-AoO*), (2.1) 
i i<j i<j i 

where 
Ki^^miVi2 (2.2) 

is the kinetic energy of a particle; 

Cij^qtWiF1 ( 2- 3) 

is the Coulomb interaction energy of a pair of particles; 

Mu= c-2qiqj\i\j: T# (2.4) 

is their magnetic interaction energy, with 

*-ij—2\*~l~rijfij)riJ J (2-5; 

and A0 is the externally applied time-independent vec­
tor potential. (The external scalar potential is taken to 
be zero in this paper.) The canonical momentum of a 
particle is 

pi=mi\i+qic-1Ai, (2.6) 

where A* is the total vector potential, in the Coulomb 
gauge, acting on particle i: 

A ^ A o M + E f c - ^ T t f - v , . (2.7) 
3 

(It is to be understood that T # = 0 for i=j.) 
The corresponding Hamiltonian is7 

# = L Ki+ZiCy+Mis). (2.8) 
i i<j 

For canonical or quantum calculations, it is convenient 
to eliminate the velocities in favor of the momenta. 
Solving Eqs. (2.6) and (2.7), we obtain 

ntiWi = Fi— (qi/c)Y< (qj/mjc) S# • P , , (2.9) 
3 

where 
P ~ p ~ ^ - i A 0 ( r , ) (2.10) 

and 
S#=Tfc— Y,{qk2/mhC2)Tik-Tkj-\ . (2.11) 

k 

Substituting into (2.8), we find 

1 

i 2nti t<3 

— E (qiqj/miMjC2) P*Py: S#. (2.12) 
i<3 

From the definition of S#, we see that the last term of 
7 A. N. Kaufman and T. Soda, J. Chem. Phys. 37, 1988 (1962). 
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/ / includes many-body interactions. However, in the 
series (2.11), the relative order of successive terms is 
e^Nro/R, where N is the total number of interacting 
particles, r0 is the classical electron radius, and R is a 
typical interparticle distance; thus e^nroR2. Now, since 
the applicability of the Darwin approximation is limited 
to i£<<CA, we have e<^nro\2. Estimating r^ (137)~%o, 
and X^137ao, we find e^Cna^. Our diluteness assump­
tion implies na0

z<^l, hence e^Cl. Therefore S^- may be 
replaced by Ti}- in (2.9) and (2.12), and the interaction 
reduces to a sum of two-body interactions. Also e rep­
resents the order of the ratio of the second term to the 
first term on the right side of (2.9). Therefore we may, 
when convenient, replace the P's in the last term of 
(2.12) by wv's, obtaining 

1 
#=E iY+XXQ-^). (2.13) 

* 2m% i<3 

[Note the difference in sign of the magnetic term in the 
two equivalent forms (2.8) and (2.13).] 

As explained in Sec. I, for each configuration {Rz}, 
we assign the particles to quasimolecules; thus (2.13) 
can be written in the form (1.3), with 

Ha=i: Pi2+ ZiCa-Mid (2.14) 

* 2mi i<j 

the Hamiltonian for quasimolecule a, and 

Hab^Cab — Mab 

^EI(cs-M;j) 
i j 

(2.15) 

the interaction Hamiltonian of two quasimolecules. 
Because two quasimolecules a and b are by definition 

far apart (Rab5>ao), their interaction Ha.b may be ex­
panded in a multipole series. The leading term of the 
Coulomb interaction, for uncharged quasimolecules, is 
well known: 

CabTT^ KaKb : A 0 & , (2.16) 

where 

is the electric dipole moment of quasimolecule a, 

Aa^VaVbRab-^dSRabRa^Rab-' (2.18) 

is the dipole-dipole tensor, Ra is the position of the cen­
ter of mass of a quasimolecule, and s» is the position of 
a particle relative to its quasimolecular center of mass: 

c*$'— r̂ * **-a • (2.19) 

Because of the inequality a0<^Ro, the next terms in the 
multipole expansion are relatively small, and because 
they fall off as Rab~*, they have no long-range effect. 

The multipole expansion of the magnetic interaction 
is well known only for the case of time-independent 
charge distributions. Since quantum fluctuations (of 
electric dipole moments, for example) are large, the 
assumption of time independence cannot be made here. 
To our knowledge, the general case has not previously 
been discussed in the literature. From (2.15) and (2.5), 
we have 

a b 

Mab=c-2Y,Y< qiqjViVj' T#. (2.20) 

Since the nuclear velocities are small compared to the 
electronic velocities, we may with negligible error re­
strict the sums in (2.20) to the electrons; correspond­
ingly, we may replace v» by $;. The expansion of Mab in 
powers of (s/Rab) is straightforward, and we find, to 
terras of order Rab~d, 

Mab^Mab^ + Mab^ + Mab™ , (2.21) 

where 

with 

Tab^i(I-\-RabRab)Rab~1 

Mab^==c~27raTrb:Tahj (2.21a) 

(2.21b) 

Mab
(2) = c-2j:qMsi'Va)7rb:Tab+(a^b); (2.21c) 

Mab('6) = c~2 £ qMsi-Va)^ qM*r V&):Ta 

+ ^ ~ 2 [ E qMsi'Va)2Tb:Tab+(a^b)l. (2.21(1) 
i 

(The superscript on M refers to the negative exponent 
oiRab.) 

