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FIG. 4. LI/LRER of Shockley's expression (1) versus temperature. 

Our results are shown in Fig. 3 and one can see that 
not only do they disagree with those for a particles, 

but the disagreement is so large that it cannot be easily 
explained. The parameter L{/LRER of Shockley's expres­
sion is reported in Fig. 4. 

According to the assumption that all the charge is 
generated by a shower following the primary electrons 
ejected by the incident particle, one cannot expect to 
find relevant differences from one particle to another, 
at least in a first approximation. Nevertheless, our 
results could be explained on the basis of some second-
order effect related either to a slight dependence of ê  
upon the energy of the primary particle (though up to 
now, there is no evidence for it), or to the fact that 
different particles have both different spectra of 
primary electrons and can also lose energy in different 
ways. 
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A general equation for the impurity correlation factor is derived in terms of effective escape frequencies. 
This equation applies even when the vacancy-jump frequency for association of a vacancy-impurity complex 
differs from the frequency far from an impurity. Parameters in this equation are calculated for body-centered 
cubic, diamond, and face-centered cubic structures. In these calculations, it is assumed that vacancy jumps 
which do not involve a nearest neighbor of the impurity are unaffected by the impurity but that association 
and dissociation jumps, which do involve nearest neighbors of the impurity, are affected. Analytical ex­
pressions for the correlation factor in terms of vacancy-jump-frequency ratios are obtained. In the bcc and 
fee structures, results are given for two cases: (A) where all dissociative jumps are equally likely, and (B) 
where a vacancy which makes a dissociative jump to a second-nearest-neighbor site is still partially bound to 
the impurity, but vacancies which make dissociative jumps to other sites are not. In the diamond structure, 
case A cannot be distinguished from case B. Results for the diamond structure and for case A in the fee struc­
ture differ only slightly from previous more approximate results. A comparison is made between the present 
random-walk method of calculating correlation factors and the pair-association method. 

I. INTRODUCTION 

WHEN diffusion occurs by a vacancy mechanism, 
the atoms do not pursue a random walk. Instead, 

an atom, after exchanging with a vacancy, has a 
greater-than-random probability of making a reverse 
jump by re-exchanging with the same vacancy. This 
causes the atom to pursue a correlated walk and 
introduces a correlation factor / into the diffusion 
equations.1-3 

1 J. Bardeen and C. Herring, Atom Movements (American 
Society for Metals3 Cleveland, 1951), p. 87; also Imperfections in 

The correlation factor for impurity diffusion depends 
on the vacancy-jump frequencies near the impurity.2,3 

Simple expressions for the impurity-correlation factor 
in terms of vacancy-jump frequencies have been cal­
culated previously for a number of cubic structures.4 

These expressions apply when every vacancy jump from 

Nearly Perfect Crystals, edited by W. Shockley (John Wiley & 
Sons, Inc., New York, 1952), p. 261. 

2 A. D. LeClaire and A. B. Lidiard, Phil. Mag. 1, 518 (1956). 
3 K. Compaan and Y. Haven/Trans. Faraday Soc. 52, 786 

(1956). 
4 J. R. Manning, Phys. Rev. 116, 819 (1959). 
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a site which is a second-nearest neighbor or farther from 
the impurity has the same jump frequency. When there 
is a vacancy-impurity interaction, it is not reasonable 
to expect the associative jump, which moves a vacancy 
into a nearest-neighbor position, to have the same 
frequency as other vacancy jumps originating outside 
the set of first-nearest neighbors. Consequently, 
equations wrere developed which allow the calculation 
of / in a face-centered cubic structure in terms of this 
additional frequency.5 In the present paper, these 
equations are written in general form and applied to a 
calculation of / in the body-centered cubic structure. 
Also, cases where there is special binding at second-
nearest-neighbor sites in bcc and fee structures are 
considered, and previous calculations for the diamond 
and face-centered cubic structures are corrected to give 
somewhat more accurate results for these structures. 

II. GENERAL EQUATIONS 

In cubic crystals, the correlation factor for diffusion 
by a vacancy mechanism is given by2 

1+<COS0) 

1—<cos0)" 

Here 0 is the angle between 2 successive jumps by a 
given atom, and the symbol ( ) indicates an average 
over all pairs of successive jumps made by the atom. 

The calculation of (cos0) is begun by considering an 
atom M that has just exchanged places with a vacancy 
V. After this exchange, atom M is on site 0 and vacancy 
V is on the neighboring site a. To find (cos0), one must 
calculate the probability that vacancy V will re-
exchange with M from the various possible directions. 

Complications can arise if, after exchanging with V, 
atom M exchanges with some other vacancy in the 
crystal and only later re-exchanges with V. However, at 
normal vacancy concentrations (less than 10~~3 mole-
fraction) and in the absence of vacancy-vacancy inter­
actions (which might form bound vacancy pairs), this 
effect is small. When there are no vacancy-vacancy 
interactions and impurities are present in only dilute 
concentration, other vacancies in the crystal approach 
atom M from random directions. Then all contributions 
to (cos0) except those from a re-exchange with V 
average out to zero; and, for diffusion of a dilute 
impurity by a single vacancy mechanism, it is a very 
good approximation to consider only exchanges of M 
with V. This approximation is made in the following 
discussion. 

