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Aspherical Spin Density in S-State Cations 
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A calculation of the first-order effect of spin-orbit coupling on a (3d)5 unperturbed S-state ion in a cubic 
crystal field has led to a new contribution ori (r) to the ionic spin density. The integral over space of ffi (r) is 
zero and o"i(r) is perpendicular to the unperturbed spin density (To(r); while o"o(f) is spherically symmetric 
about the nucleus, (Ti(r) is highly aspherical. Ina-Fe203 at room temperature, the spin density consists of 
the large "antiferromagnetic" component cfo, plus the new term cri, plus the weak ferromagnetic or Dzialo-
shinsky term GD, which is spherical. In neutron scattering, it is found that &i contributes to the same "ferro­
magnetic" Bragg peaks as does (ID, and in the same order of magnitude. Hence the new term is probably im­
portant for understanding the surprising, highly aspherical ferromagnetic spin-density distribution recently 
observed ino;-Fe203 by Pickart, Nathans, and Halperin. In general, ori(r) will be nonzero under much less 
restrictive symmetry requirements than those needed for the nonvanishing of <TD. In the course of dis­
cussion, it is pointed out that the Dzialoshinsky-Moriya theory of the weak ferromagnetism in a-Fe203, for 
example, implies that the application of a spatially uniform magnetic field should influence the distribution 
of domains of aw&'ferromagnetic spin components. This effect was observed by Pickart et al. 

I. INTRODUCTION 

THE weak ferromagnetism existing in the high-
temperature phase of a-Fe203 has been attributed 

by Dzialoshinsky1 and Moriya2 to a small canting of the 
antiferromagnetic sublattices. These sublattices are of 
course those containing Fe3+ which has the ground 
configuration (3d)5 (65). Hence, it was surprising when 
Pickart, Nathans, and Alperin3 found, in their recent 
polarized neutron experiment, that the weak component 
of the spin is spatially distributed in a highly aspherical 
way around an iron site, in direct contrast to the dis­
tribution of the strong "antiferromagnetic" component. 

The evidence for this asphericity comes from the pair 
of outer Bragg reflections (330) and (114). In the experi­
mental geometry, the corresponding reciprocal vectors 
K330, K114 lie in the y-z plane of Fig. 1 and these are 
related by the reflection (ft in the x-z plane, i.e., K m 
= (RK330. Also, the neutrons are polarized along the 
Dzialoshinsky moment, i.e., the x direction; because of 
this, as well as the experimental geometry, only the x 
component <rz(r) of the spin density is seen.3'4 If within 
a unit cell ax((Rr) = ax(r), then the magnetic structure 
factors for (330) and (114) would have to be the same. 
This would be true if, as in the simple canting picture, 
ax(r) were a sum of localized atomic functions each 
spherically symmetric about the associated nucleus. 
However, these structure factors are found3 to be very 
different. 

So for a calculation to be relevant to the neutron 
results,3 it must give an % component of spin density 
which is not invariant under (ft. Furthermore, it must 
contribute to the "ferromagnetic" Bragg peaks, i.e., 
the same ones expected from the Dzialoshinsky moment, 

* Operated with support from the U. S. Air Force. 
1I. Dzialoshinsky, Phys. Chem. Solids 4, 241 (1958). 
2 T. Moriya, Phys. Rev. 120, 91 (1960). 
3 R. Nathans, S. J. Pickart, and H. A. Alperin, International 

Colloquium on Scattering and Diffraction of Neutrons, Grenoble, 
1963 (unpublished); following paper, Phys. Rev. 136, A1641 (1964). 

4 M. Blume, Phys. Rev. 130, 1670 (1963). 
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this contribution to the (330) and (114) being of the 
same order as the latter. The purpose of this note is to 
suggest that intra-atomic spin-orbit coupling gives a 
spin density with these properties, and to discuss the 
result in a more general context.5 

This mechanism is contained implicitly in Moriya's 
formalism.2 He uses as one-electron basis functions 
\pt(x—R) and ^ ( r — R ) which he describes as having 
spin almost up and almost down. The modifier "almost" 
is needed because of intraatomic spin-orbit coupling. 
This means that the spin operators S(R) are not the 
true spins, but refer rather to these "almost" states. 
So let us call Moriya's "spin" operators T(R), reserving 
S for true spin. To calculate the spin density, we would 

FIG. 1. Cation site • , anion site o. In the corundum structure, 
z is the c axis, x is parallel to a 2-fold axis- the actual anion sites 
are distorted from the perfect octahedral coordination shown. In 
the high-temperature phase of a-Fe203, the large antiferro­
magnetic moments point along ±y , the Dzialoshinsky moment 
along x. x', y', z' are Cartesian coordinates with 3-fold symmetry 
around z, x' lying in the x-z plane. 