I t is desirable to express the interaction in terms of 
the irreducible multipole moments. Thus the moment 
appearing in (2.21c) is separated into symmetric and 
antisymmetric parts 

2^, qiSi$i—2v?a Ctya j (2.22) 

= J1 q^i (2.17) where 

with 

i 

^Q«+Ico a , (2.22a) 

Q.=E qii^i-Wl) (2.22b) 
i 

the electric quadrupole moment, and 

a 

w a = | Z qtSi2 (2.22c) 
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the second scalar electric moment; and 

a 

Ua=hc~l £ qi($iSi-SiSi) (2.22d) 
i 

is the dual to the magnetic dipole moment: 

a 

Va= hc~l £ q&i x s*. (2.22e) 
i 

Substitution of (2.22) into (2.21c) yields 

Maw = Mab^+MabQ% (2.23) 
where 

Mab»*= ~ c-'Kua' • VC)TT6 : Tab+ (a^b)2 (2.23a) 

couples the electric and magnetic dipole moments, while 
Mab

Qlr couples electric quadrupole and dipole moments. 
(That the scalar moment co does not appear follows from 
the identity V a-T a &=0, which is a reflection of the 
Coulomb gauge condition.) Expression (2.23a) may be 
simplified, by using the identity 

Tab^lRab~
l+VaVbRah, (2.24) 

to the form 
Mab'"r=*(r1*b-Aab+(a4->b), (2.23b) 

where 
A ^ - V a X V ^ , - 1

 (2.25) 

is the vector potential at R& due to only the magnetic 
dipole moment of a. 

Substitution of (2.22) into the first term of (2.21d) 
yields 

MaiP+Mabrt+Mab9*, (2.26a) 

in obvious notation. The magnetic dipole-dipole term is 

Mab^iVa'-VaXVb'-Vby.Tab 

= — Vol* 6: A a 6 , (2.26b) 

where we have again used (2.24). [Noting the minus 
sign of (2.15), we recognize this as the conventional 
magnetic interaction term.] The (magnetic dipole)— 
(electric quadrupole) term is 

^ a 6 ^ = - i c - 1 [ ( l i < / - V a ) ( Q 6 . V 6 ) : T a 6 + ( a ^ ^ ] 

= ^ 0 * : (VbAa
b)s+(a<^ b), (2.26c) 

the superscript S indicating the symmetric part of the 
dyad. The term Mab

QQ couples electric quadrupole 
moments. 

The second term of (2.2Id) couples the electric dipole 
moment to the reducible third moment Ei<7*s»s»s4\ 
Introducing tensor subscripts for the cartesian co­
ordinates, and suppressing the particle subscript i and 
the symbol q, we have 

= K W H ( e ^ K ^ + e ^ K ^ ) , (2.27b) 
where 

OpV<r=SpSvsff (2.27c) 

is a completely symmetric third-rank tensor, and 

K^ieppTSpSpSr (2.27d) 

is a second-rank traceless psetidotensor. The decomposi­
tion of 0 and K to irreducible tensors is as follows: 

O^Riw+WvV.+ dnVn+S^V,), (2.27e) 

where F<r=OMM0- is a polar vector, and R^a is the trace-
less part of 0MV(r, i.e., R^^ R^ — 7 ^ = 0; 

where L is the symmetric part of K (thus L is a sym­
metric traceless second-rank pseudotensor), and r is 
the polar vector dual to the antisymmetric part of K. 
In summary, C is reducible to the irreducible tensors 
R, V, L, and r , none of which transforms under rota­
tions and reflections like the axial vector magnetic 
dipole moment. (This fact will be of use in Sec. V.) 

There are thus three types of interaction terms in the 
multipole expansion to order Rab~

d'- (a) the magnetic 
dipole-dipole interaction (2.26b); (b) the terms which 
couple the magnetic dipole to other moments, namely 
M^ and M*Q\ and (c) terms which couple two moments, 
neither of which is or transforms as a magnetic dipole 
moment. In the following sections, we shall proceed as 
if only (a) existed; then in Sec. V. we shall eliminate (b) 
by the equivalent of a unitary transformation, and 
finally shall show that the terms (c) do not contribute 
to the magnetization. 

I t remains to discuss the magnetic interaction for the 
cases Rab^\ and Ra£>>\. In the latter case, we start 
with the Hamiltonian Hed of electrodynamics, in the 
Coulomb gauge and the nonrelativistic limit8: 

^ I l i + E a ^ , (2.28) 
i i<j 

where Hr is the Hamiltonian of the transverse radiation 
field 

# , = fdsr(E/+Br
2) /8TT, (2.28a) 

and E r, B r are expressed in terms of the transverse 
(V-A r=0) radiation potential 

E r = - c - 1 A r , B r = V X A r . (2.28b) 

The velocities v* in Ki [see (2.2)3 a r e again to be elimi­
nated in favor of the momenta p* by Eq. (2.6), but now 
the Darwin form (2.7) is replaced by 

A ^ A 0 f a ) + A r f a ) . (2.29) 

The Hamiltonian then reads 

i i<3 

- E {(qi/mc) Pr Ar fa) 
i 

-{qiV2m^)lkr^)J}. (2.30) 
8 Cf., for example, W. Heitler, The Quantum Theory of Radiation 

(Clarendon Press, Oxford, England, 1954), 3rd ed., Sec. 6.4. 
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Following the method of Bethe and Salpeter3 (who 
treated the other limit r#<<CA), we select those terms of 
(2.30), which correspond to two noninteracting quasi-
molecules, as an unperturbed Hamiltonian, and treat 
the remaining terms as perturbations. Second-order per­
turbation theory is then used to compute the shift in 
energy of an unperturbed state resulting from the 
P r Ar(r;) terms only. This energy change is then con­
sidered to be the effective magnetic interaction Hamil­
tonian. (The Ar

2 terms and the higher order perturba­
tion effects are ignored; they lead to infinities and must 
be treated with care.9) 

Let | £a) and | £6) be unperturbed states of the two 
quasimolecules, while |0) and |k,e) represent respec­
tively the vacuum radiation state and the one-photon 
(of momentum fik and polarization e) state. The second-
order energy shift is due to the emission of a photon by 
either of the quasimolecules and its absorption by the 
other, without any molecular transition. Thus we have 