If, after the original exchange with M, vacancy V on 
its next jump re-exchanges with M, just the reverse of 
the original jump is obtained, and the angle between 
successive jumps of atom M is 180°. The probability 
that V and M will re-exchange on this next jump is 
w2/Ra> where w2 is the jump frequency for re-exchange 

6 J. R. Manning, Phys. Rev. 128, 2169 (1962). 

and Ra is the total vacancy jump frequency to sites 
neighboring on site a. Sites on the first coordination 
shell (which can be reached in one jump from site O) 
can be designated as sites 0 and those in the second 
coordination shell (which can be reached in two jumps 
away from site 0) as sites *y. Then 

Ra^Wt+Y, Wa/rfZ) ™ay. (2) 
0 7 

Here wap and way are the vacancy-jump frequencies 
from site a to sites fi and y, and only sites which can be 
reached in 1 jump from site a are included in the summa­
tions. To a first approximation, we find (cos0)^ —w2/Ra. 

Even if V does not immediately re-exchange with M 
it may eventually return and do so. Therefore, more 
accurately, 

W2 Wap Way 

<cos0}= —(-1)+E—<cosfy>+£—<cos07>. (3) 
Ra ^ Ra y Ra 

The first term on the right gives the contribution from 
vacancies which immediately re-exchange with atom 
M (with cos 180° = —1). The terms involving (cos^) 
and (cos07) take into account the eventual contributions 
to (cos0) made by vacancies which jump to sites /? or y 
instead of re-exchanging directly with M. By definition, 
(cosdn) equals the value of (cos0) which would be 
obtained if, after the atom jump a—0, the vacancy V 
were immediately transported to site n and only then 
allowed to diffuse and possibly exchange with M. The 
contribution to (cos0) from a vacancy which jumps to 
site n thus is the probability wan/Ra of jump to site n 
multiplied by (cos0n). It also follows that (cos0)=(cos0tt). 
Consequently, Eq. (3) can be rewritten as 

r (cos0/3) (cos0r)-r
1 

(COS0)= — W2\ Ra — JL Wafi Z) Way , (4) 
L fi (cOSda) 7 {cOS0a)J 

and, with Eq. (2), 

<COS0) = — W2[W2+T, WapFp+Y, WayFy]-1, (5) 
P y 

where 
Ffi=l- <COS0/3)/<COS0a> , (6) 

and 
F7=l- (cos07)/(cos0a). (7) 

Equation (5) has the form 

(cosd)=-w2/Ra% (8) 

where Ra
e is identical with Ra except that wap and way 

are replaced by wapFp and wayF7. 
Equation (8) can be discussed in terms of effective 

escape or randomization frequencies. If a vacancy V 
after making a way jump returns to site a without having 
exchanged with atom M, the physical situation is the 
same as if V had merely remained at site a and had not 
left this site at all. Any way jumps which are followed 
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by a return to site a thus do not contribute to the 
effective frequency of escape from site a and can be 
treated as if they had never taken place. Vacancies 
which arrive at other sites /3 neighboring on M have 
partially randomized their position with respect to 
atom M and on average make a smaller contribution to 
(cos0) than if they had returned to site a itself. This has 
the same effect on (cos0) as if a certain fraction of these 
vacancies returned to site a and the remaining fraction 
completely escaped. Thus, these vacancies make a 
partial contribution to the effective frequency of escape. 
Vacancies which never return to a site neighboring on 
M contribute fully to the effective escape frequency. 
In Eq. (5) the fractions Fp and Fy represent the fractions 
of wap and way jumps which contribute to the effective 
frequency of escape, and Fpway and F7way are the 
effective escape frequencies. The frequency Ra

3 is the 
total effective jump-frequency from site a, equal to 
W2 plus the effective frequency for escape from site a 
by exchange with atoms other than M. The fractions 
(1 — Fp) and (1—Fy) equal the probabilities that the 
vacancy will effectively return to site a, either directly 
or by arriving at some other site 0 (which is equivalent 
to a partial return to site a). 

Values of X) w a ^ and ]T wayFy have been found 
previously for a number of simple structures where a 
vacancy jump which originates in the second coordina­
tion shell or farther from atom M is assumed to have 
the same frequency as that in a pure crystal.4 In the 
present paper, the calculation is taken one step further. 
Jumps which do not involve a site in the first coordina­
tion shell are still assumed to have a single frequency 
wo. However, wyp jumps from the second to the first 
coordination shell are allowed to differ from wo. Other 
vacancy-jump frequencies are iv\ from one nearest-
neighbor site to another, w2 for exchange with atom M, 
and wpy from site /3 in the first coordination shell to 
site 7 in the second coordination shell. 

To calculate Fp and Fy, one must relate (cosdp) and 
(cos07) to (cos0a). The relation for (cosdp) can be found 
as follows: In the cubic structures considered here, there 
is at least two- or threefold symmetry around the lines 
connecting site O to each site /3. The vacancy distribu­
tion from a vacancy which originates on site (3 is there­
fore symmetrical around the line 0—0, and vacancies 
which start a diffusion path at site /3 but eventually 
exchange with atom M along some line other than 
0—/3 yield on the average no net displacement of M 
normal to 0—p. As a result, the contribution to (cos0) 
from these vacancies is some factor f multiplied by 
cos0£, where Op is the angle between the direction a—0 
and the direction O—p. Because of the cubic symmetry, 
the factor f must be same for all nearest-neighbor sites 
P, including site a, and 

(cosdp) cosdp 
= = — cos0,j. (9) 

(cOS0a) COS0a 

In the face-centered cubic structure, wap jumps are 
possible to 4 separate p sites, and cosdp=— J for each 
such site. Therefore, Fp—1 — J = £. In the other struc­
tures considered, wap jumps do not occur as nearest-
neighbor jumps so, if consideration is restricted to 
nearest-neighbor vacancy mechanisms, only the Fy need 
to be calculated. 

