VOLUME 138 AB3

Nonthermal Equilibrium Fluctuations of Electrons **and Holes,** K. M. VAN VLIET [Phys. Rev. **133,** A1182 (1964)]. In order to arrive at the expression for the variance, Eq. (3.5) , the term κn_0 in the matrix element a_{22} as given by (3.2) was neglected, as well as other terms of the order κ/δ in the final result. A vital term n_0^2 ^{*i*}₀ should at least be restored to the numerator of *(3.5).*

However, it is now clear that seemingly small approximations in the elements of the matrices considered may grossly affect the final result. Thus, the exact solution of Eqs. (1.5), (3.2), and *(3.3)* using (3.4) to eliminate κ/δ is found to be

$$
\frac{\langle \Delta n^2 \rangle}{n_0} = \frac{(I - i_0)^2 (n_0 + 2i_0) (n_0^2 + i_0^2 + 3n_0 i_0) + (I - i_0)n_0 i_0 (n_0^2 + 3i_0^2 + 4i_0 n_0) + n_0 i_0^2 (n_0 + i_0)^2}{(I - i_0)^2 (n_0 + 2i_0) (n_0^2 + i_0^2 + 3n_0 i_0) + (I - i_0)n_0 i_0 (2n_0^2 + 3i_0^2 + 6i_0 n_0) + n_0^2 i_0^2 (n_0 + i_0)},
$$
\n(3.5a)

and the result corresponding to (3.8) is

$$
\frac{\langle \Delta n^2 \rangle}{n_0} = \frac{k^2(q+2)(q^2+3q+1) + kq(q^2+4q+3) + q(q+1)^2}{k^2(q+2)(q^2+3q+1) + kq(2q^2+6q+3) + q^2(q+1)}.
$$
\n(3.8a)

This may also be put in a form suggested by Burgess,

$$
\frac{\langle \Delta n^2 \rangle}{n_0} = 1 + \frac{-q^3 k + q^2 (1 - 2k) + q}{\left[q^2 (k+1) + q (3k+1) + k \right] \left[q (1 + k) + 2k \right]} \text{ or } (3.8b)
$$

It is, indeed, astounding, that the *simplest possible nonequilibrium model* leads to a variance as complex as given here.

The condition for super-Poissonian fluctuations to occur is $1+q(1-2k)-q^2k>0$,

or

$$
\mathbf{1} \mathbf{
$$

 $kq < (1+q)/(2+q) \approx$ order 1.

Equation (3.12) shows in turn that if the cross section ratio *y* be such that $y < \frac{1}{2}$, then a range exists $q<\frac{(1-2y)}{y}$, in which the above condition is satisfied. A *sufficient* condition for *large* super-Poissonian fluctuations is $kq \ll 1$ which is satisfied in part of the superlinear photoconductance range, as stated in the text. The variance then approximates to Eq. *(3.6)* given there.

For very low light excitation, $q \ll 1$ and $k \gg 1$. In that case, $\langle \Delta n^2 \rangle / n_0 = 1$, as before. However, for high

light,
$$
q \gg 1
$$
 (or $n_0 \gg i_0$), we now find for arbitrary k :

$$
\frac{\langle \Delta n^2 \rangle}{n_0} \approx \frac{(I - i_0)^2 + (I - i_0)i_0 + i_0^2}{(I - i_0)^2 + 2(I - i_0)i_0 + i_0^2},
$$

$$
\frac{\langle \Delta n^2 \rangle}{n_0} \approx \frac{k^2 + k + 1}{k^2 + 2k + 1} = 1 - \frac{k}{k^2 + 2k + 1}.
$$

This reaches the high light asymptote unity if $k = (I - i_0)/i_0 \rightarrow 0$ (small κ/δ) or if *k* becomes very large (large κ/δ). A minimal high light asymptote of 0.75 is observed for $k=1$, corresponding to $\kappa/\delta = 1$ [see Eq. (3.12)].

Hence, in the computer solution, Fig. 4, the decreasing parts for high light are erroneous and should level off to these constant values [see improved Fig. $4(a)$]. The result of Fig. 5 is still in close agreement with (3.5a) for $n_0/I \le 10^{-1}$, approaching the asymptote 1 for higher values.

Recent experiments have substantiated the feasibility of this model.

I am greatly indebted to Professor R. E. Burgess of the University of British Columbia for pointing out this error and for correspondence on the present solution.

FIG. 4(a). The relative variance $\langle \Delta n^2 \rangle / n_0$ versus \mathcal{L} .