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from the percent intensities of the gamma rays de-
exciting the levels fed by the respective beta-ray spec
tra. These values of log ft are summarized in Table III. 
The initial nucleus of each beta spectrum of Table III 
is taken to be that indicated by earlier investigations.8'10 

V. DISCUSSION OF RESULTS 

The shell-model orbitals of Te129w and Te129 are hiy2 
and J3/2, the 106-keV transition4 being M4. The ground 
state of I129 has a measured spin14 of f, shell-model 
orbital #7/2- By lifetime measurements15 and study10 of 
the (L+M) -shells conversion coefficient, the 27-keV 
transition has been shown to be Ml, the spin and parity 
of the 27-keV state in I129 being § + , shell-model orbital 
^5/2. If indeed the allowed transitions of Table III do 
stem from Te129, the possible spins and parities of the 
482-, 797-, 1112-, and 1222-keV levels would be f + or 
f + . The spin and parity of the 725-keV level, fed by 
a first-forbidden spectrum initiating at Te129m, could be 
| + or f + . The 1065-keV level does not de-excite with 
a transition to either the ground state or the 27-keV 
state. Its spin is therefore assumed to be 13/2+, 
making the spin of the 725-keV state more probably 

14 Ralph Livingston, O. R. Gillian, and Walter Gordy, Phys. 
Rev. 76, 149 (1949). 

15 D. W. Hafemeister, G. DePasquali, and H. deWaard, Phys. 
Rev. 135, B1089 (1964). 

I. INTRODUCTION 

RECENTLY, experimental proof has been obtained 
for the existence of parity admixtures in nuclear 

states.1,2 Such impurities are predicted by theories of 

* This work has mainly been performed at California Institute 
of Technology, Pasadena, California, and has been supported by 
the U. S. Atomic Energy Commission, and by the Swedish Atomic 
Research Council. 

1 F. Boehm and E. Kankeleit (private communication); Pro-
ceedings of the International Conference on Nuclear Physics, Paris, 

§+• These various possible assignments of spin and 
parity would suggest that the bulk of the observed 
gamma-ray transitions in I129 are Ml or E2 or a mixture 

[ thereof. Others10 have suggested possible spins and 
0 parities of f + , 11/2+, or 13/2+ for the 1385-keV 

level. All of these possible values are consistent with 
the gamma transitions from that level as shown in the 

2 decay scheme of Fig. 5. 
i Some theoretical efforts have been made to compute 
1 the energies of the excited states of I129. Banerjee and 
f Gupta11 have based their theoretical calculation upon 
7 a model which assumes the nucleus to be an even-even 
7 core, with its spectrum of vibrational levels, and an 
I odd nucleon giving rise to single-particle states. They 
> find thirty-three excited states between the ground 
j state and an excitation energy of 1075 keV. Somewhat 
• better agreement has been found with the calculations 

of Kisslinger and Sorensen,12 which are based upon the 
) assumption of spherical nuclear shape with residual 
L forces. They report the possibility of ten excited states 

on approximately the same energy interval. The spins 
predicted are such that virtually all the levels of either 
theoretical calculation should have been excited in the 

, decay of Te129m-Te129. It is concluded that the proposed 
decay scheme produces best qualitative agreement 
with the works of Kisslinger and Sorensen.12 

weak interactions. The current-current hypothesis3 

implies a weak nucleon-nucleon force, with the same 
parity-violating properties as the interaction responsible 
for beta decay. From this theory a form of the weak 

July 1964 (Publication par le Centre National de la Recherche 
Scientifique, Paris, 1964), Vol. II, p. 1181. 

2 Yu. G. Abov, P. A. Krupchitsky and Yu. A. Oratovsky, Phys. 
Letters 12 25 (1964). 

3 R. P. Veynman and M. Gell-Mann, Phys. Rev. 109, 193 
(1958); M. Gell-Mann, Rev. Mod. Phys. 31, 834 (1959). 
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pseudoscalar term in the nuclear Hamiltonian can be 
derived and its magnitude estimated.4,5 

For the observation of parity impurities, such nuclear 
processes are favorable where the regular process is 
hindered,6 e.g., retarded electromagnetic transitions. A 
relevant measure of the degree of retardation is provided 
by the ratio R between the nuclear matrix elements of 
the irregular (parity-forbidden) and regular process.6 

The other quantity of interest is F, which characterizes 
the parity-admixture amplitudes in the nuclear wave 
functions7 (in the present paper F is regarded as a weak-
interaction parameter). The observable effect depends 
on the product FR; thus, in cases of interest, the in
herently small value of F is compensated by a large 
value of R. General estimates of the quantities F and R 
are presented in Refs. 4 and 5. The present work deals 
with more detailed nuclear-structure considerations, 
relevant to the calculation of the ratio R for gamma-ray 
transitions. This is of interest, since the result makes 
possible a comparison between experiment and pre
dictions based on weak-interaction theories. Alterna
tively, such considerations may provide a means for 
deriving the value of F from experiment. 

In Ref. 1, the circular polarization P of a gamma-ray 
has been measured; P is proportional to the product FR 
(see e.g., Ref. 8). In the present paper general expres
sions for P in terms of transition amplitudes are first 
presented. Then the use of the independent-particle 
model is described with regard to evaluating the irregu
lar transition amplitude for one-particle levels in odd-̂ 4 
nuclei. The interaction of the form <r*p, suggested by 
previous authors,4'5 is discussed with particular atten
tion to the role of the Is term in the irregular-EZ, case. 
The case of dipole radiation is considered in greater 
detail. The theory is applied to the 482-keV transition 
in Ta181, where the circular polarization has been meas
ured, to the analogous 343-keV transition in Lu175, and 
to the 14-keV transiton in Fe57. The results and con
clusions are briefly summarized. The basic nuclear-
model expressions used in this work are briefly presented 
in the Appendix. 

II. GENERAL EXPRESSIONS 

In general, the probability for a transition Ii—>If 
with the emission of an electromagnetic quantum with 
polarization r and wave number k = u/c, is given by 

<r,L 

+ 2 r Re[E Aif{0,L)Aif{\,L)*-]}. (1) 
L 

4 R. J. Blin-Stoyle, Phys. Rev. 118, 1605 (1960); 120, 181 
(1960). 

6 F. C. Michel, Phys. Rev. 133, B329 (1964) [gives a review and 
also contains references to earlier work]. 

6 D. H. Wilkinson, Phys. Rev. 109, 1603 (1958). 
7 T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956). 
s L. Kriiger, Z. Physik 157, 369 (1959). 