A £ = E K ^ 0 | H / | f a f 6 k , e ) | V ( - f e * ) , (2.31) 
k,e 

with 

B'^-iliqi/nwWi-Ar(n)-i,(qj/tnjc)Fr Ar(ry). (2.32) 
i J 

The reduction of (2.31) to 

47T C d3k I — kk a 

c2 J (2TT)3 k2 

b 

X < E q,-mr1'P3'erik-*i)be
ik''R*'> (2.33) 

3 

is straightforward; here (•••)« stands for (£a | • • • | £a). 
In the matrix elements, we replace mf^i by \iy we 
ignore nuclear motion, and expand the exponential 

E qiVie*'s^7ca+ik' (Wa'-cua')+0{kV), (2.34) 
i 

where we have used (2.22). To this order of perturba­
tion theory, the dotting operation is equivalent to 
commutation with the unperturbed Hamiltonian; thus 
the diagonal elements of the dotted terms vanish, and 
we have 

<E ?<Vtf*-<>« = -ick' (Ua')a+0(k2) . (2.35) 
i 

Substituting into (2.33), we obtain finally 

AE=<Vo)a<v6>6:Aa6+0(J?«6-4). (2.36) 

Hence we shall take the interaction of two distant 
9 For an analogous problem, see the treatment of the Coulomb 

interaction between atoms for Rim^>\: H. B. G. Casimir and D. 
Polder, Phys. Rev. 73, 360 (1948); I. E. Dzyaloshinskii, Zh. 
Eksperim. i Teor. Fiz. 30, 1152 (1956) [English transl: Soviet 
Phys.—JETP 3, 977 (1957)]. 

(Ra£$>\) molecules to be 

Hah=yayb:A.ab. (2.37) 

(The Coulomb interaction [cf. (2.15) and (2.16)] is of 
no importance for the present problem.) For the inter­
mediate case (i?a6~X), we shall adopt, without deriva­
tion, the same interaction, inasmuch as it is valid in 
both limiting cases. In conclusion, then, we use (2.37) 
for all Rab in Sees. I l l and IV, and in Sec. V eliminate 
the other interaction terms for the case Rab<£k. 

IIL STATISTICAL MECHANICS 

The thermodynamic properties of the system studied 
are obtainable from the grand partition function 

1 
d = Z— ef>»N Trtrf>BN, (3.1) 

N Nl 

where HN is the A-molecule Hamiltonian. As in KW, 
we treat the momenta and coordinates of the molecular 
centers of mass classically, obtaining 

yN r 

3 = E — d*RW Tre-W^, (3.2) 
N NlJ 

where 
yzzX-W", (3.3) 

X ^ ( 2 T T M © ) - 1 / 2 (3.4) 

is the molecular thermal wavelength, and HN{Ri} is 
the Hamiltonian, less the molecular centers-of-mass 
kinetic energy, for fixed configuration {Rz}. 

As discussed in Sec. I, for each configuration we assign 
the molecules to quasimolecules, and then ignore the 
contributions of quasimolecules consisting of more than 
two molecules. In Eq. (3.2), the integration over con­
figuration space and the sum over N may then be re­
placed by, first, a restricted integration (denoted by a 
prime) over all configurations corresponding to a given 
assignment to quasimolecules; second, multiplication 
by the number [Nl/(NilN2l2

N2)'] of assignments for 
fixed (iVi,A7

2), and finally, a sum over (NhN2) 

d= E — — f d*RW Tre-esNPW. (3.5) 
NI,N2 Ni\N2\2

N* J 

The trace operation in (3.2) and (3.5) is a sum over in­
ternal molecular states. We replace it by the operation 
Tr r, which includes additionally integration over the 
vector separation Rjm (with Rim<Ro) of the molecular 
members of each pair. Correspondingly, the remaining 
integration is then only over the A r / = A i + A 2 quasi-
molecule positions Ra, subject to the restriction Rab>R0. 
(The restriction is of importance and valid in this simple 
form only when the quasimolecules a,b are free mole­
cules.) The restriction on the integration can be lifted, 
if one introduces an additional fictitious hard-sphere 
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quasimolecule interaction of range RQ 

oo Rab<R0, 

*(*«*) = 
0 Rab>R()' 

With the notations 

H(NM = HN{Rl}+ E t(R*h) (3.7) 
a<b 

and 

y^h2, 
we may write the grand partition function in the simple 
form 

3= Z 
yNly2N2 

d*RWTr'e-tHWi>N*K (3.9) 

This bears a formal resemblance to the partition func­
tion of a two-species gas. 

In an earlier paper,10 to be referred to as KW', it 
was shown how to express such a quantity in terms of 
"linked diagrams." We quote from that paper (Sec. V): 

Ni,Nz 

where 

yNiy2Ni 

N1lN2l 

X / d*RW>LN> TrV-<"*<tfi.*«). (3.10b) 

The only difference between (3.10b) and the summand 
of (3.9) is the operator LN'-> which selects, from a dia­
grammatic representation of the trace, those diagrams 
in which all Nf quasimolecules are linked. 

We shall use (3.10) to calculate, now, the relation be­
tween density and activity (3.14) in the absence of an 
external field, and later, to obtain the linear relation be­
tween magnetization and applied field, making use of 
the first result. When the applied field B0 vanishes, the 
long-range quasimolecular interactions are ineffective, 
as will be seen in Sec. IV when the case B 0 ^ 0 is studied. 
Thus the effective Hamiltonian (3.7) reduces to 

H(NM=T,Ha+T, *(&»). (3.11) 

Since \[/ is of finite range, there are no many-body 
(N'^>1) contributions to ln3f at low density. We shall 
see a posteriori that we need only the following F's: 

ln&=F( l ,0 )+F(2 ,0)+F(0 , l ) , (3.12) 

i.e., contributions from one free molecule, two free 
molecules, and one pair. 

