Substitution of Divalent Cobalt in Yttrium Iron Garnet

S. Geller,* H. J. Williams, G. P. Espinosa*, and R. C. Sherwood Bell Telephone Laboratories, Murray Hill, New Jersey (Received 29 June 1964)

Magnetic and crystallographic data are reported on the systems $\{Y_3\}$ Co_xFe_{5-2x} M_x O₁₂, M = Si or Ge. When M = Si, the maximum value of x appears to be between 1.00 and 1.25, while when M = Ge, the maximum value of x is 2.50. A distribution of the ions in these garnets is proposed that is compatible with the results and conclusions obtained on all other substituted yttrium-iron-garnet systems. In particular, it appears that a constant 20% of the Co²⁺ ions enter tetrahedral sites. When $x \ge 1.00$, some Ge⁴⁺ ions enter octahedral sites. The garnet {Y_{2,7}Ca_{0.3}}CoFe_{2,7}Ge_{1.3}O₁₂ has a compensation point at 236°K; it is the first garnet reported which has a compensation point resulting from a difference in the temperature behavior of only the a and d sublattice magnetizations. The other garnets having compensation points all contain magnetic rare-earth ions in the c sites. The garnet {Y2.5Ca0.5}CoFe3V0.5Ge0.5O12 has a higher Curie temperature, 410°K, than that, 350° K, of {Y₃}CoFe₃GeO₁₂. This is in accord with the expected effect of pentavalent vanadium substitution.

INTRODUCTION

HE results of our investigations of the substitutions of divalent manganese, iron and nickel in yttrium iron garnet have already been reported.^{1,2} Some preliminary results on substitution of divalent cobalt with electrostatic compensation by tetravalent silicon ions have been given.² In this paper, we report magnetic and crystallographic results on the systems $\{Y_3\}Co_xFe_{5-2x}Si_xO_{12}$ and $\{Y_3\}Co_xFe_{5-2x}Ge_xO_{12}$ and on some related garnets.

Unlike the other divalent ions, it appears that the Co²⁺ ion does enter the tetrahedral sites and thus an exact understanding of the magnetic behavior of these garnets cannot be obtained from the magnetization measurements alone. Nor can the x-ray diffraction technique resolve the problem. However, considerations of the results obtained on a substantial number of other systems have led to at least a tentative solu-

* Present address: North American Aviation Science Center, 1049 Camino dos Rios, Thousand Oaks, California.

Geller, H. J. Williams, R. C. Sherwood, and G. P. Espinosa, Phys. Chem. Solids 23, 1525 (1962).
S. Geller, H. J. Williams, R. C. Sherwood, and G. P. Espinosa, J. Appl. Phys. 33, 1195 (1962).

tion which is consistent with the behavior of these other systems.

As far as we have been able to ascertain at this time, the Co²⁺ ion is the only divalent ion which enters the tetrahedral sites in the garnet structure in substantial amount. Also, it is the only magnetic ion other than the Fe³⁺ ion which goes into tetrahedral sites in the garnets. Further it is thus far the only ion which if substituted in proper amount [and apparently because of its different (from Fe³⁺ ion) temperature dependence of magnetization] yields garnets with compensation points when there are no magnetic ions in the c sites.

EXPERIMENTAL

The techniques employed for preparation of the polycrystalline specimens of the cobalt substituted garnets are the same as those described in the paper¹ on the other divalent ion substitutions. The firing conditions are given in Tables I-III. X-ray powder photographs were taken with Straumanis-type Norelco cameras of 114.59 mm diam; CrK radiation was used.

Magnetic measurements were made with applied fields H_a to 15.3 kOe with a pendulum magnetometer described elsewhere.³ Measurements to fields of 80 kOe at 4.2°K were made with a Bitter-type magnet and an extraction method was used to determine the moments.

TABLE I. Data for garnets in the $\{Y_3\}Co_xFe_{5-2x}Si_xO_{12}$ system.

x	<i>a</i> , Å	$n_B{}^{\mathbf{a}}$	Firing conditions, °C (hr)
$\begin{array}{c} 0.10 \\ 0.20 \\ 0.40 \\ 0.60 \\ 0.80 \\ 1.00 \end{array}$	$12.371 \\ 12.362 \\ 12.349 \\ 12.333 \\ 12.315 \\ 12.296$	$\begin{array}{c} 4.50 \\ 3.98 \\ 3.17 \\ 2.26 \\ 1.34 \\ 0.67 \end{array}$	$\begin{array}{c} 1430(19),1430(63)\\ 1290(1),1405(2),1430(5\frac{1}{2})\\ 1460(15),1390(16)\\ 1300(\frac{1}{2}),1340(2),1400(3)\\ 1290(1),1405(2),1430(5\frac{1}{2})\\ 1400(19),1450(68) \end{array}$

a Considered to be the 0°K, zero-field moments.