The amplitudes Aif and multipole operators ®(oy£) 
are defined as follows: 

Aif(*,L) = Sif(If\\®(<r,L)\\Ii), (2) 

®^L)^{Cf/c)i^rK{<T,L), 

where Sif^l(2If+l)/(2Ii+l)2m, j is the nuclear 
current, and CC"2=^Tr/h holds. For the reduced matrix 
elements and the standard multipole-fields, AM(<r,L), the 
conventions according to Rose9,10 are used. The symbol 
a has the value 0 for magnetic, and 1 for electric 
2L pole.11 By definition, r = + l when the polarization 
and propagation direction of the photon are parallel, 
T== — 1 when they are antiparallel (conventionally called 
left and right polarization, respectively). In the follow
ing, phases of operators and wave functions are chosen 
so as to ensure a time-reversal invariant description, 
and thus real values of all matrix elements. 

Let (cr,L) denote the lowest multipole order which is 
allowed according to the usual angular-momentum and 
parity selection rules. This regular transition may in 
practice contain a regular multipole admixture (</,!/)> 
where Z /=L+1 and cr'^a hold. The irregular part of 
interest is (<rf,L). For example the regular transition 
may be M1+E2, and the irregular transition E l 
[irregular part is indicated by a tilde, if the general 
notation (<r',L) does not apply]. The expression for the 
circular polarization of the gamma ray is obtained from 
Eq. (1) and reads: 

t+-L. 2Aif(cr,L)Aif(a
,,L) 

P== = 

M-/L Aif(*,L)*+Ai,(</,Ly 

2 Aif(*',L) 

1+g2 Aif(*,L) 

q = Aif(a
f,L')/Aif(a,L). (3b) 

It should be noted that the total transition probability 
is given by the expression 

Ty=t++t.= 2CklAif(a,Ly+Aif(a
/,Lri-

The nuclear Hamiltonian is generally written as the 
sum of a scalar operator #0, which is the regular part, 
and a pseudoscalar operator H\ which is a parity-
violating perturbation: 

H=H0+H\ (4) 

Both parts are assumed to be Hermitian and invariant 
under time reversal. The parity-impure initial and final 

9 M. E. Rose, Multipole Fields (John Wiley & Sons, Inc., New 
York, 1955). 

10 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

11 Note that the interference terms in Eq. (1) contain only 
products of amplitudes with the same rank L but with different <r. 
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states of the transition are then given by 

\Ii)= I Tiji^+SIa ( lo/a | 3' \ Ti,Ii) 
X(Ei-Ea)-

x\-Ka,Ia), (5a) 

\h)=Wf,If)+^{^h\3'\irf,If) 
X(Ef-E^\rre,Ie). (5b) 

Here, the indices a and $ label the admixed states, and 
(T,I) labels generally an eigenstate of Ho, i.e., Ho | w,I) 
= E\w,I). In Eq. (5) we have /«=/*, wa——^h a n d 
Ip=If, 7r^=—7r/. The irregular transition-amplitude, 
Aif(a

f,L), is given by 

Aif(a
f,L) = Za Aa"{<rf,L)/{Ei-Ea) 

+ZfiBfi"(</,L)/(Ef-Efd, (6a) 

A^(a/,L) = Sif(irf,If\\@(af,L)\\wa,Ia) 
X{wa,Ia\H

f\whh), (6b) 

Bz"W,L) = Sif{irhIf\H
f\^h) 

X ( 7 r ^ | | @ ( ^ , L ) | | 7 r ^ ) . (6c) 

III. THE INDEPENDENT-PARTICLE MODEL 
AND ODD-il NUCLEI 

To start with, the total Hamiltonian for nucleus, 
radiation and their interaction is represented in the 
following semiclassical way9: 

# to t=Z, {(2Mo)-1Lpv~(ey/c)AJ+V(rv) 
- j U , ^ ( 2 1 f o c ) ™ 1 C r , - H } + f i r

r e s + ^ , + ^ r a d , ( 7 ) 

where H = T x A and V»A=0. The first part is a sum 
of single-particle operators, labelled by the nucleon 
index p. It does not include residual interactions, which 
are all represented by Hre8. The perturbation Hr is the 
same as in Eq. (4), and HTa& stands for the free radiation 
field; ev and ixv are the values of the charge and magnetic 
moment of the ^th particle; Mo is the mass of the 
nucleon; V(r) is the average single-particle potential 
of the nucleus. 

In the limit of long wavelength (kRo<Kl, i^o=the 
nuclear radius) one finds, as a consequence of Eq. (7), 

Aif(a,L)~(- iy+iC"kLZ(L+l)/L ]"« 

XL(2L+l)\l3-Hlf\m<rM\Ii)Sif, (8) 
where &(<r,L) is a sum, Qlp((r,L) — ̂ vull(<j,L)Vj of single-
particle operators having the following well-known 
form9'12: 

«„(1,£)« (EL),=eLiLrLY,L(f); (9a) 

^ (0 ,Z )^ (Mi , ) M =(^ /2 J foc )^T2^ I / (X+l )+^^ 
• V [ ^ F / ( r ) ] . (9b) 

Here, 6L is the effective charge for EL radiation. The 
nuclear gyromagnetic factor, gi, equals the charge of the 
nucleon (0 or 1), and gff may have an effective value 

12 Such higher terms have been omitted which are either 
relativistic corrections or, for the (ML) operator, minor corrections 
arising if V(r) has spin dependence. 

which is usually smaller in magnitude than the free-
particle magnetic moment. For convenience the following 
notation is introduced: 

U(*£)=Sif(If\\toM\\Ii), (10) 

which is simply related to the reduced transition proba
bility, B(<r,L) = | U(<r,L) |2. The circular polarization is 
now given by 

P= -2(l+q^U(af,L)/U(<r,L), (11) 

which is not strictly exact but can be considered a good 
approximation. Equation (6) can be taken as an ex
pression for U instead of A if, if the operator © is 
replaced by 0. 

In the nuclear Hamiltonian, Eq. (4), the independent-
particle model is introduced as described in the Ap
pendix, Eq. (Al). Then also H' is written in the form 
H'—Y^vhJ-, where h! is as yet unspecified (it will be 
discussed in the next section). 