10 A. N. Kaufman and Kt M, Watson, Phys. Fluids 4, 655 
(196D? 

From Eq. (3.10b), we have 

F(l,0)=Vz, 
(3.6) where 

(3.13) 

2=3/7 (3.14) 

is the activity, 7 is the internal partition function for a 
free molecule, and V is the volume of the container. 
Letting R i2 be the separation of two free molecules, we 
have 

(3.8) F(2fl) = h2V fd*R12(e-M^-l), (3.15) 

the term (—1) being the effect of the linkage operator. 
I t follows from (3.6) that 

JF(2,0)=-§sW0, (3.16) 

where VO=%TROZ. Finally, in analogy to (3.13) and 
(3.14), we have 

F(0,l)=Vz2, (3.17a) 
where 

^2=>'272 (3.17b) 

(3 10a) *s ^ n e "activity" of a pair, and 

• / 
J R-

7 2 = 1 d3R Tre-PB*™ 
' R<Ro 

(3.17c) 

is its internal partition function, with HP(R) its Hamil­
tonian for fixed molecular separation R. 

Collecting terms into (3.12) and using (3.8), we obtain 
[to 0(z*)l 

t = z-§z2f d*R(l-erf+&'*»), (3.18) 
J R<Ro 

V-'lnd--

where we have introduced the molecular interaction free 
energy11 

0 ( R , 0 ) s - 0 T r e x p { - / ? [ F p ( R ) - ^ p ( o o ) ] } . (3.19) 

The mean density n is related to the activity by 

n = zd(V~1lnd)/dz 

= z-2z2b(®)+0(z*), (3.20) 
with 

• » / 6(0) = 1 d*R(l-e~ (3.21) 

Incidentally, the equation of state is 

^ = © F - 1 l n ^ 

= 0 [ s - * 2 i ( 0 ) + O ( s 8 ) ] 
= ®[n+n*b(@)+0(ns)2, (3.22) 

the well-known virial expansion, with the second virial 
coefficient including the effects of molecular structure.10 

We now consider the system in the presence of the 
applied magnetostatic field B0(R). Although the parti­
tion function d is gauge-invariant, the Hamiltonian de-

11 R. W, Zwanzig, Phys. Rev. 106, 13 (1957). 
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pends on B0 only through A0, and always in the com­
bination pi— (#i/c)Ao(r») = Pi. I t is convenient to choose 
a gauge which exhibits the B0 dependence explicitly. 

Let us expand A0(r*) about the center-of-mass posi­
tion Ra of the quasimolecule containing particle i. 
(Because the quasimolecules do not overlap, it is allow­
able to assign an electron to a definite quasimolecule, and 
require antisymmetry of the state function under ex­
change of electrons only within the same quasimolecule.) 

Ao(r<) = A0(Ra)+8rV0Ao(Ra)+0(j2) 
= A0(Ra)+sr(V„Ao)* 

- | s ; x B o ( R a ) + 0 ( s 2 ) . (3.23) 

Whereas the conventional gauge transformation, 
A0(r)—> A(/(r) = Ao(r) — Vx(r), utilizes a single gauge 
function x (thereby leaving the state function com­
pletely antisymmetric), our treatment of the quasi­
molecules as distinguishable allows us to use a different 
gauge function Xa for each quasimolecule. Referring to 
(3.23), we see that the choice 

X a(s)^s.A0(R a)+iss:V aAo(R„) (3.24) 
leads to 

A0
/(rz) = A0(r,-)-Vsxa(s4-) 

= - K - x B 0 ( R a ) + O ( * 2 ) . (3.25) 

The terms 0(s2) are of relative order aQ/L, where L is 
the spatial scale, assumed macroscopic, of B0(R). 
Hence we drop these terms, and in the new gauge (drop­
ping the prime), we use 

Ao(rt) = ~ hix Bo(R«) • (3.25a) 

Consider the effect of a small change 6B0(R), of the 
external field, on the partition function (3.1) 

1 
8d= - 0 £ —ee»N Tr[e-eHN8HN']. (3.26a) 

N A! 

Since B0 appears in HN only through the P's, we have 

i 

= Z[i(?</c)8<X«B0(R.)]-v i 
i 

= -Z»«.-8Bo(Ra) . (3.26b) 
a 

We introduce the magnetization, or magnetic dipole 
density 

M ( R ) = £ V ( l 5 ( R - R „ ) , (3.26c) 
a 

and express (3.26b) as 

8HN= - d*RM(R) • 5B0(R). (3.26d) 

Substituting into (3.26a), we find 

h%= d/3 fd*R(M)(R)• 5B0(R), (3.26e) 

where (M)(R) is the statistical mean 

1 
<M>(R)= frl E —€*"» T r [ e r ^ M ( R ) ] . (3.26f) 

N N\ 

If B0(R) were an arbitrary vector field, we could con­
clude from Eq. (3.26e) that (M)(R) can be obtained by 
functional differentiation of d 

(M)(R) = ®8 In V«Bo(R). (3.26g) 

However, the condition V-B 0=0 precludes this. There­
fore, in the evaluation of d, we shall consider B0(R) 
always to be an arbitrary vector field, and shall never 
assume V^Bo^O. Then the relation (3.26g) is valid. 
(To be sure, we have already used V-Bo^O to allow for 
the gauge transformation, but that was a transformation 
of the Hamiltonian prior to the evaluation oi d.) 

In the diagrammatic evaluation of the F's [see Eq. 
(3.10)], we may classify each diagram according to 
the power (r) of B0 in its value. Correspondingly we 
write 

The terms Fw have already been evaluated for the 
equation of state in the absence of B0. The terms F(l) 

lead [see (3.26g)] to a magnetization independent of 
B0; for a gas, this vanishes except possibly in the neigh­
borhood of the walls (where there is a preferred direc­
tion), and hence will be ignored. The terms F{2) lead 
to a linear relation between (M)(R) and B0(R'), and 
will be evaluated in the next section. The result will be 
an integral equation for (M) of the following form: 

<M>(R) = £(n,0) 

x |~Bo(R)- f d»tf'A(R,R') • <M)(R')1, (3.28) 

where the prime on the integral sign denotes the exclu­
sion of an infinitesimal sphere about R, and where 
£(w,©) is a virial expansion 

K»,©) = W © ) + » V © ) + 0 ( » 8 ) - (3.29) 

The expressions for the as will be stated in Sec. IV. 
I t remains to relate B0 to the macroscopic total field 

B. In analogy to the definition of macroscopic electric 
field,12 we define 

B ( R ) E ^ V X A ( R ) , (3.30) 
12 W. F. Brown, Jr., in Encyclopedia of Physics, edited by S. 