6 In Ref. 3 it is shown that obvious covalence effects involving 
nearest neighbor Fe-0 bonds cannot account for the difference be­
tween the (330) and (114) structure factors. 
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first find, from Moriya's "spin" Hamiltonian in the 
Hartree or internal-field approximation, the proper 
single-atom functions of the form ^ r(R) = a ^ t ( r ~ R ) 
+b\f/± (r—R). A small "canting," in Moriya's sense, 
occurs here if, say, (^t(r—R), T(R)^t(r—R)) = -|2/ 
and | b/a | is small but nonzero (y is a unit vector in the 
y direction); then (^ (R) , T(R)^(R)) is a vector canted 
slightly from y\ this canting is caused1'2 by the D« T(R) 
XT(R ' ) terms in the "spin" Hamiltonian. To find the 
true physical spin density we must now express the 
\pt, ^4. in terms of Moriya's orbital functions </>n'(r—R) 
(n1 includes n, the ground function), and the true spin 
functions a, /3, quantized along y, say. I t is easy to see 
that one obtains for the spin density, to first order in 
the spin-orbit coupling, 

<r=<ro+o,D+o'i, (1) 

where an=%y\<j)n(x— R) | 2 (this is called the antifer-
romagnetic component in a-Fe203); OD= \ </>*,(*—R)|2 

X[6(a,SjS)+5*(a,S/3)*]], the Dzialoshinsky spin den­
sity; and <ri is the extra term due to the deviation of 
^ t ( r — R ) from <j>n(t—J{)a. Note that &D has the same 
r dependence as the leading term, as expected on the 
simple canting model1,2; in hematite <JD is along x, so that 
6 = - 6 * for (a,S0) = $(&-i£). 

If we continue with Moriya's formalism, in which 
there is one electron per atom, and we try to make it a 
model for hematite, we might take the ground orbital 
0n(r—R) to be an S state. Then o-0 and CFD would both 
be spherically symmetric, i.e., they would depend on r 
only through | r—R| . Furthermore, <ri would be zero, 
so that the effect in which we are interested would be 
lost. Much closer to reality, the unperturbed ground 
state for the Fe3+ ion is 6 5, configuration (3d)5. Further­
more, since the spin-orbit coupling is of the form 
^L,\(ri)li*Si^V, rather than the function L«S of the 
total angular momenta, there will be nonzero matrix 
elements connecting 65 to other states (quartets), 
as is well known. Hence we can expect a nonzero o-i, and 
it is to the calculation of this quantity that we now 
address ourselves. 

II. FIRST-ORDER CALCULATION 

We consider a (3d)5 configuration of electrons moving 
in an octahedral field with splitting parameter 10Dq= A, 
indicated symbolically by the anion sites in Fig. 1. 
Because the field W (symmetry C3) resulting in the 
corundum structure from the distortion of the anion 
sites and from the other cations produces splittings 
much less than A,6 we treat it along with the spin-orbit 
interaction V as a perturbation. Then W does not enter 
in first order. We take as the unperturbed ground state 
6S with 5 f=f , £— y for the high-J phase of hematite,7 

and other directions considered below. We have found 
6 D. S. McClure, J. Chem. Phys. 36, 2757 (1962). 
7 Since the experiment was performed at room temperature 

which is ^ J T V , considering only the state with maximum S$ is 
reasonable within our "single-cation" model. 