One of the most interesting cases at hand for experi
mental investigation of parity impurities in nuclear 
states seems to be transitions between low-lying one-
particle levels in nuclei with odd mass-number. The 
remaining part of the paper will be restricted to this 
case. Because of the presence of strong pairing correla
tions in nuclei, caused by the short-range forces of Hves, 
the seniority (or quasiparticle) description is applicable 
for these states,13 as outlined in the first part of the 
Appendix. The multipole and Hl matrix elements there
fore reduce according to Eq. (A6). For the high-lying 
admixed excitations, a and /3 of Eq. (6), the effects of 
the correlations are unimportant. Equation (A7) is then 
a good approximation, and one can set, 

Ei-Ea=:±(ei-6a), Ef-Efi=±(ef-*e), (12) 

where plus holds for particle, minus for hole excitation. 
For the matrix elements, one of the situations (I)-(III) 
will apply (see the Appendix), and one can assume S to 
be negligible in the situation (III). Then for the terms 
contributing to Eq. (6), either situation (I) or (II) will 
apply, the labels being denoted by a+, f$+ and a_, 0_, 
respectively. Furthermore, the 5 factors are approxi
mately independent of the excitation [see Eq. (A9)], 
so that, for the quantities Aa", B&", Eq. (6), a common 
factor is obtained which is denoted by 5:t(=bl)0'/+1; with 
the sign rules stated in the Appendix, 5 ± is positive 
[follows from Eq. (A8)]. Applying also Eq. (12), one 

13 For general information about the nuclear-structure and 
nuclear-model considerations applied in this work (in particular 
about rotating nuclei, collective motion, pairing correlations, 
seniority, quasi-particles, blocking, the BCS method, etc.), the 
reader is referred for example to the notes from A. Bohr and B. R. 
Mottelson, Lectures on Nuclear Structure and Energy Spectra 
(Copenhagen, 1962), and to the excellent monograph by G. E. 
Brown, Unified Theory of Nuclear Models (North-Holland 
Publishing Company, Amsterdam, 1964). See also A. K. Kerman, 
Nuclear Reactions, edited by P. M. Endt, and M. Demeur (North-
Holland Publishing Company, Amsterdam, 1959), Vol. I, Chap. X . 
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finds: 

UW,L) = S±{±\)°'[3:a±Aai!W,L)/(u-ea±) 

+Z^B,±'(a',L)/(ef-^n (13) 

A a'W,L) = (fM<r',L) }a)(a \h'\i); 

B,'(a',L)={f\h'\mhw,Lm-
The quantities denoted by (f J) are denned by Eq. (A4) 
in the ease of a spherical nucleus, where the usual nuclear 
shell model is applicable, and by Eq. (A5) in the case of 
a nucleus with great deformation, where one applies a 
modification of the shell model, including a spheroidal 
equilibrium shape of the nuclear surface.14,15 

If the effects of residual inteactions on the matrix 
elements are neglected, one may set S±c^2~1/2 for a 
spherical nucleus (if | / ) is the ground state), and S±= 1 
for a deformed nucleus. Due to the correlations, S± 
might be slightly reduced [also small additional con
tributions may occur in Eq. (13)]. The effect of possible 
collective motion on one-particle transition amplitudes 
may be represented by effective charges or effective 
nuclear g factors. However, configuration mixing (or 
band mixing) in the initial and final states might some
times significantly modify the result [the form of Eq. 
(13), as well as the value of the 5 factors]. These 
questions will be illustrated later in connection with the 
applications to irregular El transition. 

IV. THE CASE OF h!^G"vp AND THE 
ROLE OF THE Is TERM 

The single-nucleon pseudoscalar interaction, emerg
ing4'5 to lowest order from the current-current theory of 
weak interactions, has the form of the "helicity 
operator/' <j"p, of the nucleon. Other simple operators, 
which may be constructed, subject to the required 
symmetry-properties, have the character of relativistic 
corrections to this operator. The subsequent considera
tions are therefore restricted to 

kf=Gnvp=(Fh/MQR0)vp, (15) 

where G" is a constant, characterizing the strength of 
the nuclear weak interaction (G,f depends on isospin and 
mass number5). The dimensionless parameter F repre
sents the average magnitude of parity-impurity ampli
tudes in nuclear states. Estimates of F have been 
presented, e.g., by Michel.5 The transition amplitude 
ratio of Eq. (11) may be factorized as follows: 

U(<T',L)/U(<T,L) = FR(<rf,L; a,L), (16) 

which provides the desired decomposition in a weak-
interaction parameter F, and a pure nuclear-structure 
ratio R. 

14 For further information about the nuclear shell model see, for 
example, A. de-Shalit and I. Talmi, Nuclear Shell Theory 
(Academic Press Inc., New York, 1963). The "Nilsson-ModeF is 
introduced in Ref. 15. 

15 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 29, No. 16 (1955). 

To facilitate the further discussion of the expression 
U(<r',L) with h\ given by Eq. (15), the following single-
particle quantities are defined: 

A „(</,£) = (fMa',L) }a)(a | (<r• r/Rd) \i), (17a) 

Bfi(</£) = (f\ {vr/Rd) ( m h W , L ) ]i>, (17b) 

uAW,L) = (fM<T\L)(v.r/Roi)}i), (18a) 

UBW,L) = </{(«r • r/R&M</9L) }i), (18b) 

u(crf,L) = (1/2)[UAW,L)+UBW,L)~], (180 

The following sum rules hold: 

UA(<T\L) = Z«Aa(<T',L); uB(<rf,L) = j:eBp(a',L). (19) 

With the expressions, Eq. (9), for the operators (ML) 
and (EL), one finds UA(EL) = UB(EL) = U(EL), whereas 
the operators UA(ML) and UB(ML) generally need not 
be equal. It is appropriate to compare the quantities 
U(<rf,L) and u(a\L); the ratio Q=F~1U(<rf,L)/u(cr,

yL) 
should in general be of the order of 1. The ratio 
M(af,L)/U(o;L), on the other hand, is expected to be 
large in the cases of interest, due to nuclear-structure 
effects [(o",L) is hindered]. In the case of irregular EL 
transitions, a reduction of the ratio | Q | compared to 1 
is also expected; special attention will be paid to this 
question. 

If the nuclear Hamiltonian were spin-independent the 
following relations would hold for the independent-
particle model: 

[>o,o-p]=0, ,2Q) 

Wl^ph)=(Mo/h)(ev-enOWl^r/ih), 

7], t\ meaning any labels i, / , a or 0. Then one would 
also find the following relation, from Eqs. (13) and (14), 
since the energy denominators are cancelled: 

U(</,L) = FS±(±iy 
X E ^ i a i W , L ) - £ „ ± B„Jf/,L)2. (21) 

If the sums were performed over all a and p values, this 
expression would be proportional to the quantity 
(f{L<a(*\L),(v»r/Roi)'JU)9 which is the relation found 
by Michel.5 This does not seem to be strictly valid 
though, even when Eq. (20) is fulfilled. Yet, U(a',L) 
should be roughly proportional to the difference 
UA(J\£)—UB(Q\L), and thus tend to vanish for the 
case EL because of cancellation. However, when ho is 
spin-dependent, Eqs. (20) and (21) no longer hold. 
Thus, in principle there is not even approximate cancel
lation between the two sums of Eq. (13) for the case of 
EL. Consequently, U(EL) is essentially determined by 
the spin-dependent part of ho. 