Fliigge (Springer-Verlag, Berlin, 1956), Vol. XVII. It is fully 
discussed by A. N. Kaufman, Am. J. Phys. 29, 626 (1961). 
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where A(R), the macroscopic vector potential, is in 
turn defined as 

A(R)s=Ao(R)+ [d'R'\R-R'\-lV'X(M)(J!L'). (3.31) 

Because of the singularity of the integrand at R ' = R , 
we exclude an infinitesimal sphere from the integration, 
without changing the value of the integral. Substituting 
into (3.30), we obtain 

B(R) = B„(R) 
- / ' " ' 

A(R,R')-{M)(R') 

The H field is then 

H(R)sB(R)-4ir<M>(R) 

= B„ (R) - / <*»£'A(R,R')-<M)(R') 

8TT 
+—<M>(R). (3.32) 

3 

(3.33a) 

' " / 
4TT 

3 
~(M)(R). (3.33b) 

Thus Eq. (3.28) reads 

<M>(R) = f(»,e)CH(R)+MM>(R)], (3.34a) 
or 

<M)(R) = x ( « , e ) H ( R ) , (3.34b) 

where the magnetic susceptibility % is 

X ^ f ( l - M ) " 1 . (3.35) 

Now we eliminate (M) from (3.34b) by (3.33a), and 
obtain 

B(R) = /*(»,©)H(R), (3.36) 

where the magnetic permeability JJL is related to £ by 

(3.37) 
/x— 1 4?r 

M+2 3 

Finally, substitution of (3.29) into (3.37) yields the 
Clausius-Mossotti expansion (1.2). 

IV. MAGNETIZATION 

In the present section, we calculate the linear mag­
netic response. From Eqs. (3.26g), (3.10a), and (3.27), 
this is 

<M)(R) = 0fi E / ^ ( t f i ^ / S B o C R ) . (4.1) 
Ni,N2 

The quantity F^(NhN2) is given by (3.10b), with LN* 
replaced by LNf(2\ which selects linked graphs of N' 
quasimolecules of second order in B0. The Hamil-
tonian H(N\,Ni) to be used in (3.10b) has the form of 
Eq. (1.3). 

The single quasimolecule Hamiltonian Ha is given by 
Eq. (2.14), with 

P ™ p , + i ( ^ A ) s , x B 0 ( R a ) (4.2) 

from (2.10) and (3.25a), and M{j defined in (2.4). We 
recall that the v's of My may be replaced by P/m's. 
Now we substitute (4.2) into (2.14), and expand Ha 

in powers of B0 

ff0sffa<o>+ffoa>+ii0<2>. 

The terms independent of B0 are 

ff»(0) = E + E 
i 2Mi i<3 

'Qiqj qiqjViP. ^ : T , 1 . 
ifyijC2 J 

(4.3) 

(4.4a) 

If a is a free molecule, the magnetic interaction terms of 
(4.4a) are relatively unimportant, but if a is a pair, 
they represent the strong magnetic interaction of two 
magnetized molecules in contact. In £Ta

(1) and Ha
(2\ 

we may neglect the contributions of the Ma terms, as 
they are of relative order r 0 / #o^ (137)~2. We find 

7/a(
1) = - ^ . B 0 ( R « ) , (4.4b) 

and 
# a ( 2 ) = - ! a / [ B 0 ( R a ) ] 2 . (4.4C) 

Here }xa
v is the paramagnetic dipole moment (operator) 

of quasimolecule a 

Va?=\c 1Y,(qi//^i)^ixPi, (4.5) 

while aa
d is its diamagnetic polarizability (operator) 

aa'^-lr+'EW/miXsu)*, (4.6) 
i 

&u being the projection of s* on the plane transverse to 
B0(Rft).> 

The interaction II ab between two quasimolecules is 
taken to be 

Hab = tM*& : Aab+$(Rab) ', (4.7) 

in accordance with our discussion in Sec. I I , we postpone 
until the following section the treatment of the other 
interaction terms. In \ta, defined by (2.22e), we again 
replace v* by Fi/nn and use (4.2), obtaining 

(4.8) 

(4.9) 

, (2) 

with 
Hab

W = VaPVbP:Aab+4>(Rab). 

The terms Hab
a) and Hab

(2) involve the diamagnetic 
moments of the quasimolecules. For every graph con­
taining Haba) or Hab

(2\ one can find a graph of lower 
order in r0/#o. Hence for consistency of our approxima­
tion, we use only #a&

(0). 
Our discussion of the evaluation of (M)(R) will be 

schematic, and illustrated by the appropriate diagrams, 
since we do not wish to repeat here the detailed formal­
ism fully discussed in KW. 
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(a) (b) 

FIG. 1. Single-quasimole-
cule graphs. In (a), the 
quasimolecule (vertical line) 
has two paramagnetic 
(Ha

(1)) interactions with 
the external field. In (b), 
it has a single diamagnetic 
(Ha

{2)) interaction. 