that, to first order, the Hartree-Fock (H-F) approxima­
tion gives a spin density o-i which deviates by only 
about 20% from the result of the calculation taking cor­
relation into account within (3d)5. Hence, for our 
order-of-magnitude purposes, we may discuss the 
calculation in terms of the simpler and intuitively more 
transparent H-F approximation. So we are concerned 
with the familiar one-electron orbitals fa = fi(r)(x, 
/ a = /z(r)/5, where the five functions ft consist of 
eg's (e's) and t2g's (t's) referred to %'y'z' of Fig. 1, and 
ce, /? are the usual spin functions referred to the quantiza­
tion axis f. The e's lie above the t's of the same spin by 
the energy A, and fa lies above fa by the intra-atomic 
exchange energy J. By a straightforward application of 
first-order perturbation theory, one finds the perturbed 
one-electron states ^ 4 t (corresponding, respectively, to 
fa), calculates the spin density in \E^t and adds up the 
contributions from the occupied orbitals. The result 
(valid only for J / A > 1 ) may be summarized by the 
formula 

(X/A) 5 Su2(r) 
„1 = 2 u2(r)g(f)^cX g(?). (2) 

( 7 / A ) 2 - 1 4 T T 4TT 

The coefficient c is 

( A / A ) { [ ( / / A ) - l ] - i - [ ( / / A ) + l ] - ' } ; 

the first term comes from the mixing of /j into e\ 
functions, the second from mixing of e\ into t\ (there 
is no contribution from mixing J's into t's or e's into 
e's). u(r) is the radial part of the 3d orbitals, with 
J*Q*r2u2dr=\. The function g, which depends on the 
unperturbed spin direction f, is (for £=x, y, or z) 

£ = yp2+zps, ? = « 

= -xp2 — Spi, $=y 

= ~xpz+ypi , £=z (3) 
where 

P i = ( 2 4 ) - 1 / 2 [ ^ ( 2 £ + i 7 ) + € ( 2 £ - i ? + 2 f ) ] , 

P 2 = ( 1 2 ) - ^ [ ^ ( 1 ? - 5 ) + € ( 2 f - S - ^ ) ] , 

Pa= ( 8 ) - 1 / 2 [ - ^ ^ + ^ ( ^ + 2 f ) ] . (4) 

Here 0, €, £, *y, f are the d orbitals in Griffith's notation8 

(p. 226) divided by r2, and referred to the primed axes 
of Fig. 1. For example, ^=y/Syfzl'/r2. The functions pi 
can be seen to be linear combinations of the spherical 
harmonics F4 w ,9 and so are highly aspherical. I t should 
be noted that the charge density remains spherical in 
this order (since the spin quantum numbers of the 

8 J. S. Griffith, The Theory of Transition Metal Ions (Cambridge 
University Press, New York, 1961), cf. pp. 226, 311, 425, 437. 

9 The symmetry "reason" why these turn out to be Y4m is that 
the spin-orbit operator transforms like the vector representation 
T\ (or T4 in Bethe's notation) under cubic spatial operations. 
Hence the first-order addition to the atomic wave function and 
therefore also 0*1 (r) must transform like T\. But since we are 
considering only the configuration (3d)6, ai(r) must be a linear 
combination of Yim with Z = 0, 2 or 4, the only ones of which can 
transform like Ty being the Y\m. 
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first-order addition to the wave function differ from 
those of the unperturbed state). 

For a-Fe203 in the high-r phase, the unperturbed 
and the Dzialoshinsky spin densities are 

5 u2(r) 5 u2{r) 
cr0 = y, 0D=e x, (5) 

4 f 2 4TT 2 

where3 | € |~1.0X10~3 . In the polarized neutron 
experiment,3 only the x component is seen, so that we 
need consider only aix; so we need gx for £=y which is 

gx(f) = - P 2 = (3\5/4r4)(y2-3x2)yzoc ImF4 3(0,0), (6) 

where F4 3 is the spherical harmonic referred to the 
xyz axes. We note here that 

gz(<M)=-gx(t), (7) 

since (R takes x—> x, y—> — y, z—>z, satisfying the 
condition (needed in order to correspond to experiment3) 
that <rix(r) must not be invariant under (R. Also note that 
gx(f) is invariant under the threefold rotations about the 
c axis. 