To calculate the (cos07) and Fy, we may consider a 
vacancy on a particular site y on the second coordination 
shell and allow it to diffuse until it arrives either back at 
site y or at some other site on the first or second 
coordination shell. If pyp and phy are the probabilities 
that the first such site at which the vacancy arrives is 
a given site p on the first coordination shell or a given 
site 7 on the second coordination shell, 

(cOS0y) = X) Py(s(cOS0p)+Y, pyy(cOSdy) . (10) 
0 y 

Here site y is one of the sites 7, and the summations are 
over all sites P and 7. One may define quantities 
Uy and A y 

Uy=(cos07)/(cos0a), (11) 

Ay= — £ pyp COS00. (12) 

I t follows from Eqs. (9) and (10) that 

Uy^Ay+XpyyUy. (13) 
7 

Equations similar to Eq. (13) can be written for each 
site 7. Since y is a given one of the sites 7, this yields n 
linear equations relating the n separate Uy. These can 
be solved for the Uy. Then Fy= 1—Uy. 

In the calculation of pyp and pyl, vacancies which 
arrive at a site 0 or 7 after leaving y are removed from 
further consideration. The only vacancies which can 
arrive at sites $ are those that jump directly there on 
their first jump from y. (Otherwise the vacancy must 
first arrive at some site on the second coordination shell 
and be eliminated from further consideration before 
reaching the first coordination shell.) Consequently, pvp 
merely equals the probability that the vacancy's initial 
jump from y will take it to site 0; and the quantities 
pyp and Ay are easily determined from the lattice 
geometry and the jump frequencies wyp and WQ. The 
coefficients pyy are somewhat more difficult to calculate, 
but even these can be determined to reasonable accuracy 
in a step-by-step calculation of the probability that the 
vacancy will arrive at site 7 after a given number of 
jumps. 

The number of simultaneous linear equations that 
must be solved can be reduced by symmetry considera­
tions. AH sites 7 which are the same distance from site O 
and whose positive vectors 0—7 make equal angles 
with the line O—a are equivalent sites and give the 
same value of (cos07). Also sites at the inversion points 
through site 0 from these sites 7 give the value ~{cos0T). 
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These sites can be grouped together to reduce the 
number of independent Uy that need to be treated. For 
example, if sites q and r have the same (cos07) and their 
inversion points are s and t, the contributions from these 
sites to the summation in Eq. (13) can be combined into 
one term (pyq+pyr—pys—pyt)Uq. The sum (pvq+pyr 

—pys—pyt) can be called Pyq, arid sites g, r, s, and / can 
be said to comprise set q. 

III. BODY-CENTERED CUBIC STRUCTURE 

In the body-centered cubic structure, site a lies at 
(1.1.1) from site 0 . In the second coordination shell 
(see Fig. 1), the sites at (2,2,2) and (2,2,2) comprise a 
set which can be called set g. The sites in this set are 
fifth-nearest neighbors of 0 . [Fourth-nearest neighbors 
of 0 are at sites (3,1,1) on the third coordination shell.] 
Sites_at (2,2,0), (2,0,2), (0,2,2), (2,2,0), (2,0,2), and 
(0,2,2) form set h and are third-nearest neighbors of 0 . 
Sites_at (2,2,2), (2,2,2), (2,2,2), (2,2,2), (2,2,2), and 
(2.2.2) form set i and are fifth-nearest neighbors of 0 . 
Sites_at (2,0,0), (0,2,0), (0,0,2), (2,0,0), (0,2,0), and 
(0,0,2) form set j and are second-nearest neighbors of O. 
The remaining sites X _ a t (2,2,0), (2,2,0), (2,0,2), 
(2,0,2), (0,2,2), and (0,2,2) are on the symmetry plane 
normal to O— a and passing through site O. Since there 
is twofold rotational symmetry around the lines con­
necting site O to these sites X on the symmetry plane, 
(cos07) and Uy are zero for these sites. 

In addition, there is threefold rotational symmetry 
around the lines O—g and O—i. Since groups g and i 
are both fifth-nearest neighbors of site O, the same 
argument as that which led to Eq. (9) gives 

{cos6i)/(co$0g)=h (14a) 

and it follows that 
Ui=\U0. (14b) 

The considerations above allow one to write Eq. (13) 
in terms of only three unknowns, Ug, Uh, and Uj 

U0=Ag+PgoUg+PghUh+P0i(Wg)+PGiUif (15) 

Uh=Ah+PhgUg+PhhUh+Phi(Wo)+PhjUjf (16) 

Uj=Aj+PjgUg+PjhUh+Pji(Wo)+PjjUj. (17) 

All Dissociative Jump Frequencies Equal 

The Ay and Pyy can be calculated in terms of the 
jump-frequency ratios. In this calculation, one might 
assume four jump frequencies: w2 for exchange of a 
vacancy with atom M, Wz for a wpy jump, w± for a wyp 
jump, and Wo for other jumps (which involve only sites 
in the second coordination shell or farther from atom 
M). This allows the associative jump frequency w± to 
differ from wo. I t also assumes that all dissociative jump 
frequencies w$y are equal to one another. 