We begin with graphs for a single quasimolecule 
(either a free molecule or a pair), shown in Fig. 1. Cor­
respondingly, one evaluates 2?(2)(1,0) and F (2)(0,1). 
The contributions to (M) are, respectively, 

and 
<M)(1,0)(R) = 2;a/.Bo(R) (4.10) 

<M> ( 0 ) 1)(R)^2ap .Bo(R). (4.11) 

The polarizabilities are defined as 

a / = _ 7 - i Tr(27ri)-1 I dwe~^{w-Hf^)-1 

XLyAw-Hf^)-^fp-a/Il, (4.12) 
and 

« p = - (272)-1 / d*Rp Tx{2Tri)~l 

J RP<Ro 

XlvA™-Hv(0))-1Uvp-<I']. (4.13) 

Formula (4.12) for the free-molecule polarizability a/ 
is analogous to Eq. (4.10) of KW. The operators # / 0 ) , 
\tfp, a/ have been defined previously [(4.4a), (4.5), 
(4.6)] for an arbitrary quasimolecule a; now the sub­
script / indicates that the quasimolecule is a free mole-

FIG. 2. Type I two-
quasimolecule graphs, ob­
tained from Fig. 1 by 
adding a \p interaction 
(dashed line) with a second 
quasimolecule. (a) (b) 

cule. The (provisional) pair polarizability ap (4.13) is 
formally analogous to (4.12). We note, however, that 
now the operators Hp

(0\ yp
p, ap

d are functions of the 
pair separation Rp, which is to be integrated over. The w 
integration is, as in KW, over a contour enclosing the 
real axis in the positive sense. In KW Sec. IV, it was 
shown that the paramagnetic part of a/ would reduce, 
for a "polar" molecule, to ^3((ju/2,)2)I; the diamag­
netic part is evidently just ( a / ) . 

There are several types of two-quasimolecule graphs. 
First consider the type (I) shown in Fig. 2. I t can be 
generated as indicated in the caption, but there is 
another suggestive approach. Let the quasimolecule of 
Fig. 1 be a pair; now separate the pair, letting only one 
member interact externally. Then let the members in­
teract via \f/, yielding Fig. 2. This approach suggests 
that the contribution of this type of graph to F(2)(2,0) 
is expressible in terms of previously defined quantities. 

In fact, evaluation yields 

(M) ( 2 , o ) r (R)=-s 2 Foa r B 0 (R) . (4.14) 

I t is useful to add this two-free-molecule contribution 
tc the one-pair contribution (4.11) 

(M) (0,l) + (2,0) z(R) = * W - B 0 ( R ) . (4.15) 

The two-molecule polarizability 

tt2'=ap— V0ctf (4.16) 

is completely analogous to formula (6.36) of KW. When 
either of the quasimolecules in a type I graph is a pair, 
the contribution to (M) is of order s3, and therefore 
not of interest. 

A second type (II) of graph is illustrated in Fig. 3. 
This graph is the case N'=2 of a simple chain of para-

FIG. 3. In a type I I two-quasimolecule graph, the quasi­
molecules interact paramagnetically with each other (solid 
horizontal line) and once each with the external field. 

magnetic interactions, and will be discussed for general 
N' below. 

A third type (III), illustrated in Fig. 4, vanishes 
upon evaluation. Consider, e.g., graph (a): The left-
hand quasimolecule (label it 1) has three paramagnetic 
interactions. Hence its contribution to F involves the 
direct product vipVipVip of three axial vectors of 1. Now 
reduce this third-rank tensor to a sum of irreducible 
tensors. Evidently none of the latter is a scalar. But 
upon taking the trace (primed), only a scalar yields a 
nonvanishing result. (This follows from the invariance 
of the single quasimolecule Hamiltonian under rotation 
and inversion.) I t follows that (a) vanishes. One sees 
likewise that (b) and (c) vanish, while the graphs of 
Figs. 1 through 3 do not. 

A type IV graph, shown in Fig. 5, has both paramag­
netic and hard-sphere interactions between the quasi­
molecules. For Rab<Ro, & dominates, and Fig. 5 reduces 
to Fig. 4(c); for Rab>Ro, 4* vanishes, and Fig. 5 reduces 
to Fig. 3. Hence this type of graph yields nothing new. 

Finally, a ladder graph (type V), shown in Fig. 6, 
has more than one (/, say) paramagnetic interaction be-

(a) (b) (c) 

FIG. 4. In a type I I I graph, at least one of the molecules has 
interactions whose molecular operators are such that their product, 
when reduced, has no scalar component. 
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FIG. 5. The type IV graph evolves from 
type II by adding a \p interaction. 

tween the quasimolecules. The dependence on Rab is 
then Rab~zl* The resultant contribution, relative to 
Fig. 3, is of order (ctf/Vo)1"1. Recalling that R0^>>ao, 
while a/ is ordinarily much less than do3, we see that 
ladder graphs make a negligible contribution. 

Having discussed the case Nf=2 rather thoroughly, 
we proceed to study the simple chain for arbitrary N', 
shown in Fig. 7. Here the quasimolecules have only 
paramagnetic interactions. To insure Rab>R0 for each 
interaction, we add a \p interaction to each link of the 
chain, as in Fig. 5. First suppose that each quasi-
molecule is a free molecule. The analogous analysis of 
KW Sec.V then applies, and we find, summing over all 

<M)scf(R) = ^ 

| B 0 ( R ) - J ^^A(R,R0-(M)scf(R
/ . (4.17) 

The subscript scf means "simple chain of free mole­
cules/ ' oi/p is the paramagnetic part of a/ (4.12), and 

FIG. 6. A type V, or ladder, graph has 
several paramagnetic interactions be­
tween quasimolecules. 

the prime on the integral indicates that the sphere 
|R—R' |< i?o is to be excluded. Letting the exclusion 
sphere become infinitesimal [as in (3.32)] introduces 
an additional term of relative order (R0/L)2, which we 
assume negligible.13 

Next we consider all simple chains in which each 
quasimolecule may be either a free molecule or a pair. 
The effect is to replace zctfp in (4.17) by zccfp-\-z2cLv

p 

where ap
p is the paramagnetic part of ap (4.13). Finally 

we break up each pair, letting the interactions act on 
only one member, and connect the other member to its 
partner with ^. The result is then 

(M)sc(R) = (zaf
p+zWp) 

| B o ( R ) - 1 ^^A(R,R0-(M)sc(R0l. (4.18) 

13 A preliminary discussion of nonlocal effects arising from this 
term is presented in KW for the dielectric problem; a complete 
discussion is given by L. Klauder, thesis, University of California 
(to be published). 