In the nuclear shell model the spin-dependence is 
represented by the well-known Is term.14 The actual 
form of ho is described in the Appendix; see Eq. (A 10). 
Considering spherical nuclei, it seems to be an empirical 
fact that the presence of the Is term affects the radial 
wave functions Rnij(r) only slightly. On the other hand, 
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the Is term has a great effect on the single-particle 
energies. These facts are born out e.g., in calculations 
with a diffuse nuclear potential16; in particular the con
dition Rnij(r)o^Rni(r) is found to be valid to good ap
proximation. One may therefore make use of Eq. (A 14) 
and insert in Eq. (13) the expressions 

4 « V , L ) ~ [ « ° - ea«-]FAa(a',L), 

while the energy denominators are €;(/<) — ea(/c), and 
€/(K) —€0(/t), respectively. Here, Aa and Bp are given by 
Eq. (17). For K ^ O , the energy ratios differ from 1 (by a 
term proportional to K, to lowest order), preventing the 
A' and B' sums of Eq. (13) from cancelling. The result 
differs greatly from Eq. (21). In the case of a nucleus 
with spheroidal deformation, the above considerations 
for a spherical nucleus are still essentially valid, in
cluding Eq. (22). (ev° refers generally to the eigenvalue 
e„ with K = 0; see the Appendix.) 

V. THE CASE OF Ml PLUS El 

The case where the irregular El transition interferes 
with the regular, hindered Ml transition is considered. 
The operators read, from Eq. (9), 

(El) = eii(3/47r)1/2r, 

(Ml) = (eh/2MocX3/^y^(gll+g^). 

For simplicity, the following dimensionless quantities 
are introduced: 

a«= (f{(r/Roi)}a)(a \ (<r-r/R0i) | i), (23a) 

h= (f\ (p-r/Rd) I fiXfilWRA) ¥), (23b) 
replacing Aa and B$ of Eq. (17); 

a*'= -C^1^o(3/47r)1/2(6,0-€«°) JP]-Ma
/(El), (24a) 

V = ~ [ ^ o ( 3 / 4 x ) 1 / 2 ( € / ° - efP)FyiBfif{El), (24b) 

replacing A J and Bp' of Eq. (14); 

c ± = £ i__aa±/_£ — V ; (25) 
«± e»(/c) — e^Oc) £± e/(/c) — e ^ W 

£>= - (^i^o)-1(3/47r)-1/%(El) 

= ( / I ( r / ^ 0 ) ( c r . r / ^ o ) ! i ) , (26) 

replacing u of Eq. (180. Using 

B+=Ylf$+ h+> B_^=Yii3- bp_, 

we write the sum rule, Eq. (19), in the form 

D=A++A_=B++B... (28) 

The quantity defined by X=(f{(gi/g„)l+v}i) repre-

16 J. Blomqvist and S. Wahlborn, Arkiv Fysik 16, 545 (1960). 

sents the hindered Ml amplitude, U(Ml) = Si(3/4tTr)1/2 

X(eh/2Moc)gaX. Here, Si is the S-factor [Eq. (A6)] 
for Ml. 

The expression for R now reads as follows: 

Ri= R(E1 ;M1) = ± (5±/5i)/i(i4 ,Z)C±/X; (29) 

fM,Z) = (2/gJ(ei/e)(RoMoc/h) 
~(ll/g<T)(ei/e)A^. (30) 

If effects of correlations are disregarded, Si is the sta
tistical factor for I f 1, and one can set Si^^S+c^S-P^2~lf

z 

for spherical nucleus, Si= 1 for deformed nucleus. In 
Eq. (30) one inserts, for gc, either the free-particle 
magnetic moment (jtip or juw), or an effective value which 
may be about 30 to 40% smaller. The factor ei is the 
effective El charge; for pure single-particle transition 
it would be equal to (gi~Z/A)e. However, for admix
tures of higher excitations, collective effects may con
tribute, via the giant dipole resonance, tending to in
crease the value of e\. Thus ei= (gi—Z/A)e+ecoii holds, 
where 0<ecoii$j£. Results will be presented for eooii=0, 
as well as for econ=e; gi is 0 for neutron, 1 for proton. 

The expressions derived so far, will in Sec. VI be 
applied for calculating R\ in a few cases. Of course, the 
important problem is to evaluate C±/X (or C±/D and 
D/X)9 including the determination of the sign. Since the 
spin-orbit splitting is fairly well established14 (K is known 
to be positive), one expects generally C+ and C_ to be 
well-determined [they should have opposite signs, see 
Eq. (25)]. Also, the quantity D [see Eq. (26)] seems to 
be well defined, in general. For the magnitude and the 
sign of X (or D/X), one must usually resort to experi
mental information. Furthermore, in the case of neutron 
transitions, the value of the factor / i , Eq. (30), may be 
ambiguous. 

In the following calculations, the harmonic-oscillator 
potential (h.o.p.) will be used. This is briefly described 
in the Appendix; see Eq. (A16) et seq. In the spherical 
case, it should be noted that Eq. (A14) holds exactly for 
h.o.p.; thus for the quantities defined by Eqs. (23) and 
(24) one obtains17: 

aa—aay bp=bp. (31) 

Another great simplification appears in this case, since 
r and r •(!• connect only states with | AN \ = 1: There exists 
only one term of each kind a+, a_, f3+ and /3_; con
sequently, there are only four quantities a and b to 
compute, being equal to A+, A_y B+ and J3_, Eq. (27). 
For deformed nuclei (5>0), this simplification and 
Eq. (31) do not hold strictly. However, one can assume 
N to be a good quantum number (see the Appendix), 
and then Eq. (31) is still valid.17 

17 The validity of Eq. (31) also means that Eq. (22) holds 
exactly. Furthermore, the following fact (independent of h.o.p.) 
should be emphasized: The result of the calculation (i.e., the value 
of the ratio i?i) is essentially determined by the spin-orbit splitting 
of the single-particle energy levels; otherwise, the spacing of the 
levels enters roughly by an over-all factor and is of less importance. 
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VI. APPLICATIONS 

Ta181 482-keV Transition; 5/2+ -> 7/2+ 

This transition is predominantly E2(c^97%), and its 
half-life has been measured to be 1.0X 10~8 sec. The Ml 
part is hindered by a factor of 105-106. From angular-
correlation measurements,18 the ratio q [Eq. (3b)] has 
been obtained; the magnitude is |g|=6.4±0.8. The 
Ml internal conversion coefficient18 is found to be 
0.40±0.15, nearly 10 times larger than the tabulated 
value. The penetration factor19 has been evaluated from 
experiment and turns out to have the value20 

pM1~U(Ml;pen.)/U(Ml) = +210±30. (32) 

The single-particle operator for (Ml; pen.) is obtained 
(approximately) by replacing, in the expression for the 
operator (Ml), the vector y—gil-\-goV by the vector19 

(r/Ro)2Lv+go<r-gA<*' ?)~1 • (33) 

Since the I- and <r-matrix elements both are greatly re
duced, only the last term of Eq. (33) contributes. In 
fact, the matrix element U(M1; pen.) is of allowed 
character for 2&w*+ lg7/2 or for 5/2+[402]<=± 7/2+[404] 
(see the Appendix regarding asymptotic quantum 
numbers21). 