³ R. M. Bozorth, H. J. Williams, and D. E. Walsh, Phys. Rev. 103, 572 (1956).

x	<i>a</i> , Å	$n_{B^{\mathbf{a}}}$	<i>T</i> _c , °K	Firing conditions, °C (hr)
0.20	12.378	4.01		1250(1), 1300(2), 1400(2), 1425(2), 1430(2), 1440(2)
0.80	12.377 12.375	2.58 1.46	420	$1440(1_2), 1440(2), 1425(2_2), 1410(16)$ 1300(2), 1370(16), 1375(16), 1390(48)
1.00	12.376	0.74	350	1300(66), 1435(17), 1435(16)
1.10	12.374	-0.25	305	1250(1), 1380(2), 1370(16) $1250(\frac{1}{2}), 1330(5), 1360(6), 1365(24)$
1.50	12.373	-0.75	210	1435(17), (16)
1.75 2.00	12.370	-1.50 -2.15	150	$1225(1), 1300(2), 1350(2\frac{1}{2}), 1400(3\frac{1}{2}), 1420(1\frac{1}{2}), 1385(1), 1400(1\frac{1}{2})$ 1120(1), 1300(3), 1330(1), 1340(2)
2.20	12.363	-2.50	50	$1120(\frac{1}{2}), 1350(3), 1350(1), 1340(2)$ $1100(1), 1350(2), 1375(1\frac{1}{2}), 1400(1), 1390(2), 1400(1)$
2.50	12.357			1125(2), 1300(3), 1330(1), 1340(2)

TABLE II. Data for garnets in the {Y₃}Co_xFe_{5-2x}Ge_xO₁₂ system.

^a See footnote a, Table I.

CRYSTAL CHEMICAL DATA

Lattice constants $(\pm 0.003 \text{ Å})$ of the various specimens $\{Y_3\}Co_xFe_{5-2x}M_xO_{12}$, M=Si or Ge, are given in Tables I and II and plotted versus composition in Fig. 1. In the $\{Y_3\}Co_xFe_{5-2x}Si_xO_{12}$ system, single phase specimens with $0 \le x \le 1.00$ were obtainable, but one with x=1.25 was not precisely single phase. Thus the maximum value of x in this system probably lies between 1.00 and 1.25. In the $\{Y_3\}Co_xFe_{5-2x}Ge_xO_{12}$ system, specimens with the maximum range $0 \le x \le 2.50$ could be prepared.

The single-phase specimen $\{Y_{2.9}Co_{0.1}\}$ [Fe₂](Fe_{2.9}Si_{0.1})-O₁₂ could not be obtained. However, one with formula $\{Y_{2.8}Co_{0.2}\}Co_{2.0}Fe_{0.8}Ge_{2.2}O_{12}$ and lattice constant 12.343 Å was obtained.⁴⁻⁶ The large difference, 0.017 Å, between this value and that, 12.360 Å, of the garnet $\{Y_3\}Co_{2.2}Fe_{0.6}Ge_{2.2}O_{12}$ is additional evidence that, in the former, the 0.2 Co²⁺ ions are in dodecahedral sites.

Trivalent cobalt could not be put into the garnet (under our experimental conditions); a single-phase specimen with formula $\{Y_3\}Co_{0.1}Fe_{4.9}O_{12}$ could not be prepared.

As in the case of Ni^{2+} ion substituted garnets,¹ firing in N_2 produced garnets with slightly larger lattice constants than did firing in air.

The lattice constant of $\{Y_{2.5}Ca_{0.5}\}CoFe_3Ge_{0.5}V_{0.5}O_{12}$ is 12.400 Å. Lattice constants for garnets in the system $\{Y_{3-y}Ca_y\}CoFe_{3-y}Ge_{1+y}O_{12}$ are given in Table III.

TABLE III. Data for garnets in the system ${Y_{3-y}Ca_y}CoFe_{3-y}Ge_{1+y}O_{12}$.