III. COMPARISON WITH EXPERIMENT 

The magnetic structure factor M which enters into 
the neutron experiment3 is proportional to the Fourier 
transform of YL[vD{j)+<nx{j)~] giving M=MD+Mi QT 
means to sum over the four cations j in a unit cell). 
CTDU) is the same for all sites, apart from translation. 
Noting that the nearest-neighbor sites with antiparallel 
cro are related (in their unperturbed state) by a twofold 
axis (x —> x, y—+ —y, z—» —z), Eq. (6) shows that in 
our present crystal-field calculation <nx will be the 
same for these two sites (apart from translation). 
Also the two sites with parallel <F0 are connected by a 
center of inversion (remembering that spins are 
pseudovectors), showing again that v\x is the same 
for these two sites. Hence M—F(R)J* exp(iK«r) 
X ((TD+O-IX)dr where F(K) = J2 exp(iK«Ry), and aDj 

aix are given by (5) and (2). K is the neutron scattering 
vector. The fact that GDU) and a ^ both simply trans­
late from site to site, giving the common factor F(K), 
shows that <TD and aix contribute to the same "ferromag-
netic" Bragg peaks, 

To compare orders of magnitude, we find with the 
help of (2), (5), and (6), that 

Mi/MD= (2c/e)tMK)/f0(Kngx(K), (8) 

where fn(K) = f^u2(r)jn(Kr)r2dr, and jn(x) is the 
spherical Bessel function. gx(K) can be computed from 
(6); for the (114) and (330) reflections | ^ | = 0 . 3 4 
(gx being of opposite sign for these two reflections10). 

10 Unique identification of the (114) and (330) reflections can be 
made if we know the coordinate system. We have used the follow­
ing for the rhombohedral base vectors (the primitive translations): 
a i= - (s/Sa/2)x- (a/2)y-h(c/3)z, a2= (S3a/2)x- (a/2)y+(c/3)z, 
a3 = ay-\-(c/3)z with ;# and c positive; the reciprocal vectors hi 
are defined by afb3-i= 8i3- and the Bragg scattering vectors are 
Kwmj=27r(dbi-f-mb2-Hb3). Note that with this choice, the cation 

To obtain a rough estimate of c we take advantage of 
the close similarity between the optical spectra of 
hydrated salts of transition metal cations and of 
Cr203, Fe203, and NiO, as pointed out by Morin.11 

Then it is reasonable to assume that the values8 

A/7^0 .51 , A / /^0 .013 , appropriate to Fe3+-6H20, are 
sufficiently close to those for Fe203 for our rough pur­
poses. This gives c—0.018. A crude estimate of /4//0 
may be obtained by approximating r2u2 (r) as a 5 func­
tion at the maximum, r0—0.5 A, in the radial distribu­
tion for iron, giving fn(K)~jn(Kro). For the (114) or 
(330) reflections, K=5.1 A"1, so that12 (/4//o)ii4~0.16. 
So we finally obtain | M I / M D | ^ L 9 . The only sig­
nificance of this particular number is that it indicates 
that Mi and MD are of the same order of magnitude. 
Thus we have our main point, namely the structure 
factor pertinent to the polarized neutron experiment 
is, in our first order calculation, 

M(K) = MD(K)+M1(K)9 (9) 

where the Dzialoshinsky part satisfies M D (K330) 
= M D ( K I I 4 ) , the new part M 1 ( K 8 8 o ) = - M i ( K n 4 ) , 
and I Mi | ~ | MD | for these reflections. Hence it is not 
surprising that the values of M at these two reflections 
differ appreciably. 

Now let us compare (9) with experiment in somewhat 
more detail. I t is found3 that M(114) = 0.005±0.008, 
M(330) = 0.082±0.007 (in units of 10"14 cm). Also, 
Pickart et al. give the calculated value Mi>(calc) = 0.076 
appropriate to these two reflections; this value is 
uncertain to within roughly a factor of 2, however.13 

For (9) to give the observed values one needs | Mi (114) | 
« IMi>(114) I, which, as we have shown, is not un­
reasonable. Furthermore, (9) with (7) predicts that 

Mi)(114) = i [M(114)+M(330) ] . (10) 

(This is more general than would be indicated by the 
explicit derivation given, as discussed below.) Using 
the observed values of M at these two reflections then 
gives M D ( H 4 ) ^ 0 . 0 4 4 ± 0 . 0 0 8 which is within the 
uncertainty in MjD(calc), although only barely. Another 
reflection observed3 is the (222), for which M(222) 
= 0.213±0.002 and MD^lc) (222) = 0.210. We have 
Mi(222) = 0, as follows from (7); hence, Eq. (9) agrees 
with this data. The other one of the four reflections 
observed is the (002), for which M ( 0 0 2 ) = - 0 . 0 1 1 
±0.004, Mz/ealc> (002)= -0 .064 [the minus sign comes 
from F(K)2- If (9) is to agree with this, we would need 

site of Fig. 1 is forced to be either type 1 or type 4 in Dzialoshin­
sky's notation (each of which sees identical octahedral fields). 