The fact that pMi is known experimentally makes it 
possible to predict the sign of Ri. One may put 
FRi=pMiU(El)/U(Ml)pen.). Furthermore the last 
term of Eq. (33) is just the same operator as occurring 
in u(El), Eq. (26); in fact U(M1; pen.) = 5ig,(3/47r)1/2 

X(eh/2Moc)D, where the factor Si is the same as the 
one appearing in Eq. (29). Thus Ri can be written in 
the form 

Ri=pMifi(A,Z)(S±/S1)Y±, Y±^CJD. (34) 

If the nucleus is assumed to be spherical, the transi
tion is 2̂ 5/2 —* lg7/2, with the only possible parity ad
mixtures being I/7/2, 1/5/2, 2/7/2 and 2/5/2. One finds 
exactly (using h.o.p.) A+=A_=B+~B-, so that all 
nuclear matrix-elements cancel in the ratio between 
C± and D [see Eqs. (25), (27) and (28)]. As a result,17 

F ± is given simply in terms of the energy ratios of 
Eq. (25), and this expression clearly vanishes at K—0. 
The energy-level order is roughly correct, in the spheri
cal case, for K=0.075 and X=0.45 in Eq. (A18). It holds 
to second order in K: F±=3.85K(1±1.10/<:) . The ratio F ± 

as function of K is drawn in the first diagram of Fig. 1, 
where various assumptions are compared. 

In actuality, the Ta181 nucleus is deformed. The 
calculation for d>0 is more complicated, and has been 

18 Z. Grabowski, B.-G. Pettersson, T. R. Gerholm, and J. E. 
Thun, Nucl. Phys. 24, 251 (1961). 

19 E. L. Church and J. Weneser, Ann. Rev. Nucl. Sci. 10, 193 
(1960). See also A. S. Reiner, Nucl. Phys. 5, 544 (1958). 

2 0T. R. Gerholm (private communication); T. R. Gerholm, 
B.-G. Pettersson, and Z. Grabowski, Nucl. Phys. (to be published). 

21 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Skrifter 1, No. 8 (1959). 
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FIG. 1. The ratio Y±=:TC±/D [see definitions in the text, 
Eqs. (34), (25), and (26)] as a function of the nuclear potential 
parameters K, A and 5. MN means Ref. 21; SGN means Ref. 15. 

performed by the aid of a computer (IBM 7094). It leads 
to a result which is roughly the same as for 8—0. In fact, 
even the relative position of the two levels 5/2+[402]t 
and 7/2+[404]| is found not to be greatly affected by 
the value of 8; see e.g., Ref. 21. The result is shown in 
Fig. 1. We see that F+ and F_ do not differ too widely; 
the sign is well determined.17 In the present case, the 
5/2+ level is a hole state, and so F_ should be used. 
Experimentally, the deformation21 is roughly 5=0.2, 
and one may take K~0 .06 , XC^0.45. The value found 
from Fig. 1 is then F_= 0.22 ±0.04. The details of the 
calculations are shown, for one particular case, in 
Tables I and II. Table I shows that there are still 
essentially only four admixing states, and Table II 
shows that A+, A_, B+ and B_ are approximately equal, 
also for 5>0. The calculation is therefore insensitive to 
details of the nuclear wave functions. From Table II it is 
also seen that the energy difference (e/— €»•) is approxi
mately reproduced (ho)(f^7.6 MeV). 

It is of interest to calculate the magnitude of pMi, 
using the experimental value of the (Ml; 7) lifetime, 
which gives |^Mi|=(5i^/2.79)(240±40)(i?o/6o)2|Z)|. 

TABLE I. Calculated values of the quantities aa, bp [see Eq. 
(23)], and Ae/AN for 5 = 0.2, K = 0 . 0 6 and X = 0.45. The ratio 
Ae/AN equals («*-ea)/'(TV',—N«) or (e/ — €p)/(Nf—Np) (unit hcoo). 
(The 482-keV transition in Ta181 or the 343-keV transition in 
Lu175.) 

Orbital 
a±0± 

Ct-

a+ 

P-

P+ 

Assignment 
[iW*sA]2 

303i 
312T 

503| 
512| 
5231 
532| 

303| 

503| 
514| 
523T 

(RoW)aa; 
(Ro2/h2)bp 

-1.426 
-0.036 

-1.420 
+0.002 
+0.008 
+0.000 

-1.447 

-1.427 
+0.001 
+0.002 

Ae/AN 

0.878 
1.466 

1.245 
0.622 
0.472 

-0.237 

1.322 

0.811 
0.635 

-0.142 
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TABLE II. Calculated quantities in the case 5 = 0.2, K = 0.06 and 
\=0.45. (The 482-keV transition in Ta181 or the 343-keV transition 
in Lu175.) 

Quantity Value 

(ef—€i)/fr03{ 

(Ro/bo)2X 

•coo 

[A+ 
A-
B+ 
B-
c+ 
C-

ID 
Y+ 
F_ 

0.044 
-1.461 
-1.410 
-1.447 
-1.424 

0.653 
-0.553 
-2.871 

0.228 
0.193 

(The uncertainty is derived from the experimental errors 
of q and the Ml conversion coefficient.) The calculations 
give a very stable value of D, (R0/bo)2D= - (2.88d=0.03), 
and the result is \pMi\^(Sig*/2.79)(700±100). Thus, 
with Si= 1 and #^=2.79, a value much larger than the 
experimental one [Eq. (32)] is found. However, in
cluding the effects of pairing correlations, particularly 
with blocking,13,22 certainly brings down the value of Si; 
possible effects of band mixing give the same tendency. 
Furthermore, one expects g<T<2.79. Together, therefore, 
these effects may substantially reduce the estimate of 
\pMi\, and there need not be any discrepancy with 
experiment. The calculated value of D can therefore be 
assumed to be reasonably correct. Equating the result 
for \pMi\ with the experimental value, Eq. (32), gives 
the estimate (Sig,/279)~0.30±0.06. 