To this we add the diamagnetic contributions of Figs. 
1(b) and 2(b) 

(M)d(R) = (zaf
d+zWd)'BQ(R). 

The sum of (4.18) and (4.19) can be written as 

<M)(R) = ( z a / + z V ) 

• [ B O C R O - f <W?'A(R,R')-<M)(R') 

(4.19) 

(4.20) 

if one adds negligible terms of relative order r0/ao. By 
arguments similar to those used in the discussion of 
quasimolecule graphs (cf. also KW Sec. VI), one can 
show that all graphs other than those considered make 
negligible contributions. 

FIG. 7. A simple 
chain for Nr — 6. 

Since the polarizabilities are scalar tensors « /=« / ! , 
etc., the equation (4.20) for the magnetization has the 
form (3.28), with 

{ = a x / + z V (4.21) 

to 0(z2). We eliminate the activity in favor of the den­
sity by Eq. (3.20), obtaining Eq. (3.29), with 

and 
a i = a / , 

a.2=oi2-\-2afb(%). 

(4.22a) 

(4.22b) 

Using the definitions (4.16), (4.12), and (3.21) for a2
/, 

a/, and b(@), we can express o ^ c ^ I as 

- - / 
« 2 ( 0 ) = / dZRe-WZ'^BctziR)-^!, (4.23) 

where a2(R) is the true polarizability for a pair with 
fixed separation R. Its formula can be obtained from 
that for a/ (4.12) by replacing each free molecule opera­
tor (including that in the definition of 7) by the cor­
responding operator for a pair with fixed R. (See KW 
Sec. VI for details.) 

(a) 

b SR 

(b) 

S b 

(c) 

FIG. 8. A modified simple chain, in which quasimolecule b 
interacts, via M**, with S, the rest of the system appearing in the 
graph. Three different representations of the same graph are 
shown. The dotted line represents M**. 
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Thus 0:2(0), the coefficient of the imperfect gas 
correction to the Clausius-Mossotti formula, is ex­
pressed in terms of one- and two-molecule magnetic 
polarizabilities. 

V. GAUGE TRANSFORMATION 

We must now show that the effects of the interaction 
terms ignored in the preceding section are negligibly 
small, even though these terms themselves are not 
negligible in magnitude. The terms ignored are of two 
types, those coupling magnetic dipole moments to 
other moments, and those coupling moments other than 
magnetic dipole. 

We begin with the former type, namely M^ (2.23b) 
and M^Q (2.26c). Comparing these two expressions, 
one sees that they are rather similar in form. The 
methods for treating them are correspondingly similar; 
hence we shall discuss here the elimination of only the 
simpler term MM7r: 

-Mah^^-[_c-Hh-ka
h+{a^b)~] (5.1a) 

^c-l7cb-\iaXVbRab-
l+(a^b). (5.1b) 

If Aa
b were a c number, the interaction ikfa&

M7r could be 
eliminated (i.e., transformed to higher order) by a con­
ventional gauge transformation. However, it is an 
operator, being proportional to ya , and thus its elimina­
tion requires more effort, as we shall see. 

Let us consider a modified simple chain, shown in 
Fig. 8(a), in which quasimolecule b interacts (through 
its itb) with the rest of the system, by means of two MM7r 

interactions. We note that this type of graph is the only 
one which need be considered, for the following reasons. 
In the preceding section, we have indicated that the 
only diamagnetic graphs of importance are single-
quasimolecule graphs. Hence the graph studied here 
must interact with the external field by means of para­
magnetic dipole moments. By the argument made in 
connection with the type I I I graph (Fig. 4), a succes­
sion of paramagnetic interactions must then occur [see 
SL in Fig. 8(a)]. A different topology, i.e., multiple 
interactions rather than a chain, is eliminated by the 
argument given in connection with the type V graph 
(Fig. 6). By using these arguments, one is led to Fig. 
8(a) as the only topology of interest involving M>7r no 
more than twice. In Fig. 8(b), the graph is represented 
more abstractly, and now M^ interactions and others 
may appear hidden in the subsystems SL and SR, which 
interact with b from the left and right. A still more ab­
stract representation, adequate for our purposes, is 
Fig. 8(c). 

The effective Hamiltonian for Fig. 8(c) is 

H = Hs+Hb+HSh, (5.2) 

in obvious notation. The interaction Hsb is taken to be 

HSb^-(l/c)irh-A\ (5.3a) 

where 
A b - ~ Z VoXVftjRa*-1, (5.3b) 

a 

the sum being over all quasimolecules satisfying Rab<<.\ 
as discussed in Sec. I I . The contribution of the graph to 
the partition function is proportional to 

EKs|//^|s /)l2(£-£ /)-1(^^-^^ ,)J (5.4) 

where | S) and E are the eigenstates and eigenvalues of 
(Hs+Hb), and the sum is over S, E'. (For brevity we 
omit the multiplicative factors /3, y, etc.) 

We write (5.3a) as 

Id I d 
HSb= (*b-A

b)+~*b — A&, (5.5) 
c dt c dt 

and note that the time differentiation is equivalent to 
commutation with Hs+Hb, to the order of perturba­
tion theory represented by the graph. We substitute 
(at first) just the first term of (5.5) in one matrix ele­
ment factor of (5.4), and (5.3a) in the other factor, 
obtaining 

^(ific2)-1 T r { [ t t 6 ^ 7 r & - A & > - ^ * + W } . (5.6) 

Since 
b 

i 

expression (5.6) becomes 

Tr{(A6)V*<**-**> £ q%*/mt*
2}, 

i 

which represents the diamagnetic polarization of b by 
the other molecules. Since such terms were discarded 
in Sec. IV, they may also be neglected here. 