Sites |8 in the first coordination shell in a body-
centered cubic structure can be divided into four sets. 

FIG. 1. Body-centered cubic structure. Sites g, h, i, and j are 
on the second coordination shell from site 0. Site a, not shown, lies 
at (1,1,1) halfway between sites 0 and g. Sites designated by X 
are on the symmetry plane passing through site 0 and normal to 
the line Q-a-g. 

Site a at (1,1,1) with cos0a= — 1 forms set a, the 3 sites 
b at (1,1,1), (1,1,1) and (1,1,1)_with cos06==~i form 
set b, the 3 sites c at (1,1,1), (1,1,1) and (1,1,1) with 
cos0c=f forms set c, and site d at (1,1,1) with cos#d= 1 
forms set d. From site g at (2,2,2), site a is the only 0 
site to which the vacancy can jump. Therefore, accord­
ing to Eq. (12), Ag = pga(i) = W4/Rg, where Rg is the 
total jump frequency from site g. (In the present model, 
Rg=wt+7wo.) From site h, a vacancy can jump to /? 
sites a and b, so A h=Wi(l+^)/Rh, where Rh= 2w4+6w0. 
From site j , jumps to sites a, c, and two separate b sites 
are possible. Therefore, i o=W4( l+ i+ i—<!) /£ / , where 
jRy=4w>4+4ze>o. Probabilities Pyy can be determined by 
a straightforward Bardeen-Herring1 diffusion-of-prob­
ability calculation. One first calculates the probability 
that the vacancy arrives at various sites on the second 
coordination shell after one jump from site y. Vacancies 
which arrive at sites on the first or second coordination 
shell are removed from further consideration and one 
proceeds to calculate the probability that the remaining 
vacancies will arrive at a site on the second coordination 
shell on the next jump. This can be repeated for as many 
jumps as necessary. 

The Pyy for a body-centered cubic structure were 
calculated by the above method for y=g, hy i, or j 
with y = g,h, i, or j . In each case, the vacancy distribu­
tion was calculated in detail for 10 jumps, and the 
probability that a vacancy would arrive at each site on 
the second coordination shell was determined for these 
jumps (No. 1-10). Then, the contributions from the 
remaining jumps (No. l l -oo) were estimated by 
assuming that successive contributions would continue 
to decrease in a regular manner. Results are given in 
Table I. Since approximately 10% of the total contribu­
tion to the Pyy comes from jumps No. l l -oo , the values 
in Table I may very well be inaccurate in the second 
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TABLE I. bcc structure.3 

W 0 / * 4 • w 4 /w 0 

FIG. 2. Values of 7^3 for the body-centered cubic and face-
centered cubic structures and of 3F3 for the diamond structure, 
calculated from Eqs. (25), (53), and (40), respectively. 

decimal place. However, even a first estimate of these 
values led to a (cos#) for self-diffusion (where WQ=W2 

= WZ=WA) that agreed to better than three significant 
figures with the Compaan-Haven values.3 The final 
values which appear in Table I were adjusted in a 

Pgg^l.33woRg~l 

Pgh=l.SOWoRg~l 
Pgi ^O^AwoRg'1 

Pgi=0.6SwoR0~
l 

Ag=WiRg~1 

Pha =0.60woRh~l 

Phh^lSOwoRh'1 

Phi =0.60woRh~l 

Phi ^0.72woRh~l 

Ah =^WiRh~x 

Pig =0.08wo# a ~ 
Pih =0.60woRg-
Pu**1.17woRa-
Pii ==0.21woRg-
Ai=\WlRg~l 

Pio=0.21woR) 
Pih =0.72woR; 

P,i=O.21W0i?; 
Pii =0.63woR; 
Af^WiRi 

a Here , Rg = 7wo+W4, Rh —6wo +2w>4, and Rj =4wo +4w4. 

consistent manner to give agreement to almost four 
significant figures with the Compaan-Haven values. 
The remaining discrepancy can be attributed to errors 
introduced from rounding off the Pyy to two decimal 
places. 

With these values of the Pyy, solution of Eqs. 
(15)-(17) gives 

Ug=a-x[28.85 (w4/w0)+36.02 (w4/w0)
2 

+S(w4/wo)*l, (18) 

Uh=d-1[33.82 (WA/WQ)+38.47 (w4/w0)2 

+ (16/3)(w4/wo)8], (19) 

Uj = ^ [ 3 9 . 4 9 (w4/w0)+22.43 (w4/wQ)2 

+ (8 /3) (Wwo) 8 ] , (20) 
where 

(7=75.50+146.83(w4/wo)+69.46(w4/wo)2 

+8(w4/wQy. (21) 

In our present model, all w$y equal w3. Therefore, 

+ 3 ( 1 ~ ^ ) ] } - S (22) 
and, from Eq. (1), 

f=7wsFz/{2w2+7wzFz), (23) 
where 

7Fz=l-Ug+3(l-Uh)+3(l-U3), 

528.50+779.03(w4M)+267.50(w4M)2+24(z£;4/wo)3 

7^3 = " 
75.50+ 146.83(w4/w0)+69.46(w4/w0)2+8(ze;4/wo)3 

(24) 

(25) 

I t may be noted that 7F% does not go to zero when 
WQ/WA goes to zero, but instead goes to 3. This occurs 
since the w4 jump need not return the vacancy directly 
to site a, A partial escape of the vacancy from this site 
is possible even when wo/^ 4 =0. In the other limit, 7F3 

goes to 7 when w^/wo goes to zero. When w4=wo, 
7^3=5.33 (see Fig. 2). 