The results of the calculations are inserted in Eq. (34) 
(with S_= 1), giving Ri= - (3.4±0.8)X 103(ei/e). From 
Eqs. (11) and (16) one finally obtains 

P=-(1.6±0.5)(ei/e)Xl02F 
= -(1.6_o.9+1-8)X10V, (35) 

where the limits refer to e\ being 0.6e and 1.6e. The 
experimental result by Boehm and Kankeleit1 reads 

P = - ( 5 ± 2 ) X 1 0 - 4 . (36) 

Combining the extreme limits of Eqs. (35) and (36) 
gives the following range of possible F values, which 
are compatible with experiment and with the present 
nuclear-structure consideration: 

9<107XF<110. (37) 

Lu175 343-keV Transition; 5/2+ -> 7/2+ 

This Ml transition is also hindered (by about 600 
times). Experiment gives the value (4.7±0.4)X 10~~10 sec 
for its 7 lifetime,23 and the estimate |<?|~0.1 for the 
(E2/M1) ratio. The penetration factor pM\ of the Ml 
internal conversion is not known, however. The in
formation available is sufficient for evaluating the mag
nitude, but not the sign, of Rx [Eq. (29)]. The transition 
involves the same orbitals21 as the 482-keV transition 

in Ta181 (also, in both cases, the final state is the ground 
state). One may evaluate \Ri\, using the theoretical 
result obtained for Ta181; in particular, the information 
in Fig. 1 is applicable. For Lu175, 5/2+ is a particle state. 
Thus, \Ri\=eiR^/^y/2\C+/U(Ml)\, where |C+| 
= 0.063zb0.010 (from C+=-DY+) and U(M1) is ob
tained from the partial (Ml)y life-time. The expression 
for the polarization reads: 

\P\=(0.7±0.1)(l+q2)-1/2(ei/e)Xl02\F\ 
= (0.7_0.3

+0-6)X102|F|. (38) 

Comparing this result with Eqs. (35) and (36) for Ta181, 
the following reasonable prediction for Lu175 is found: 
|P[c-(2±l)X10-4 . The sign of P is expected to be 
opposite to that of pM\> 

Fe57 14-keV Transition; 3/2" -> 1/2-

The half-life of this well-known transition is 1X10~7 

sec. One may assume that the amount of E2 is negligible, 
i.e., qc^.0. The retardation factor for Ml is then about 
140. The hindrance is due to the complicated structure 
of the states, which have strong configurational admix
tures, adding to the seniority-1 components built on the 
orbitals 2p1/2 and 2^3/2. The strong configuration-inter
action is enough to shift the level order, so that l/2~ 
becomes the ground state. The state vectors (one quasi-
particle13) are given by, 

I Ti,Ii}=CS/212^3/2)+configurational admixtures, 

I irf,If) = C1/212^1/2)+configurational admixtures. 

The available configurations are such that their con
tributions to If 1 are fairly small; therefore, one may set 

5iC1/2C3/2^140-1/2, (39) 

where Si is the Ml statistical factor. Theoretical 
analysis24 of properties of Fe57 levels indicates that the 
main component of the l/2~ state is (^3/2

2)o^i/2(42%), 
and the 3/2~ state is predominantly (^3/23)3/2(72%). 
This result would require the factor Si to have a rather 
small value (there might also be destructive interference 
in the Ml amplitude from the admixtures). 

In calculating the parity impurities, it is assumed that 
these to first-order enter only as parity admixtures to 
the 2̂ >i/2 and 2^3/2 orbitals: a+=2d3/2, a_= 1̂ 3/2, 
@+=3si/2, /?_= 2̂ 1/2. Using the h.o.p., one finds: 

A+=-(7^3/6)(b0/Ro)2, B+=-(2^/3)(b0/Ro)2; 
(40a) 

22 S. Wahlborn, Nucl. Phys. 37, 554 (1962). 
23 B. Deutch, Nucl. Phys. 30, 191 (1962). 

A_= - (v3/3)(V*o)2, &.= - (5VJ/6)(V£o)2; 

D=-(3V3/2)(b0/Ro)\ X=2vJ/3; (40b) 

CJX= - | (V^o) 2 [ (9±5) / ( l±2.20. ) 
- (9=F1)(1=F1.10K)] . (40C) 

Equation (40c) has been obtained with A = 0.45. Clearly 
the quantity C+ is negative and C_ positive (K<0.1) ; 
they do not approach 0 when K —» 0 but the sum C++CL 

241. Hamamoto and A. Arima, Nucl. Phys. 37, 457 (1962). 
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does. Therefore, the ratio T C ± / X is positive, and R± 
[Eq. (29)] has the same sign as fi(A,Z). Since gff is 
negative and gi = 0 for a neutron, Ri turns out positive 
if econ=0, but negative if ec0u=e. Thus, one cannot with 
certainty predict the sign of Ri; within the present 
considerations, it is possible, however, to derive an 
upper limit for \Ri\. 

For K = 0 . 0 6 , Eq. (40c) gives: - C + / X = + 0 . 0 8 1 , 
-\-C-./X= +0.104. Since the states are actually quite 
complicated, pairing correlations will greatly modify 
the wave functions, making the result intermediate 
between these values. For the same reason, Si is reduced 
relative to 5 (S stands for S+c^.SJ). Assuming the 
product Ci/2 C3/2 to cancel in the ratio U(£l)/U(M1), 
one finds 

| l?i | = | (2 .0d=0.2)(-ei /e)(-1 .91/g,)(5/5i) | 
<(1.0±0.1)<£, (41) 

where 0 is a factor for possible enhancement of -Si 
relative to Ml. The expected reduction of Si and \gc\ 
may increase the value of <$> by as much as a factor of 
~ 3 . However, there is also the possibility that E l does 
not suffer from the same "hinderedness" as does Ml; 
this could give rise to another factor of roughly 10 
[see Eq. (39)]. One may therefore set the limits 
1<0<3O. 

The result reads, if the value F = 4 . 4 X 1 0 - 7 according 
to Michel5 is used: 

| P | < 6 0 | F ( = 2 . 6 X 1 0 - 5 . (42) 

This should be considered a fairly conservative upper 
limit (provided the estimate of F is correct). In fact, 
IPI might be smaller than the value of Eq. (42) by an 
order of magnitude. Attempts have been made to 
measure P for Fe57, the present experimental result25 

being P = ( 2 ± 6 ) X 1 0 - 5 . 

VII. SUMMARY AND CONCLUSIONS 

The general expressions for the irregular transition-
amplitude U(<r',L), for the case of low-lying states in 
odd-^4 nuclei, are presented in Eqs. (13) and (14). These 
expressions have been derived within the independent-
particle model and are restricted to seniority-1 states. 
Prescriptions for their use with the shell model are 
presented in the text for spherical as well as spheroidal 
nuclei (see also the Appendix). The particular form of 
the perturbation h' = G"(T'p leads to simplifications [as 
indicated by Eq. (22)]. For irregular EL transition, the 
Is-term is of crucial importance, and special attention 
has been paid to this question. 