11 F. J. Morin, Bell System Tech. J. 37, 1047 (1958). 
12 A rough check on this estimate was made by considering 

u2(r) ccrne~ar, choosing n and a to approximately fit the observed 
form factor fo(K), and then calculating fi(K). This gave some­
what larger values of (ft/fo)m, but still of the same order of 
magnitude. 

13 R. Nathans and S. J. Pickart (private communication). The 
uncertainty in Mi)(calc)(411) is due to the experimental un­
certainty in the form factor /o (as measured on the large antifer-
romagnetic component) at this large scattering angle. 
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ATi(002)«-Mi>(002). However, we find |Mi(002)| 
« (0.07) | ATD(002) |. The large decrease in \Mi(K)/ 
MD(K) I for Kchanging from (114) to (002) (K changes 
from ^ 5 to ~ 3 A - 1) is due principally to the factor 
/4//0 in (8). Thus our first-order calculation disagrees 
seriously with the results on this reflection. 

IV. SUMMARY AND DISCUSSION 

By investigating the first-order effect of spin-orbit 
coupling on a (3d)5, unperturbed 5-state ion in a cubic 
crystal field, we have found a new contribution cn(r) 
to the ionic spin density. The integral of ax(r) over space 
is zero and <ri(r) is perpendicular to the unperturbed 
spin density <r0(r). Whereas or0 is "spherically sym­
metr ic / ' depending only on the magnitude of r meas­
ured from the nucleus, ci(r) is highly aspherical, being a 
linear combination of F 4 m and hence depending sen­
sitively on the direction of r. We note that the charge 
density remains spherical to this order. 

In a-Fe2C>3 at room temperature the total spin density 
consists of the large "antiferromagnetic" component 
(To, the new term cri, plus the Dzialoshinsky term (TD, 
which is spherical about a cation nucleus for r near 
that nucleus. Whereas <r0 changes in translating from one 
cation to another within a unit cell, in accordance with 
the well-known antiferromagnetic ordering,14 <rD does 
not change under such translations; we have found that 
the component of vi parallel to vD also does not change 
under these translations, and therefore <ri and <TD con­
tribute to the same ferromagnetic peaks. In particular, 
the two contribute in the same order of magnitude to the 
(330) and (114) peaks, the contribution of ai to (330) 
being minus that to (114) while VD contributes 
identically to these two peaks. Hence the magnetic 
scattering is expected to be different for these peaks (very 
much different if \Mi\ > \MQ\ at this scattering angle), 
so that the large difference observed* for these peaks is no 
longer surprising. 

To discuss the quantitative discrepancies let us first 
focus on the two outer reflections (330), (114). Be­
cause of the antisymmetry of Mi under (R, reflection 
in the x-z plane, we obtained Eq. (10), with which the 
observations are considerably at variance, although not 
outside a large experimental uncertainty in the spherical 
form factor fo(k). Now it is easy to show that in general 
one must obtain this antisymmetry of Mi as long as one 
considers interactions which are invariant under (R; 
also in this case MB must vanish.15 Although the 
crystal is not invariant under (R, the lack of invariance 
is usually thought to have only small effects. The non-
invariance obviously affects MD in an important way; 
to estimate its effect on Mi we considered the term in 

14 C. G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev. 83, 
333 (1951). ^ 

15 The vanishing of MB if CR. if conserved is a special case of the 
symmetry conditions given in Ref. 2. The possibility that D 
can vanish because of symmetry properties of a pair of atoms 
shows that Moriya's formula D/2J~Ag/g is incomplete (since Ag 
need not vanish when D=0). 

second-order perturbation theory which is first order 
in spin-orbit times first order in the low-symmetry 
crystal-field W. On a point-charge model we found only 
a small change 5Mi in Mi (~ 10%),16 8M1 being invari­
ant under (R. This would predict that Eq. (10) should 
be closely satisfied. I t would be interesting to see if a 
more accurate measurement of / 0 at these reflections 
would indicate a value considerably smaller ( ~ J ) than 
the one used3 to obtain JJfz)(calc). This would be interest­
ing since any violation of (10) must be traced directly 
to the nonconservation of (R, being independent of the 
detailed approximations that we have made within the 
single-cation model used. 