Special Binding at Second-Nearest-
Neighbor Sites 

I t is possible that a vacancy at a second-nearest-
neighbor site j to an impurity may be much more 
strongly bound to the impurity than one at a third-
nearest-neighbor site. Then, the true jump frequencies 
might be approximated by defining frequencies wpj from 

a first- to a second-nearest neighbor, wjp from a second-
to a first-nearest neighbor, wjm for other jumps from a 
second-nearest neighbor (to a fourth-nearest-neighbor 
site), w$m from a first- to a third- or fifth-nearest 
neighbor (sites g, h, or i), wi for exchange with the 
impurity, and wo for all other jumps. To avoid any net 
accumulation of vacancies at sites f$, j , or m, it must be 
true that 

Cm Wpm WM Wjm 

Cp Wo Wj0 WQ 

(26) 

Here cm and cp are the equilibrium vacancy concentra­
tion at sites m and /3. Also WQ=wmp=wmj, with m 
representing a general site that is not a first- or second-
nearest neighbor of the impurity but that does neighbor 
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on such a site. In the present case, sites m include 
third-, fourth-, and fifth-nearest neighbors of 0. 

The analysis leading to Eqs. (15)-(17) is valid in 
general for impurity diffusion in a body-centered cubic 
structure. In the present model of jump frequencies, 
the numerical coefficients in the expressions for Pyy 

and Ay are the same as those in Table I. The only 
changes needed to make Table I apply in the present 
case are to set woRg~

1==woRh~1=w4rRg~
1==W4Rh~1 = lJ 

woRf~1 = Wjm/(4:Wjm+4:Wj0), and wtRj^ — Wjp/'(4wjm 

+4wyjg). Solution of Eqs. (15)-(17) then gives 

Ug = a~1Z4:2.79(wJe/wjm)+30.08~], (27) 

^ = ( 7 - i [ 4 5 . 3 4 ( ^ M m ) + 3 2 . 2 7 ] , (28) 

Uj=<j-1lSSA9{:wm/wjm)+9.39~], (29) 
where 

<r= 165.57 (wjp/wjm)+134.21. (30) 

Equation (5) becomes 

(COS0)= —W2[w2+3w0j(l—Uj) 

+wpm(4-3Uh-Ug)-]-K (31) 
With Eq. (26) relating w^ to wpg, Eq. (1) yields 

/ = 1FwPm/(2w2+7FwPm), (32) 
where 

331M(w^/wjm)2+S5733(w^/wjm)+4,09.95 
7F= . (33) 

165.57 (wj(3/wJm)+134.21 

When Wj£2>Wjm, the term 7Fw$m reduces to 2w&j and 
f=wpj/(w2+wpj). The dependence on w$m disappears 
since, according to Eq. (26), w$j5>w$m in this case. 
Values of 7F and 7F(wpm/wpj) are shown in Fig. 3. 

IV. DIAMOND STRUCTURE 

The preceding method can also be applied to the 
diamond structure. Here three sets of sites in the second 
coordination shell can be distinguished (see Fig. 4). 
If site a is at (1,1,1) from the impurity, sites at (2,2,0), 
(2,0,2), (0,2,2) form set c. Sites at (2,2,0), (2,2,0), 
(2,0,2), (2,0,2), (0,2,2), and (0,2,2) form set d, and sites 
at (2,2,0), (2,0,2), and (0,2,2) form set e. All of these 
sites are second-nearest neighbors of the impurity. 
However, there is not full inversion symmetry through 
the impurity site, so sets c and e cannot be combined. 
Because of this lack symmetry, (cosdd) will not equal 
zero, even though set d lies on a plane passing through 
site O. 

One can define vacancy-jump frequencies w2 for 
exchange with impurity M, w$ for jumps from first- to 
second-nearest neighbors, w4 for jumps from second- to 
first-nearest neighbors, w& for jumps from second- to 
third- or fifth-nearest neighbors, and wo for jumps origi­
nating at third-nearest neighbors or farther from the 
impurity. The first coordination shell contains the four 
first-nearest neighbors, the second coordination shell 

\ \ 
SOLID LINE: 7F ^ ^ \ 

DASHED LINE: 7F ( w 0 m / % } \ ^ 

\ 

0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 

W/3s/W/3m — * _ % , / % 

FIG. 3. Values of IF and 7F(wpm/wpa) for the body-centered 
cubic and face-centered cubic structures, calculated from Eqs. (33) 
and (62). Here wps is the vacancy jump frequency from a first-
nearest-neighbor to a second-nearest-neighbor site. For bcc, wpa 
equals wpt-; while for fee, wp8 equals wpi. 

the 12 second-nearest neighbors, and the third coordina­
tion shell only the 24 third- and fifth-nearest neighbors. 
Direct jumps between two first-nearest neighbors are not 
possible with a nearest neighbor vacancy mechanism nor 
are jumps between two second-nearest neighbors, so the 
description above covers all possible jumps. The A7 
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FIG. 4. Diamond structure. Sites c, d, and e are on the second, 
coordination shell from site 0. Site a lies at (1,1,1) in the first 
coordination shell. The other sites in this shell are at (1,1,1), 
(1,1,1), and (1,1,1). 
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FIG. 5. Face-centered cubic structure. Sites g, h, i, j , k, and / 
are on the second coordination shell from site 0. Site a, not shown, 
lies at (1,0,1) half way between sites 0 and g. Sites designated by 
X are on the symmetry plane passing through site 0 and normal to 
the line Q-a-g. 