Now we use the second term of (5.5) in the first matrix 
element factor of (5.4) and (again at first) the first 
term of (5.5) in the other factor, obtaining 

= Tr{[«6 .A6 ,«6 .A6]erfl(^«+^)}. (5.7) 

Referring to Fig. 8(b), we see that the operators A6 and 
A& of (5.7) refer to SL and SR, respectively; therefore 
they commute, and (5.7) vanishes. 

Finally we use the second term of (5.5) in both matrix 
element factors of (5.4) 

( r 2 Z K H | « 6 • A f c | S , > | 2 ( £ - £ / ) • " 1 ( ^ J ^ - ^ l ^ , ) . (5.8) 

We perform a partial sum Yi"\ f° r fixed E, E'y over the 
magnetic quantum numbers: 

L ' 1 < E | * 5 - A W I 2 - T r " { * 5 . A W A » } . (5.9) 
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Again we utilize the fact that the two A6's refer to SL 
and SR> SO that (5.9) becomes 

{TrsL"A*} • {Tr6"*6*6} • < T W ' A * } . (5.10) 

This vanishes, since the trace of a dotted operator 
vanishes. 

Thus the effect of the M^ interactions vanishes, and 
an analogous argument eliminates the MM(3 interactions. 
There remain only the terms of type (c) [see the classi­
fication in the paragraph following Eq. (2.27f)] to 
consider. By an argument similar to that used in elimi­
nating a type I I I graph (Fig. 4), we can show that a 
graph containing a type (c) term and an external mag­
netic interaction must vanish. Let d denote a quasi -
molecule which couples to its (graphical) neighbors by 
its magnetic moment yia on one side, and by a type (c) 
term on the other. The operators of d appearing in F 
would then be (allowing only R~s dependence or lower 
order) y ^ d , yxd^d^d^d, VdQd, ^dQd^d, y A z , |*dVd, 
UdLdy or }idTd (see Sec. I I for definitions and tensor char­
acter of these quantities). Upon reduction of these direct 
products to irreducible tensors, no scalar appears. 
Therefore the trace vanishes, and such a graph makes 
no contribution to the magnetization. 

VI. SUMMARY 

In this section we wish to summarize the ideas and to 
motivate the methods of this paper. We have con­
cerned ourselves with the linear response of a dilute 
quantum system in thermal equilibrium to an external 
magnetostatic field. The formalism of statistical me­
chanics forces us to a Hamiltonian, rather than Lagran-
gian, approach. Now in contrast to the electrostatic 
interactions between charged particles, where both the 
interaction Lagrangian and Hamiltonian are a sum of 
two-particle terms, the magnetostatic interactions have a 
Lagrangian which is a sum of two-body terms [Eq. 
(2.1)], but a Hamiltonian which is a sum of many-body 
terms [Eqs. (2.12) and (2.11)]. In Sec. I I the many-
body terms were eliminated by invoking the limited 
range of validity of the magnetostatic (Darwin) approxi­
mation to the near zone r̂ <<CX. That the many-body 
terms are negligible is a result of the smallness of X (so 
that the number of particles in the near zone of a given 
particle is not overwhelmingly large). The smallness of 
X is in turn due to the high frequency of the quantum 
fluctuations of the electrons bound in molecules. If, on 
the other hand, the electrons of the system were free, 
as in a metal, the radiative wavelength characterizing 
their motion [\^(A%)(c/v)~] would be considerably 
greater, and the many-body interactions could be im­
portant in studying magnetostatic correlations. On 
the other hand, the magnitude of the quantum fluctua­
tions of internal vector potential is smaller in the latter 

case and it might be possible to transform the many-
body terms away. 

Having obtained a Hamiltonian including only two-
body interactions, we next developed a multipole ex­
pansion for the interaction between two molecules, 
valid if their separation is large compared to their size. 
In addition to the desirable magnetic dipole-dipole 
interaction (^Rim~d), there were found to be many 
other terms of the same and lower order in RinT1. On 
physical grounds, it was felt that these terms could be 
transformed away, since they represented (to some ex­
tent) the internal vector potential, rather than the in­
ternal magnetic field. The transformation, accomplished 
in Sec. V, depends essentially on the fact that the mole­
cules interact with the external field only through their 
magnetic dipole moments. Hence the magnetic field had 
to appear explicitly in the Hamiltonian, and this was 
possible only by means of the gauge transformation of 
Sec. I I I . But in this gauge transformation, a different 
gauge function had to be used for each (localized) set of 
particles among which electron exchange was possible. 
Thus we were led to the quasimolecule concept. The 
appearance of quasimolecules, rather than molecules, 
as the basic entities of the system, now required that 
the multipole expansion refer to the interaction between 
quasimolecules. Further, the introduction of quasi­
molecules into the Hamiltonian, rather than into the 
partition function (as conventional clusters), required 
the assumption of low density, so that quasimolecules 
could be defined for each configuration of importance. 
(The conventional cluster expansion, utilized by KW 
for the electrostatic problem, and valid at intermediate 
densities, was originally tried here and simply did not 
work.) 

In the paragraph above we have indicated the line 
of reasoning which led us to the somewhat unconven­
tional approach used in the present problem. The final 
result is an expression for the effect of short-range 
molecular interactions (imperfect gas effect) on the 
magnetic susceptibility. The coefficients of the virial 
expansion, a± and a2, were calculated explicitly for spin-
less electrons. The inclusion of spin is trivial, namely, in 
the equation (4.5) for the paramagnetic moment of a 
quasimolecule, one need only add in the spin magnetic 
moments. 
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