Concerning the disagreement at the (002) peak, we 
frankly have no good idea about it. The agreement at the 
(222) peak (nearby in scattering angle) suggests that 
the trouble here does not lie with Mz>(calc). Our estimate 
of Mi(002), or more pertinently MX(002)/Af i(114), does 
depend on our approximation to the integrals over the 
radial function. In this connection, a more accurate 
measurement of /o at the outer reflections should permit 
a meaningful inversion of fo(k) to obtain the radial 
function and hence a better calculation of f±(k). 

With a view towards testing further the presence of 
the effect calculated here, we note that the result re­
quires the following predictions. 

(a) Since the Mi calculated here is essentially a 
single-ion effect, it should exist even in cases of high 
symmetry where the Dzialoshinsky moment is zero 
(like MnO, say). For example, in a-Fe203 at low 
temperatures &D = 0, <ro is parallel to the trigonal axis, 
and 0*1 contributes to the ferromagnetic Bragg peaks 
(as well as the antiferromagnetic peaks). For the x 
component we find from (3) and (4) that Mi is as 
before, but now with17 

gz(f)^(^/4r%3z2(z2-l)+x2(3z2+3-4x2)']. 

For the experimental geometry with polarization and 
magnetic field along x, and K in the y-z plane, this 
gives gx(K)=-0.22 for (114) or (330). That is, 
I Mi I at low temperatures is only reduced by about f 
from its value at room temperature (assuming satura­
tion at the latter). 

(b) Since Mi^f^k), \Mi\ initially increases18 with 

16 A comparatively large contribution to this result enters as the 
spherical harmonic F20. To obtain it, it was necessary to consider 
correlation effects, since this contribution vanishes in the Hartree-
Fock approximation. 

17 We have omitted a term (l/4/-4)#2(3r2—7z2) which is present 
in gXf since this contributes only to the "antiferromagnetic" 
reflections. 

18 This is reminiscent of the behavior found in Ti2C>3 by S. C. 
Abrahams, Phys. Rev. 130, 2230 (1963), and calculated by M. 
Blume (to be published) for configuration (3d)1. In that case, it is 
apparently the orbital contribution to the magnetic moment 
density (the component parallel to the atomic moment) that gives 
rise to an effective form factor that initially increases with k, 
whereas in our calculation /* enters directly into the spin density. 
(To first order, there is no contribution either to the net orbital 
magnetic moment or to orbital scattering; this is because the 
atomic wave function to first order is \f/ = 6S+'K(f> where <f> is a 
quartet state.) 
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k. Our crude approximation to f±(k) indicates that 
fi(k) is still rising at the (330) reflection, going through 
a broad maximum at k^4:ir sind/X between 10 and 
14 A - 1 . Furthermore the value of f±(k) at its maximum 
is much larger (by a factor of about 6) than at the 
(330) (jfe«5). 

(c) I t should be possible in principle to experi­
mentally check the sign of Eq. (6). The reason for this 
is as follows. The D^- in the Dzialoshinsky-Moriya 
theory are unique properties of a given structure, being 
independent of the "spins" T\- as is evident from 
Moriya's expression2 for the D#. I t follows from the 
energy expression ^ D ^ ' T ^ X T y plus exchange that for 
a given antiferromagnetic arrangement with D ^ = 0 , 
say Ti (0) = r $ , T 2

( 0 ) ==~r^ , the introduction of 
~Dij=Dij z will cause a unique canting dTi^ 8T2= ex. 
That is, for given T there will be only one value e, 
— e being of higher energy. A degenerate state would be 
the completely spin-reversed state T —> —T and e —» — e. 
The application of a magnetic field along -\-x would 
clearly force a sign on e and therefore a sign on T. In 
other words, the theory1,2 implies that the application of 
a magnetic field must influence the antiferromagnetic 
domain distribution. (Thermodynamic equilibrium is 
assumed, of course.) Such an effect was indeed ob­
served.3 Hence, in principle, in the presence of a 
magnetic field, there is only one possible spin direction 
at any particular site. Now it appears to us that it 
should be possible to determine these directions from 
the polarized neutron experiments since one needs only 
the relation between the magnetic structure factor for 
the (222) (assumed to be due only to the Dzialoshinsky 
moment) and that for, say, the antiferromagnetic (210) 
peak. 