у	a	$n_B{}^{\mathbf{a}}$	Firing conditions, °C (hr)
0.10 0.30 0.40 0.50	12.375 12.374 12.373 12.373	$0.43 \\ -0.22 \\ -0.52 \\ -0.79$	$\begin{array}{c} 1125(1\frac{1}{2}), 1380(22)\\ 1170(\frac{1}{2}), 1370(18)\\ 1170(\frac{1}{2}), 1360(2)\\ 1130(\frac{1}{2}), 1300-1350(2) \end{array}$

^a See footnote a, Table I.

MAGNETIC DATA

The $\{Y_3\}Co_xFe_{5-2x}Si_xO_{12}$ System

In this system magnetic saturation at 1.4° K was attained for specimens with x=0.10, 0.60, 0.80, and 1.00, the first three at about 12.6 kOe, the last at ≤ 4.8 kOe. The specimen with x=1.00 was magnetically saturated at 4.8 kOe (the lowest field at which measurements were made) over the entire temperature range $1.4-300^{\circ}$ K. Curves of magnetization versus temperature for specimens with x=0.60 and 1.00 are given in Fig. 2. The specimen with x=0.40 was saturated at about 40 kOe at 4.2° K. 0°K moments are plotted versus x in Fig. 3 (curve 2).

The $\{Y_3\}Co_xFe_{5-2x}Ge_xO_{12}$ System

In this system, specimens with x=0.2, 0.5, and 0.8 were not magnetically saturated at 1.4°K at fields to 14.24 kOe. High-field measurements at 4.2°K indicated saturation at about 70 kOe. The specimen {Y₃}CoFe₃-GeO₁₂ was magnetically saturated at 4.8 kOe over the

FIG. 2. n_B versus T for Y₃Co_{0.6}Fe_{3.8}Ge_{0.6}O₁₂, Y₃CoFe₃GeO₁₂, and Y₃CoFe₃SiO₁₂. The curves for the specimens containing one Co²⁺ ion/formula unit give spontaneous magnetizations.

⁴ Other garnets containing Co²⁺ ions in the dodecahedral sites have been reported (see Refs. 5 and 6). ⁵ S. Geller, C. E. Miller and R. G. Treuting, Acta Cryst. 13,

^{179 (1960).} (1960). (1970).

⁶ J. A. Kohn and D. W. Eckart, Am. Mineralogist **47**, 1422 (1962).

FIG. 3. n_B versus x: (1) calculated assuming all Co²⁺ ions in d sites with moment 3.4 μ_B , all Ge⁴⁺ ions in d sites, Néel model; (2) observed for system {V₃}Co_xFe_{5-2x}Si_xO₁₂; (3) observed for system {V₃}Co_xFe_{5-2x}Ge_xO₁₂; (4) from calculated values given in Table IV; (5) calculated assuming all Co²⁺ ions in a sites with moment 3.7 μ_B , all Ge⁴⁺ ions in d sites, Néel model; (6) for high values of x in system {V₃}Co_xFe_{5-2x}Ge_xO₁₂ when extrapolation is made to $H_a = 0$ (see text).

entire range of temperature 1.4-300°K. The spontaneous magnetization at 0°K is $0.74 \mu_B$, is constant (see Fig. 2) to 150°K, and drops only $0.02 \mu_B$ between 150 and 208°K.

Curves of n_B (H_a,T) versus T for {Y₃}Co_{1.16}Fe_{2.68}-Ge_{1.16}O₁₂ are shown in Fig. 4. The curve for n_B (9.6,T) differs by no more than 0.02 μ_B from that of n_B (14.24,T). However, this may be taken to be an indication of "unsaturation," because when the specimen was cooled in a field of 14.24 kOe, it appeared to be

FIG. 4. n_B versus T at three different fields. When specimen was cooled in field of 14.2 kOe, saturation was attained at \leq 4.8 kOe.

FIG. 5. n_B versus T at three different fields.

saturated at 4.8 kOe, and over the temperature range 0 to 80°K, the moment 0.25 μ_B was essentially constant (see Fig. 4).

Curves of n_B ($H_{a,T}$) versus T for the specimen with x=1.30 are shown in Fig. 5. In this case again saturation was not attained at fields below 15.3 kOe. The curves appear to indicate a compensation point at about 150°K. However, this could not be ascertained by suspending a sintered piece of the specimen on a fine thread, cooling it to liquid N₂ temperature in the presence of a small field from a permanent magnet and allowing it to warm in the presence of this field (but see following section).