In the case of M 1+.E1, the nuclear matrix-element 
ratio P i is given by Eq. (29). The use of harmonic-
oscillator potential for calculating the amplitudes leads 
to simplifications, in particular Eq. (31), but does not 

25 E. Kankeleit (private communication); Proceedings of the 
International Conference on Nuclear Physics, Paris, July 1964 
(Publication par le Centre National de la Recherche Scientifique, 
Paris, 1964), Vol. II, p. 1206. See also L. Grodzins and F. Geno-
vese, Phys. Rev. 121, 228 (1961). 

crucially influence the result. In connection with the 
illustrating applications, effects of correlations on the 
calculated matrix elements have been discussed. 

The 482-keV transition in Ta181 is a remarkably 
fortunate case, since the penetration factor19 pM 1 has 
been experimentally determined20; this makes it also 
possible to predict the sign of Ri (and hence of P oc FR). 
I t is interesting to compare the tentative limits of F, 
which are obtained in this work, with Michel's estimate5 

F=8.4X10~ 7 , based on the current-current theory of 
weak interactions. The agreement is good for the lower 
limit of F according to Eq. (37). In the analogous case 
of the 343-keV transition in Lu175, the calculations indi
cate a value of \P\ [Eq. (38)] roughly half of that for 
Ta181. The 14-keV transition in Fe57 is a more compli
cated case, because of strong configuration-mixing, and 
the result [Eq. (42)] is not very decisive; the predicted 
upper limit of \P\ is smaller than the experimental 
error.25 

One may conclude that it is possible to calculate, 
under certain circumstances, fairly unambiguously the 
value of the nuclear matrix-element ratio R, using the 
appropriate version of the independent-particle model. 
Such calculation is important, since it makes it possible 
to compare the result of experimentally observed effects 
of parity admixtures (like the circular polarization P) 
with predictions of weak-interaction theories. In particu
lar it has been found that the Ta181 experiment1 does 
not contradict the current-current hypothesis.3 [JSfote 
added in proof. The measurement of the circular polari
zation for Ta181 has recently been repeated [F . Boehm 
and E. Kankeleit (private communication)] giving the 
improved result P = - (2.0zb0.4)XlO~4, which should 
replace the value quoted in the text [Eq. (36)]. I t has, 
furthermore, been brought to the author's attention 
that the collective contribution to the El effective 
charge should actually have a negative and rather small 
value, reducing for proton transition the ratio ei/e, and 
hence the last members of Eqs. (35) and (38), by a 
factor of about 2, without changing the sign. I t should 
also be mentioned that 3-quasiparticle excitations, 
which have not been explicitly considered in deriving 
Eq. (13), may generally give rise to a correction, al
though this is relatively unimportant unless the single-
particle level distribution is very nonuniform at the 
Fermi surface; conservative estimates for Ta181 and 
Lu175 give a correction factor with the value 0.8±0.3. 
Combining the above-mentioned facts, we find that the 
conclusion drawn in this article from the Ta181 measure
ment is not changed. The tentative result for the con
stant F seems somewhat more diffuse, however, and it is 
adequate to state the limits in the form 1 0 _ 6 < F < 10~5.] 
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APPENDIX: NUCLEAR-MODEL EXPRESSIONS 

The Independent-Particle Model and 
Seniority-1 States 

The nuclear Hamiltonian is given by 

ffo=£,*o.,+firPeB, Ao=-ft2(2ifo)-1V2+F(r), (Al) 

where ho defines the independent-particle model used, 
and HTes represents the residual forces. The eigenstates 
of Uo and ho are written 

ffo|^,/,if> = £(£ lir,7)|^,/,Jf>, Aoh>=e,h>. (A2) 

The symbol £ represents all quantum numbers needed 
in addition to the parity (w) and angular momentum 
(I,M); the index rj labels the single-particle states. Con
sider any independent-particle operator of tensor rank 
L (component /x): Ofl(dJL) = J2v°n(6jL)y. Here, 0=0 for 
time-even, Q— 1 for time-odd operator; for example, 0=0 
for ho, and 0=1 —a for the electromagnetic multipole 
operator co(ayL) (see the text). One can write 

<£V/'||O(0,L)||£ir/> 
= E S(&r/,fV/'; w'\ 6,L)(r,'{o(e,L)h), (A3) 

where the S factors generally contain the effects of HreB* 
In defining the last quantity of Eq. (A3) it is necessary 

to distinguish between the cases of the nucleus having 
spherical or nonspherical equilibrium shape.13,14 In the 
first case, V(r) is symmetric with respect to all directions 
in the nucleus; then the angular momentum (j,m) of 
the single-particle orbital is a good quantum number, 
and the definition reads: 

(flo(e,L)W=W+iy*(2j+ i)-^(f\He,L)\\J). (A4) 

If the nucleus has a static deformation, it will here be 
assumed that the shape is axially symmetric (spheroidal) 
and that the adiabatic description of particle and rota
tional motion can be used. The angular momentum is 
then a sum of an intrinsic and a collective part, I = J + R ; 
the component K of J along the symmetry axis of the 
nucleus is a good quantum number. The defmiton reads 

{If,Kflo{6,LW,K) 
= (IKL, K'-K\I'K'){K'|OK>-K(®,L) \K) 

+ (-~iy+K'(IKL, -K'-K\I', -Kf) 
X(-Kf\o_K^K(d}L)\K). (AS) 

The degeneracy of an eigenstate | ri) is 2j+1 in the 
spherical case, and 2 in the spheroidal case. The Fermi 
level is denoted by €p. A certain orbital rj is referred to 
as a particle orbital if e„> eF, and a hole orbital if e,< €/?. 

The considerations are here limited to low-lying 
intrinsic states of nuclei with odd mass-number A. 
These states are assumed to have seniority = 1 . The 
usefulness of the seniority quantum number is the main 
consequence of the strong pairing-correlations known to 
act in nuclei13 (due to the short-range part of Hrea). 
Then Eq. (A3) contains only one term, the label rj being 
uniquely determined by the quantum numbers (£irl). 
In the spherical case, rj stands for 1= j , and r[ for V=/. 
For the intrinsic states of deformed nuclei, t\ stands for 
I=K, and r[ for If=K'. Thus, rj and r[ label the states 
uniquely; r\^tf is assumed to hold. One may write 

<fV/1|0(^,L)||£r/>=5(iy,i?
/;^L)<i?

,|[^,L)li?>. (A6) 

One of the following three situations is encountered: 

(I) Both rj and r[ are particle orbitals (including 
ground state). 

(II) Both rj and r[ are hole orbitals, or one of them 
is a hole and the other the ground state. 

(III) One of the two orbitals t\ and r\f is a hole, and 
the other a particle orbital other than the ground state. 