For the reciprocal vectors defined in footnote 10, 
Kin has positive y and zcomponents so that gx(Kiu) > 0. 
Let us suppose that the magnetic field points along the 
positive x axis; then e<0 because the free-electron g 
factor is negative (this is not important here, but it is 
stated correctly to try to minimize confusion). If 
(T0y>0, as taken in (5), i.e., the antiferromagnetic spin 
components at either type 1 or type 4 sites point along 
the positive y axis as defined by Fig. 1 and footnote 
10, then Eq. (9) with (8) and (/4 / /o)ii4>0 would pre­
dict that |M (114)| < | M (330) | ; if it turned out that 
<Toy<0, the inequality would be reversed. Although, as 
we have said, it should be possible to determine experi­
mentally the sign of <r^y, such a determination un­
fortunately will not be a convincing test of the mech­
anism discussed in this paper until one understands the 
mechanism for the difference between i£2io and ifeo in 
the notation of Pickart et al.z 

I t is perhaps worth pointing out that if one could be 
convinced that the main contribution to various 
neutron peaks were of the form (9) with Mi coming 
from (2), the measurement of Mi at these peaks would 
provide a quantitative check on the radial function 
determined in the usual way. [The latter, determined by 
inverting fo(k), will determine ft(k).~\ 

I t should also be noted that the effect calculated here 
should occur in ions other than those with unperturbed 
configuration 3db. Although we have not tried to 
estimate it, we can see for example that for 3d? (e.g., 
Cr3+), the Hartree-Fock approximation (which would 
have to be justified again) would lead to Eq. (2) but 
with c - - - - ( \ / A ) [ ( / / A ) + l ] - 1 , and the restriction 
J/A > 1 removed. Estimating / as the energy for the 
M2—> 2E transition, and using the numbers in Griffith8 

pertinent to Cr3+ with octahedral H 2 0 coordination,11 

we find that c is reduced from its value calculated for 
Fe3+ by only about a factor of 2, suggesting that the 
effect might be observable in Cr203 for example. 

We conclude with a qualitative remark about the free 
ion. As seen from Eq. (2), our new spin density &i 
vanishes for a free ion (A = 0). Is it possible in the case 
of a free paramagnetic ion, in, say, an infinitesimal 
magnetic field which fixes the net moment in the z 
direction, to have a spin density <r(r) which is not 
everywhere parallel to z? If it were not possible, we 
would expect that symmetry considerations would tell 
us. We consider only the case where all the degeneracy 
in the ground state is due to the orientation of the 
magnetic moment; then the field removes the remaining 
degeneracy and so the physics must be invariant under 
the symmetry group of the Hamiltonian. This group G 
consists at least of Cz, the rotations about z; I, the in­
version through the origin; and Q, a 180° rotation 
about an axis in the x-y plane multiplied by time inver­
sion. Let o"i(r) be the part of o* which is perpendicular 
to z. Application of / and Cz shows that vi(x,y,— z) 
— —0±(%,y,z); subsequent application of Q shows that 
in cylindrical coordinates, vi(o&yz) must have only a 
radial component. The latter of course must be cylin-
drically symmetric. Also a2(x,y, — z) = <rz(x,y,z) and <rz 

must have cylindrical symmetry. cr(r) having these 
properties satisfies all the requirements of G, and since 
there are no other pertinent operations as far as we can 
see, we conclude that vx (r) need not be zero. Following 
these symmetry arguments slightly further shows 
easily that a free ion contribution to crx could contribute 
only to the "antiferromagnetic" peaks in the neutron 
experiment. 

Note added in proof. Our crude "5-function" estimate 
of (/4//0)iH^O.16 for Fe3+ is probably very close to 
that obtainable from the Flartree-Fock atomic radial 
function of Watson and Freeman [Acta. Cryst. 14, 27 
(1961)], since their results give the values 0.18 and 0.12 
for Fe2+ and Fe4+, respectively. I thank M. Blume for 
pointing this out to me. 
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