Specimens with $1.50 \le x \le 2.50$ were not saturated at fields to 14.24 kOe. Curves of $n_B(H_a,T)$ versus T for the specimen with x=1.50 are shown in Fig. 6. Also shown are the results on the same specimen cooled in a field of 14.24 kOe. The effect of cooling in the field is the "straightening" of the curves in the low-temperature region, but, unlike the case for the specimen with x=1.16, saturation was not attained. The drop in moment at temperatures below 40°K becomes progressively more marked as the value of x increases. However, cooling in a field of 14.24 kOe tends in all

FIG. 6. n_B versus T at three different fields. Shown also are points obtained when the specimen was cooled in a field of 14.2 kOe.

FIG. 7. n_B versus T at three different fields. Shown also are points obtained when the specimen was cooled in a field of 14.2 kOe.

cases to prevent the abrupt decrease in moment. Another example, for x=2.00, is shown in Fig. 7.

Specimens with $1.50 \le x \le 2.50$ were also not magnetically saturated at fields to 80 kOe (Fig. 8) and for these, moments at "infinite" field were taken from extrapolations of n_B versus $1/H_a$ to $1/H_a=0$. These magnetizations are considered to be the zero-field spontaneous magnetizations. (Reasons for this conclusion will be given later.) 0°K spontaneous magnetizations for this system are plotted versus x (curve 3) in Fig. 3.

Curie temperatures were determined, when possible, from extrapolation of $n_B^2(0,T)$ versus T to $n_B^2=0$ and/or from $1/\chi_n$ versus T to $1/\chi_n=0$. These are listed in Table II and plotted versus x in Fig. 9. For comparison, the curves for the systems $\{Y_{3-x}Ca_x\}-[Fe_2](Fe_{3-x}Si_x)O_{12}$ and $\{Y_3\}[Mg_xFe_{2-x}](Fe_{3-x}Si_x)O_{12}$ are also shown.

A single-phase specimen containing no Fe³⁺ ions, $Y_3Co_{2.5}Ge_{2.5}O_{12}$, was prepared. Curves of x_n and $1/x_n$ versus T are shown in Fig. 10. There appears to be an antiferromagnetic transition at about 8°K; the $1/x_n$ versus T curve is concave downward between 20 and 40°K. Thus there may still be ferrimagnetism present. Above 40°K, $1/x_n$ versus T follows a Curie-Weiss law

FIG. 8. n_B versus applied field H_a at 4.2°K.

FIG. 9. Curie temperature versus x for the system $\{Y_3\}Co_xFe_{5-2x}Ge_xO_{12}$ and $\{Y_{3-x}Ca_x\}[Fe_2](Fe_{3-x}Si_x)O_{12}$.

with $c = \Delta T / \Delta (1/\chi_n) = 1.1 \times 10^{-3} \mu_B$ deg/Oe/formula unit, which gives for the Co²⁺ ions an average effective paramagnetic moment of 4.54 μ_B .

Other Garnets with Co²⁺ Ion Substitutions

Garnets with general formula $\{Y_{3-\nu}Ca_{\nu}\}$ CoFe_{3- ν}-Ge_{1+ ν}O₁₂ were prepared with y=0.1, 0.3, 0.4, and 0.5. The garnet with y=0.3 has a compensation point at 236°K as shown in Fig. 11. This has also been confirmed by an experiment of the type described in the previous section. As the temperature went through the compensation point, the sintered piece turned 180° in the field and remained in the new direction. (The Curie temperature of this garnet is above room temperature.) This is the first garnet reported which has a compensation point and does not contain magnetic rare earth ions in the *c* sites. This must result from a

FIG. 10. χ_n and $1/\chi_n$ versus T.

FIG. 11. n_B versus T. A compensation point is indicated at 236°K.

difference in the temperature dependence of the a and d sublattice magnetizations.