and Pyy relating Uc, Ud, and Ue for a diamond structure 
with these jump frequencies are given in Table II . The 
Pyy were calculated by summing contributions from the 
first 14 vacancy jumps exactly and estimating the 
contributions from the remaining jumps, while the Ay 

were calculated exactly from Eq. (12). Solution of the 
resulting three simultaneous equations for Uc, Ud, and 
Ue derived from Eq. (13) gives 

Uc=a-l[lA0(wA/w5)+2A7(w4/w5f+ ( z ^ M ) 3 ] , (34) 

Ud=<r-1Z-0.31(w4/w6)-0M(w4/w6)
2 

- K V ^ B ) 8 ] , (35) 

Ue=a~1l~0.79(w4/w5)--lAS(w,/wb)
2 

- i ( W ^ ) ! ] , (36) 
where 

a=2.76+6.33(wi/w5)+4:.52(w4/w5)
2+(w4/w5)K (37) 

Then, from Eq. (5), 

<cos0>= ~w2[w2+3wz(l- Uc)']-1, (38) 

and, from Eq. (1), 

f=3wzFz/(2w2+3wzFz), (39) 
where 

2.76+4.93 (w4/w5)+2.05(w4/wb)
2 

Fz = . (40) 
2.76+6.33 (wi/wb)+4,52(wi/wb)

2-\- (wi/w^y 

For self-diffusion, where w^wz^wt—w^wo, F%=% 
and / agrees with the Compaan-Haven value3 of \. 
When W4/W5 goes to zero, Fz goes to unity. In the other 
limit where wjw*> goes to infinity, F 3 goes to zero (see 
Fig. 2). _ 

Equation (40) is very nearly the same as that found 
previously4 by assuming that a certain fraction of 
vacancies which jumped from a second-nearest neighbor 

c to a third- or fifth-nearest neighbor would effectively 
return to site c. In present notation, the expression for 
Fz found in this manner was Fz^[lJr\{w^/w^)~]~l. 
Since there is a lack of rotational symmetry around the 
line O—c, this assumption of effective returns is not 
really correct. Nevertheless the expression for F% agrees 
very well with Eq. (40), at the very worst differing by 
less than 3 % . This good agreement is not surprising, 
since there is a considerable amount of symmetry 
(though not complete rotational symmetry) around 
the line O—c. 

Exact Expressions for Fz When W4 = w*> = Wo 

The method of effective return frequencies4 yields an 
exact expression for F% when w^—W5=WQ. Since there is 
threefold rotational symmetry around the line O—a, 
the return of the vacancies which make w% jumps from 
site a to sites on the first coordination shell will have 
the same effect on (cos#) as if a certain fraction (1 —F3) 
returned to site a itself. Therefore 

<cos0)= -w2/(w2+3Fzwz). (41) 

For self-diffusion, w2~wz and, as shown by Compaan 
and Haven,3 (cos0)=— f. By substituting these values 
into Eq. (41), one finds that Fz must equal exactly f for 
self-diffusion. If W^=W5=WQ, a vacancy outside the 
first coordination shell will diffuse as if it were in a pure 
crystal, and F% will be the same as for self-diffusion. 
Thus, when w^—w^wo, F%=% and 

f=wz/(w2+wz). (42) 

When W4=iv&, this same result is obtained from Eq. (40) 
or the expression Fz=[_l+^(w^/wo)']~'1. These expres­
sions therefore are exact when W4=w5. 

V. FACE-CENTERED CUBIC STRUCTURE 

In the face-centered cubic structure, there is mirror 
symmetry across the plane passing through site O 
normal to the line O — a. Therefore {cos07) = O for any 
site on this plane. The other 34 sites on the second 
coordination shell can be divided into 6 sets (see Fig. 5). 
With site a at (1,0,1) from atom M, sites at (2,0,2) 
and (2,0,2) for example form set g. There are eight sites 
in seth with a representative site in the first octant being 
at (2,1,1), four sites in set i are represented by (2,0,0), 
four in set j are represented by (1,2,1), eight sites in set k 
are represented by (2,2,0), and eight sites in set I are 
represented by (2,1,1). Sets g and k are both fourth-

TABLE II. Diamond structure.a 

P c c = 4.94w5i?"1 

P c d = 3.40w5i?~1 

Pc e = 0.09w5^1 

Ac = 4:WtR-1 

Pdc=1.70w5R-1 

Pdd=6mwbR-1 

Pde = 0.70w5R-1 

A^-iwiR-1 

Pec = 0.09w5P-1 

Ped^lAOwzR-1 

Pee^M^WsRr1 

Ae=-iiv±Rrl 

a Here R =4(3ws +W4). 
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TABLE III. fee structured 