In the situation (III), the S factor vanishes or is small 
compared to 1, in general. In the following, only the 
situation (I) or (II) will be considered. 

If the further effects of residual interactions are 
neglected, the energy eigenvalues of Ho are given by 

£(£,7r,/)seniority=l=-E(*?) = | €,— €F | . (A7) 

The properties of the 5-factors are fairly simple in this 
case. The following sign rule holds: 

(±l)^S(r},Vr;0,L)>0. (A8) 

Here, as well as in the main text, the upper sign always 
refers to the situation (/), the lower sign to the situation (II). 
For a spherical nucleus, the order of magnitude of | S \ 
is 1 (the actual value is determined by the shell-filling). 
For a deformed nucleus, \S\ is exactly 1. 

The above results for energies and 5-factors may be 
modified due to the effects of residual interactions, 
notably pairing correlations and blocking.13-22 However, 
for high-energy one-particle excitations, these modifica
tions are relatively unimportant; the magnitude of the 
5-factors is somewhat reduced relative to 1. A clue to 
these effects is generally provided by the BCS approxi
mation13,22'26; this gives for the 5 factors in the 
seniority-1 case: 

S(w'; e,L)c~uuf+(-~l)e+W. (A9) 

26 S. Wahlborn, Nucl. Phys. 58, 209 (1964). 
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The Shell Model and the Use of Harmonic-
Oscillator Potential 

In the nuclear shell-model one takes, generally,14 

Ao» Ao(M) = ™ h2(2MQ)~1V*+ V(r) 
+2#(>) l . s+#( r ) , (AlOa) 

where, in particular, one may take 

•W—*r W A, (A10b) 
$(r) = - ¥{MobA)~ll%2- (r 2 /3)] . 

Here, b is a characteristic length, and K and 8 are 
empirical parameters. 

The Spherical-Nucleus Case (5=0) 

If K=0 the eigensolutions read, 

ho\nlmi)=€ni\nhm)f \nlmi)= \Rni(r)ilYmi
l(r)}. (All) 

The following relation is of use in the present work: 

The radial quantum-number n is usually taken to be a 
nonzero integer. For /c>0, the solution is given by 

h | nljm) = enij(K) | nljm); (. , 

| l r f i m > = | l J n , y ( f ) i T F W x 1 / 2 V > , 

where the bracket £ ]TO* means vector coupling; 
i = / ± l / 2 . The following statement is valid, as a 
corollarium of Eq. (A12): If Rnij(r) = Rni(r) is inde
pendent of j , then 

X(n'l'j'\o-i/i\tdj). (A14) 

Here enz
0=ewzX0)> by definition. 

The Spheroidal-Nucleus Case (5>0) 

The solution for K > 0 , 5>0 is expressed in terms of 
the eigenstates for K = 0 , 6=0: 

ho | r*-^>= e^ifW | yvK); 
(A15) 

! 7 ^ ) = E ^ A ( T ^ ) | # / A S ) . 
n?A 

Here |^A2>= \Rni(r)ilYA
l(r)X^1/2), K=A+2; K has 

been defined earlier, w=parity, and y represents all 
other quantum numbers needed. The matrix element 
(y'w'K\vp\yirK) can readily be evaluated, since Eq. 
(A12) is applicable for each component. 

The Harmonic-Oscillator Potential (h.o.p.) 

The Hamiltonian, used in this work, is given by15 

^o=[-^(2ifo)-1V2+(^coo/2)(f/5o)2]--^coo(2l.s+Xl2) 
+ dhM0(r/hmz/ry-(l/3)l, (A16) 

where bo^(h/Moo>o)1/2. The following values are used: 

^oo^43^-1/3MeV, R^l.lA11* F , 

50/^o^0.82^-1/6. 

In Eq. (A16), X is another empirical parameter.15 

For 5=0, the number of oscillators, N=2(n—t)+l, 
is a good quantum-number. The energy eigenvalues 
are given by 

W « ) = ((N+3/2)-K£f(lJ)+\l(l+1)]} *«o, (A18) 

where /(/,/dbl/2) = ±(/+l/2=Fl/2). One finds that 
Rmj(r) — RNi(r) does not depend on j , so that Eq. (A14) 
is valid. 

For d>0, N is not strictly a good quantum number. 
However, one has found that a good approximation15 

results if it is assumed that N has a fixed value for 
the solution, Eq. (A15). Then the eigenvalues of 
ho are written €7JVE:(K), and the eigenvectors \yNK) 
=S|A aik(yNK) | NIA2) [note that TT= ( - 1 ) * ] . It is con
ventional to label the eigenstates by the so-called asymp
totic quantum numbers,13,21 [TV^AjSa, i£"=Aa+2a. 

The evaluation of matrix elements with h.o.p. is a 
relatively simple matter. For the matrix elements of 
(r«r, Eq. (A14), general expressions are presented in 
Ref. 26, including the radial matrix-elements. In the 
deformed case, where Eq. (A5) is applicable, we use 

(y'N'K'\vp\yNK) 
= (N-N*)MfmBKK> E IA L i ' * ou(yNK)ai>*(y'N'lO 

X {N'VhTL' | <r T/i | MAS), (A19) 

where r ^ T A ' S ' |«r-r | iWA2>= (4TT/3)1/2(-- ljz'-zf ^« ' - I 
X{N'V\r\Nl)<2'|(TS,_S12)f YA>*'*FA'-A1 FA

fd0, etc. 
(see, e.g., Ref. 10). The matrix elements of the electro
magnetic multipole operators a>(<r,Z) (see the main text) 
are evaluated according to standard methods9'10,15 (see 
also Ref. 27 for Ml and El in the deformed case). For 
generating the Nilsson wave functions, a previously de
veloped computer program has been used; see Ref. 27. 

General Note 
Finally it should be noted that it is, of course, possible 

to generalize the treatment to other kinds of states than 
those considered here, and to nuclei with even mass-
number. Concerning odd-mass deformed nuclei, the 
present work is restricted to the case I/=Kf, Ii=K{. 
Furthermore, in the actual applications (Ml+£l in 
Ta181 and Lu175), the relations L = / / - / , • and Ki+Kf> L 
are valid, making the two Clebsch-Gordan coefficients 
of Eq. (A5) equal to 1 and 0, respectively, which is a 
somewhat special situation. If the condition Ki+K/<L 
holds, the second term of Eq. (A5) may contribute. 
By the use of Eq. (A5) one can easily include rotational 
states in the treatment; however, the triangular condi
tions limit the number of possible contributions (in 
particular, the condition |Kr—K\ <L is restrictive). 

27 R. T. Brockmeier, S. Wahlborn, E. J. Seppi, and F. Boehm, 
Nucl. Phys. 63, 102 (1965). 
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