Magnetization versus temperature data are shown for the specimen with y=0.1 in Fig. 12 and moments obtained at 1.4°K for specimens with y=0.4 and 0.5 are given in Table III. Also shown in Fig. 12 are magnetization versus temperature data for the garnet $\{Y_{2,5}Ca_{0,5}\}CoFe_{3}Ge_{0,5}V_{0,5}O_{12}$. The Curie temperature 410°K of this garnet is higher than that 350°K of the garnet $\{Y_3\}$ CoFe₃GeO₁₂, as would be expected on the basis of our work on V⁵⁺ ion substituted garnets.⁷

DISCUSSION

We shall assume that the 0°K moment of an octahedral Co²⁺ ion is 3.7 μ_B as it appears to be⁸ in a pure normal cobalt ferrite (Fe) [CoFe]O4. There does not appear to be an example of a ferrimagnetic compound from which a tetrahedral Co2+ ion moment can be readily derived. Electron-spin-resonance measurements⁹ on cobalt-doped tetrahedral compounds give an average g value of 2.28. The largest deviation from this value is 0.03. Assuming that a tetrahedral Co^{2+} ion in a ferrimagnetic garnet has this average g value, the 0°K moment would be $3.4 \mu_B$. This value should be correct to within 5% and this suffices for the present discussion.10

It has been shown⁵ that in garnets CoGd₂Co₂-Ge₃O₁₂ and CoY₂Co₂Ge₃O₁₂, the likely distributions are $\{CoGd_2\}[Co_2](Ge_3)O_{12}$ and $\{CoY_2\}[Co_2](Ge_3)O_{12}$. Also it was felt to be unlikely that in the garnets of type {Ca₃} M^{4+} CoGe₃O₁₂ M = Zr, Sn, Ti, there were

FIG. 12. n_B (14.2 kOe, T) versus T.

many Co²⁺ ions in tetrahedral sites; that is, the proposed⁵ distributions were $\{Ca_3\}[M^{4+}Co](Ge_3)O_{12}$. These conclusions are still felt to be essentially correct; it is nevertheless possible (as pointed out in the earlier paper) that some Co^{2+} ions do occupy tetrahedral sites in these garnets. The ions Fe²⁺, Ni²⁺, Mn²⁺, and Mg²⁺ all appear to prefer octahedral sites exclusively when substituted for Fe³⁺ ions (with appropriate electrostatic balance by tetravalent ions) in YIG.^{1,11}

In Fig. 3 the straight line (1), obtained by assuming a simple Néel model with all Co²⁺ and Ge⁴⁺ ions in tetrahedral (d) sites deviates considerably from the curve drawn through the observed points (n_B,x) ; the deviation increases rapidly with increasing x. If all Co^{2+} ions are assumed to be in octahedral (a) sites and all Ge^{4+} ions in d sites, the straight line (5) obtained by assuming a simple Néel model does not deviate considerably from the observed curve (3) except for x greater than about 2.2. It appears reasonable to conclude that the Co^{2+} ions prefer the *a* sites in the substituted YIG's, but that some of the Co^{2+} ions undoubtedly enter tetrahedral sites. The successful preparation of the garnets with x=2.2 and 2.5 is itself ample proof of the latter part of the conclusion.

In attempting to determine the distributions of ions in these garnets one must consider the following parameters:

(1) Amount of moment canting^{1,11} (and in which site it occurs).

- (2) Fraction of Co^{2+} ions in tetrahedral sites.
- (3) Fraction of Ge^{4+} ions in octahedral sites.

Needless to say, because only the magnetization data for each specimen are known, a unique solution cannot be obtained. However, by drawing on the results and conclusions obtained on other garnet systems, some plausible conclusions may also be obtained on the Co²⁺ ion substituted YIG's.

In the system $\{Y_3\}$ [Ni_xFe_{2-x}] (M_x^{4+} Fe_{3-x})O₁₂, very little canting occurred in the tetrahedral sites.¹ As xincreased from 0, the "effective" moment¹¹ of the tetrahedral Fe³⁺ ion appeared to go through a minimum

⁷S. Geller, G. P. Espinosa, H. J. Williams, R. C. Sherwood, and E. A. Nesbitt, J. Appl. Phys. **35**, 570 (1964); Appl. Phys. Letters 3, 60 (1963)

Letters 3, 60 (1963). ⁸ H. J. Williams and R. C. Sherwood (unpublished work). ⁹ F. S. Ham, G. W. Ludwig, G. D. Watkins, and H. H. Wood-bury, Phys. Rev. Letters 4, 468 (1960); H. H. Woodbury and G. W. Ludwig, Bull. Am. Phys. Soc. 6, 118 (1961). ¹⁰ Following the completion of this manuscript, we became aware of the paper published by W. L. Roth [Phys. Chem. Solids 25, 1 (1964)] on the magnetic structure of (Co³⁺)[Cos³⁺]O₄. This spinel-type compound is antiferromagnetic below 40°K. The ions in octahedral sites have zero moment. The Co2+ ions in tetrahedral sites have, at 4.2° K, a moment of $3.26 \mu_B$, with which the value assumed by us for a tetrahedral Co^{2+} ion is in good agreement. As indicated, the difference does not affect any of our conclusions or proposals.