A 1765 

Pgh = 5.56woRg~
1 

Pgi^OAOWoRg-1 

Pgj^O.lOWoRg'1 

Pgk = OAQwoRg-1 

Pgl^O^OWoRg-1 

Ag~ WjRg~X 

Phg=^\39wQRh-
1 

Phh = 2.20w0Rh~
1 

Phi = \MwQRh-
1 

Phj = 1.22w0Rh~1 

Phic = \.52wQRh-
1 

Phi = 0.2%wQRh~
l 

A^iwiRjT1 

Pig = 0.20woRr1 

Pih = 2.6Sw0Ri-
1 

Pii^O.SOwoRr1 

Pij = 0.06wQRr1 

Pik^OAOwoRr1 

Pii = 2.56w0Ri~1 

Ai=z2wiRr1 

Pjg^OMwoRh-1 

Pjh = 2Mw0Rh-
1 

Pji^OMwoR/T1 

PJj = 0.66woRh-
1 

Pjk = 2.68w0Rh-
1 

Pji^O.OSwoRh-1 

Aj = WiRh~l 

Pkg = OAOivoRg-
1 

Pkh^l^WoRg'1 

Pki^OlOWoRg-1 

Pkj^lMwoRg-1 

Pkk^lMwoRg-1 

Pk^lMWoRg-1 

Ak = %wiRQ-1 

Pig = 0.05w0Rh-
1 

Pih = 0.2SwoRh-
1 

Pii = 1.28woRh-
1 

Pu^OMwoRh-1 

Pa^lMwoRh-1 

Pi^-OMwoRjT1 

Ai^iwJtiT1 

a Here Rg = llwo-He>4, Rh = 10wo+2wi, and Ri =8wo+4w4. 

nearest neighbors of atom M and there is twofold ro­
tational symmetry around the lines 0—g and O—k. 
Therefore, as in Eq. (9), 

and 
(cosdk)/{cosdg) = cosQk/cosdg=|, 

Uh=%U0. 

(43a) 

(43b) 

In a previous paper,5 it was assumed that a relation 
\Uh=zhUj= Ui, similar to Eq. (43b), was valid for the 
third-nearest neighbors h, j , and I. Since there is not 
rotational symmetry around the lines 0—h, 0—j, and 
0—1, this relation is only approximate. As noted by 
LeClaire,6 however, there is still the exact relation, 

Uh=Uj+Ui. (44) 

This can be derived from our preceding relation between 
Uk and Ug. A vacancy which starts from site g can in 
one jump reach four h sites. A vacancy which makes 
equivalent jumps from site k would arrive at one h site, 
one j site, one / site, and one site in the plane where 
(cos#7) = 0. Thus, for the relation \UQ^Uu to be obeyed, 
one must have i(4:Uh)= (Uh+Uj+Ui+0), which 
reduces to Eq. (44). 

Set i contains second-nearest neighbors of M; and 
U% is independent of the Uy for third- and fourth-
nearest neighbors. 

All Dissociative Jump Frequencies Equal 

One can define vacancy-jump frequencies wi for 
exchange with atom M, w\ for jumps from one first-
nearest neighbor to another, wz for jumps from a first- to 
a second-, third-, or fourth-nearest neighbor (first 
coordination shell to second coordination shell), w^ 
for the reverse of a w% jump, and wo for all other jumps. 
The Ay and Pyy relating Ug, Uhy Ui, Uj, Uk, and Ui 
with these jump frequencies are given in Table I I I . 
The Pyy were calculated by summing contributions 
from the first six vacancy jumps exactly and estimating 
the contributions from the remaining jumps, while the 
A y were calculated exactly from Eq. (12). The six equa­
tions from Eq. (13) can be reduced to four by Eqs. (43) 
and (44). Solutions of these equations gives 

Ug=aa-1(2a3+29.7a2+131a+163), (45) 

where 

and 

Z7*=«o^(frf+27.8aH-14Qa+187), 

t /4=a<7-1(«3+19.8a2+H8a+215), 

Vl=aa-1 (a 3+ 18.7a2+95a+122), 

<i = 2a 4+40.2a 3+254a 2+597a+436, 

(46) 

(47) 

(48) 

(49) 

(50) 

Since 53 wapFp=2wi, as discussed below Eq. (9), 

(cos#)= — w2{w2+2wi+ws[_(l — Ug) 
+ 4 ( l - £ / , ) + 2 ( l - * 7 4 - ) ] } - 1 , (51) 

and 
2w1+7Fzws 

. / = , (52) 
2wr\-2w\-\- IFzWz 

where 

7 F 3 = 7 -
r 10a4+180.5a3+927a2+ 1341a 

L2a;4+40.2Q:3+254a2+597a+436 •]• 
(53) 

When Wi<£wo, 7F$=7; when W4=wo, 7 J P 3 = 5 . 1 5 (in 
agreement with the Compaan-Haven value for self-
diffusion3), and when w^wo, 7Fd=2 (see Fig. 2). 

Values of 1FZ from Eq. (53) agree to three significant 
figures with those obtained previously.5 In the present 
work, additional use was made of symmetry properties 
to estimate the Pyy. The resulting revision of the Pyy 

accounts for most of the difference in F$. I t was assumed 
previously that \Uh=hU,— Ui. When the present 
values of the Pyy are used, the assumption %Uh=iUj 
— Ui changes the F values only in the fifth significant 
figure. I t can be seen from Eqs. (44), (46), and (48) that 
this relation between Uh, Uj, and U\ is very nearly, but 
not exactly, obeyed. This is not surprising since \ cosdh 
= •§• cosdj=cosdi and there is considerable symmetry, 
though not complete rotational symmetry, around the 
lines 0—h,0—j, and O — l. 