¹¹ S. Geller, H. J. Williams, G. P. Espinosa, and R. C. Sherwood, Bell System Tech. J. 43, 565 (1964).

of 4.90 μ_B at $x\cong 1.2$, then increased to 5.0 again at $x\cong 1.8$, beyond which some canting occurred in the octahedral sites. This canting is also small; for $\{Y_3\}$ - $[Ni_2](FeGe_2)O_{12}$, the reduction of the effective Ni²⁺ ion moment is about 4%. These results have been fully discussed in the paper¹ treating the Ni²⁺ ion substitutions; the explanation is compatible with that for the nonmagnetic ion substituted YIG's.¹¹

Substitution of any ion for Fe³⁺ ions in the octahedral sites, weakens the *a-d* interactions whereupon the *d-d* interactions manifest themselves. Some canting occurs but not nearly as much in the case of a magnetic ion substitution as in that of a nonmagnetic ion substitution. Continued simultaneous substitution of a tetravalent ion in the *d* sites weakens the *d-d* interactions; thus tending to prevent canting of the *d*-site Fe³⁺ ion moments. Beyond x=1.8, the *a*-site ion canting is relatively smaller than in the system¹¹ $\{Y_{3-x}Ca_x\}[Fe_2](Si_xFe_{3-x})O_{12}$ because the Ni²⁺-O²⁻ -Ni²⁺ interaction is much weaker than the Fe³⁺-O²⁻ -Fe³⁺ interaction.¹

The same kind of reasoning should be applicable to the Co²⁺ ion substituted YIG's. Thus the deviation (see Fig. 3) in the region 0 < x < 1.5 of the observed n_B (0°K) versus x curve (3) from the Néel line (1) for all Co²⁺ ions in octahedral sites is too large to imply that it is caused by canting alone. It must imply that some Co²⁺ ions enter tetrahedral sites throughout the entire range of substitution.

As pointed out earlier, it was possible to prepare the garnets $\{Y_3\}[Co_xFe_{2-x}](Fe_{3-x}Si_x)O_{12}$ for $0 < x \le 1.00$. In this range the 0°K moments of these garnets (curve 2, Fig. 3) are essentially the same as those (curve 3, Fig. 3) of the analogous garnets containing Ge instead of Si. For x = 1.00, the 0°K moments for the Si and Ge specimens are respectively 0.67 and 0.74. Thus because Si⁴⁺ ions have exclusive preference for d sites, the Ge substituted specimen with x = 1.00 has at most 0.01 Ge in a sites.

In the system $Y_3Co_xFe_{5-2x}Ge_xO_{12}$, there should not be much canting in either of the sites over the whole range of composition. It is difficult to say whether even for the end-member $Y_3Co_{2.5}Ge_{2.5}O_{12}$ much canting in the octahedral sites should be expected, but it is probable that somewhere near this composition the intrasublattice interactions become dominant¹¹ because the garnet Gd_3Co_2GaGe_2O_{12} showed at most some tendency toward antiferromagnetism.¹²

Inasmuch as the zero of canting in the $Y_3[Ni_xFe_{2-x}]$ -(Ge_xFe_{3-x})O₁₂ system occurs at $x\cong 1.8$, it should be expected to occur at a substantially lower value of xfor the $Y_3Co_xFe_{5-2x}Ge_xO_{12}$ system if substantial amounts of Co²⁺ ion enter tetrahedral sites. Consideration of all the points made above and the previous results and conclusions from the substituted yttrium iron garnet

TABLE IV. Distribution of ions, 0°K moments and average percent canting for moments in the system Y₃Co_xFe_{5-2x}Ge₂O₁₂.

x	$\operatorname{cot.}_{\operatorname{Co}^{2+}}$	oct. Ge ⁴⁺	$n_B \ (0)$ obs	0°K) calc	Average canting %
0.00	0.00	0.00	5.01	5.00	0.0
0.20	0.16	0.00	4.00	4.11	1.0
0.40	0.32	0.00	3.15	3.30	1.2
0.60	0.48	0.00	2.26	2.43	1.5
0.80	0.64	0.00	1.40	1.57	1.6
1.00	0.80	0.01	0.74	0.82	0.8
1.16	0.93	0.02	0.25	0.24	0.0
1.30	1.04	0.04	-0.06	-0.15	1.2
1.50	1.20	0.05	-0.75	-0.92	2.2
1.75	1.40	0.08	-1.50	-1.69	2.4
2.00	1.60	0.12	-2.15	-2.36	2.9
2.20	1.76	0.16	-2.50	-2.82	4.6

systems we have studied to date leads to an apparently acceptable (though, as stated above, not unique) solution to the problem of accounting for the 0° K moments of the Co²⁺ ion substituted garnets. A tedious trial and error technique was used to arrive at this conclusion. We shall not give its details, but rather proceed to the results.

It appears that a constant 20% of the Co²⁺ ions enter the tetrahedral sites. To about x=1.00, the general formula of the Co²⁺ substituted garnets may be written $\{Y_3\}[Co_{0.8x}Fe_{2-0.8x}](Co_{0.2x}Fe_{3-1.2x}Ge_x)O_{12}$. For $x \ge 1.00$, some Ge⁴⁺ ions enter octahedral sites, the amount increasing with increasing x. Thus for x=1.00, we arrive at a distribution formula

 $\{Y_3\}$ [Co_{0.80}Fe_{1.19}Ge_{0.01}] (Co_{0.20}Fe_{1.81}Ge_{0.99})O₁₂,

while for x=2.2, the formula which we propose is

 $\{Y_3\}$ [Co_{1.76}Fe_{0.08}Ge_{0.16}] (Co_{0.44}Fe_{0.52}Ge_{2.04})O₁₂.

In Table IV, we give the deduced distributions, a comparison of observed 0°K moments with those calculated on the basis of a simple Néel model and the average percent canting of magnetic moments in the sites in which canting occurs. It is necessary only to give the values of x and the amounts of Co^{2+} and Ge^{4+} ions in the octahedral sites for definition of the distribution formula. The zero of canting occurs at or near x=1.16. For x<1.16, canting occurs in tetrahedral sites, while for x>1.16 canting occurs in octahedral sites. The calculated values of n_B from Table IV are plotted versus x in Fig. 3 (curve 4).

Some further discussion in connection with our proposed solution may be of interest. Although one might expect some variation in the fraction of Co^{2+} ions entering tetrahedral sites with variation of x, there is at least one precedent for this constancy: it is the case of Ti⁴⁺ ion substitution.¹³ Further, if we were to suggest that more Co^{2+} ion entered tetrahedral sites at least

¹² R. M. Bozorth and S. Geller, Phys. Chem. Solids 11, 263 (1959).

¹³ S. Geller, R. C. Sherwood, H. J. Williams, and G. P. Espinosa J. Appl. Phys. (to be published).

for higher x, either the calculated moments would be higher or more Ge⁴⁺ ions would be required in the octahedral sites. It is also hardly likely that the amount of Co²⁺ ions entering tetrahedral sites would decrease with increasing x. If we concluded that less than 20% of the cobalt were in tetrahedral sites, the canting in tetrahedral sites for specimens with x < 1.00 would be higher than for the Ni²⁺ ion substituted garnets. This could not be correct. (In fact for $x \le 1.0$ our proposed solution looks especially good.) For x=2.5 (to be discussed further later), at least 20% of the cobalt must be in tetrahedral sites unless this garnet has some subtle character, like a defect structure.

It was pointed out earlier that for $x \ge 1.50$, specimens were not magnetically saturated at fields to 80 kOe at 4.2°K. If we obtained the zero field moments by extrapolation of n_B versus H_a to $H_a=0$, the moments obtained would have been much lower (see Figs. 3 and 8). These would have implied far greater canting in the octahedral sites, even greater than obtained in the system $\{Y_{3-x}Ca_x\}$ [Fe₂] (Fe_{3-x}Ge_x)O₁₂. Of course, it could have implied much greater amounts of tetrahedral Co²⁺ and octahedral Ge⁴⁺ contents, but these also looked improbable. Apparently the Co²⁺ ion introduces huge anisotropy which prevents saturation even at the high fields. The extrapolation to infinite field in the case of these garnets, definitely gives results which are more compatible with the results in other systems. In fact, the latter results showed us that the extrapolation to zero field could not be correct.