Special Binding at Second-Nearest-Neighbor Sites 

There is some evidence, particularly for a divalent 
impurity in a monovalent sublattice,7,8 that a vacancy 

6 A. D . LeClaire (private communicat ion). 

* G. D . Watkins , Phys . Rev . 113, 79 (1959); 113, 91 (1959). 
8 R . W. Dreyfus and R. B . Laibowitz, Phys . Rev . 135, A1413 

(1964). 
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at a second-nearest-neighbor site is strongly bound to 
the impurity. Then, as in the bcc structure, one might 
define vacancy jump frequencies wpi for jumps from 
first- to second-nearest neighbors, w^ for jumps from 
second- to first-nearest neighbors, W{m for other jumps 
from second-nearest neighbors, w@m for jumps from 
first- to third- or fourth-nearest neighbors, and wo for 
all jumps from third- or higher order nearest neighbors. 
To avoid any net accumulation of vacancies at sites fi 
or m, it must be true that 

Cm Wpm W$i Wim 

- = — = , (54) 
Cfi Wo Wip Wo 

as in Eq. (26). 
In the present model, the numerical coefficients in 

the expressions for Pyy and A y are the same as those in 
Table I I I . The only changes needed to make Table I I I 
apply in the present case are to set woRi~l = Wim/ 
(4:Wip+&Wim), W4Rr1 = Wip/(4:Wii3+8wim), and all other 
wR~l combinations equal to 3^. 

Solution for Ug, Uh, Ui, and Uj then gives 

Ug=a-1l7.2S+5.31(w^/wim)'2J (55) 

Uh==(T-1t7.80+S.9S(wifi/wim)'], (56) 

Ui=a~^4:.02+9.61(w^/wim)^, (57) 

Uj=a-1ZSA5+3.70(wifi/wifn)'], (58) 
where 

a = 32.04+19.22 (wip/wim). (59) 

Equation (5) becomes 

(cos0)= —w2{w2+2w1+2wpi(l—Ui) 

+w^[MX-U1l)+{\-Ug)']}~K (60) 

With Eq. (54) relating w&i and wpm, Eq. (1) then yields 

2wi+7Fwpm 

f= , (61) 
2w2+2wi+7Fwpm 

where 
121.72+123.03(w^/wim) + 19.22(w^/wim)2 

7F= . (62) 
32M+19.22(wifi/wim) 

When Wip^Wim, 7F equals w^/wim and 

2wi+w$i 
f= • (63) 

2w2+2wi+wpi 

Values of 7F and 7F(w0m/wQi) are shown in Fig. 3. 

VI. COMPARISON WITH OTHER CALCULATIONS 

In Sec. II , general equations for impurity correlation 
factors are derived. Results for particular crystal 
structures and jump frequencies are given in Sees. 
I I I -V. These results are more general than previous 
calculations since wy$/wo is allowed to range from zero 

to infinity and the wy$ are allowed to differ from one 
another. Previous calculations usually have included 
restrictions on wy$/wo, for example requiring that 
wyp = Q2 or wyp=wo*. 

In some crystals, vacancies may be strongly bound to 
an impurity even when they are third-nearest neighbors 
or farther from the impurity. Such a situation would 
require even more detailed calculations than those 
above. However, the general approach presented in 
Sec. I I could still be applied. 

In Refs. 1-5 and in the calculations above, particular 
vacancies which originally are on site a are followed as 
they move through the crystal by a more or less random 
walk, and a resulting (cos0) is calculated. This may be 
called a "random-walk" approach to the calculation of 
correlation factors. A second general method is the 
"pair association" method, where the creation, destruc­
tion, and reorientation of vacancy-impurity complexes 
on a number of neighboring planes are followed in detail. 
I t is interesting to compare approximations in the two 
methods. Lidiard9 using the pair association method, 
found / = (2wi-\-7wz)/(2w2-\-2wiJir7wz) for the correla­
tion factor in the face-centered cubic structure. Thus, 
the coefficient 7F% in Eq. (52) is replaced by 7, which 
with Eq. (53) would seem to imply w^/wo^O. Lidiard 
however did not assume w 4 = 0 ; on the contrary, he 
required w^O with w4 being related to w3 by an equa­
tion similar to Eq. (26). 

The explanation for this apparent paradox is as 
follows: Vacancy concentrations in Lidiard's model 
were assumed always to be at their equilibrium values 
at sites 7 on the second coordination shell. Under these 
conditions, a w$ jump by a particular vacancy V to a 
particular site 7 cannot cause an increase in the average 
vacancy concentration at site 7. The effect on (cos#) is 
the same as if vacancy V disappeared upon reaching 
site 7. In a random-walk model, this is equivalent to 
saying that return of the particular vacancy V to the 
impurity is forbidden. Since return of the vacancy is 
forbidden only when w'i=0, one obtains the apparent 
paradox above. In general, the assumption in the pair 
association model that the vacancy concentration on 
site n is maintained at equilibrium leads to the same 
effect as an assumption in the random-walk model that 
arrival at site n removes the vacancy from the crystal 
and prevents it from returning to the impurity. 

No arbitrary boundary where vacancies are removed 
from the crystal is introduced in the present calcula­
tions. The calculation of the Pyy is still not exact 
however, since contributions from later vacancy jumps 
are only estimated. From the agreement which is 
obtained with the Compaan-Haven values for self-
diffusion, one might expect the present results for F 
to be correct to 3 significant figures. This of course leads 
to an even smaller error in expressions for the correlation 
factor / . 

9 A. B. Lidiard, Phil. Mag. 46, 1218 (1955). 