In the case of the specimen $Y_3Co_{2.5}Ge_{2.5}O_{12}$, it is possible that more than 20% of the Co²⁺ ions are in tetrahedral sites and that some Ge⁴⁺ ions are in octahedral sites. The plot of $1/X_n$ versus T (Fig. 10) indicates that the specimen could still be ferrimagnetic and Fig. 3 also indicates that this may be so. Of course the Curie temperature would be very low. The indication of an antiferromagnetic transition could again be a result of anisotropy as for the other garnets with high x. However cooling in a field in this case does not produce any change. The extrapolation to infinite field gives $3.75 \mu_B$, while that of Fig. 3 gives $2.9 \mu_B$. The nature of the magnetic behavior of this garnet is not now clear.

An interesting feature of the Co²⁺ ion substituted garnets is the way saturation is not attained at fields to 14.2 kOe for some specimens with x < 1.0, although it is attained at much higher fields. Yet for x=1.0, saturation is attained at 4.8 kOe when either Si⁴⁺ or Ge⁴⁺ ions are used for electrostatic balance. For x=1.16, saturation is attained at 4.8 kOe when the specimen is cooled in a field of 14.2 kOe. For $x \ge 1.50$, saturation was not attained even at fields to 80 kOe. This would seem to indicate that somewhere near x=1.00, the anisotropy goes through a zero, and then increases again. There is little point in speculating on how this happens; a solution to this problem may eventually be obtained from measurements on single crystals not now available. But if our proposed distributions of ions are correct, this result must be related to the *absolute* rather than *relative* amounts of Co²⁺ ion in the two sites.

The specimens

. - -

and

$${Y_{3-x}Ca_x}CoFe_{3-x}Ge_{1+x}O_{12}, x=0.1, 0.3, 0.4, 0.5$$

were also essentially saturated at moderate fields. The 0°K moments of these are 1.39, 0.43, -0.22, -0.52, and $-0.79 \mu_B$, respectively, (see also Table III). If it is assumed in each case that the same 20% of the Co²⁺ ions will enter tetrahedral sites and any canting is neglected, the distributions would be

$$\begin{array}{l} \{Y_{2.5}Ca_{0.5}\} \lfloor Co_{0.3}Fe_{1.13}(Ge,V)_{0.07} \rfloor \\ (Co_{0.2}Fe_{1.87}(Ge,V)_{0.93})O_{12} \\ \{Y_{2.9}Ca_{0.1}\} \lfloor Co_{0.8}Fe_{1.18}Ge_{0.02} \rfloor (Co_{0.2}Fe_{1.72}Ge_{1.08})O_{12} \\ \{Y_{2.7}Ca_{0.3}\} \lfloor Co_{0.8}Fe_{1.14}Ge_{0.06} \rfloor (Co_{0.2}Fe_{1.56}Ge_{1.24})O_{12} \\ \{Y_{2.6}Ca_{0.4}\} \lfloor Co_{0.8}Fe_{1.12}Ge_{0.08} \rfloor (Co_{0.2}Fe_{1.48}Ge_{1.32})O_{12} \\ \{Y_{2.5}Ca_{0.5}\} \lfloor Co_{0.8}Fe_{1.10}Ge_{0.10} \rfloor (Co_{0.2}Fe_{1.40}Ge_{1.40})O_{12}. \end{array}$$

In the first of these, it is not known whether the Ge⁴⁺, V^{5+} or a combination of both ions would enter octahedral sites.

Of course, again the solution to the distribution problem in these garnets is not unique. It may be that the amount of Co^{2+} ion in *d* sites decreases with increasing Ge⁴⁺ ion content. Whatever the change is, however, it must produce $0^{\circ}K$ moments which are linear with the total Ge⁴⁺ ion per formula unit as observed (see Table III) and garnets which saturate at moderate fields. It seems unlikely that in any of these specimens all the Co²⁺ ion will be in octahedral sites, although such a formal solution can be found.

ACKNOWLEDGMENTS

We wish to thank S. Geschwind, J. F. Dillon, Jr., and H. Kamimura for discussion and A. J. Williams for aiding with the high-field measurements.