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1 and 2. Our new value is significantly different from 
and significantly more precise than the best value pre
viously available, i.e., from the 1960 Mass Table. Agree
ment with the 1964 Mass Table gives some confidence 
in its accuracy. 

Note added in proof. Since our measurements were 
completed, new experimental values for the chlorine 
isotopes have been reported from Minnesota [J. L. 
Benson and W. H. Johnson, Jr., Phys. Rev. Letters 

I. BACKGROUND OF THE CALCULATION 

IN recent years calculations have indicated that 
energies of low states of nuclei near a double-closed-

shell-core nucleus relative to the energy of such a 
nucleus can often be obtained from a shell-theoretical 
description with one or two single-particle states and 
matrix elements of the type 

MUlhJl'jt'J) = (jljJ I P (M) I jl'h'J) • (1) 

Each single-particle state is described by the quantum 
numbers n^ k, ji\ the first two numbers have been 
omitted in (1). In these investigations1 by the "method 
of effective interactions," only a few matrix elements 
(1) appear; they are determined by the best fit to a 
large number of data. Often the fit of this theoretical 
model is excellent. It suggests that the detailed physical 
framework of the shell theory may have considerable 
validity at least in some regions of the periodic system. 

Already long before enough data had become avail
able for these investigations, calculations of the matrix 

* Part of this work was done under the auspices of the U. S. 
Atomic Energy Commission. Calculations were made at the 
Computer Center, University of California, Berkeley. 

1 1 . Talmi, Rev. Mod. Phys. 34, 704 (1962). 

13, 724 (1964)]. Expressed in terms of mass excesses, 
so that they can be compared easily with the earlier 
values in Figs. 1 to 3, these new Minnesota values 
are: Cl3 7=-34 096.7±0.6Mu, C F = - 3 1 146.4±0.6Mu, 
Cl 3 7 -Cl 3 5=-2 950.3±0.6 Mu. 
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elements (1) were made with simple assumptions for 
the two-nucleon interaction F(l,2). These matrix 
elements are then used in larger calculations, which often 
take into account a considerable number of single-
particle states. Nevertheless, there is usually less ac
curate agreement between such calculations and experi
ment than with the method of effective interactions. 

A very striking exception, however, are the calcula
tions by Kearsley2 and True and Ford3 for the nucleus 
Pb206. There is now at least some indication from 
experimental data concerning the spins and parities of 
19 excited states of this nucleus.4 Three of these are 
tentatively identified as due to core excitation. Their 
excitation energies are approximately equal to those of 
probably corresponding excited states in the nucleus 
Pb208. The measured energies of the 16 remaining 
excited states differ by an average of 2.7% from energies 
calculated with a singlet-even interaction between the 
outer nucleons.5 Calculations have also been made for 

2 M . J. Kearsley, Nucl. Phvs. 4, 157 (1957). 
3 W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958). 
4 Nuclear Data Sheets, compiled by K. Way et ah (Printing and 

Publishing Office, National Academy of Sciences—National 
Research Council, Washington 25, D. C ) , NRC 61-4-110 to 126. 

5 W. W. True and K. W. Ford, Ref. 3, Table VIII. 
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The present calculations for Pb210 have been based upon the double-closed-shell-core model with har
monic-oscillator wave functions. All two-neutron configurations of the 2g9/2, limi, I/15/2, 3d5/2, 4si/2, 2g7/2, 
3^3/2 main shell are included. A singlet-even Gaussian effective interaction with parameters determined by 
low-energy proton-proton scattering and zero triplet-odd effective interaction give, within 50 keV, the 
binding energy of the two outer nucleons determined from experimental data and the energies of four ex
cited states which have been experimentally identified. An empirical relation between matrix elements for 
slightly different parameters is described. I t indicates that the interaction and the harmonic-oscillator 
parameter v used here also give the general agreement with experiment which had been obtained for Pb206 

with similar parameters. Calculations with a Yukawa singlet-even interaction and with additional attractive 
and repulsive central and central-]-tensor triplet-odd effective interactions were made for Pb210; they all 
lead to somewhat worse agreement. None of these interactions is, however, definitely excluded by the pres-
sent data. Level schemes, tables of level energies and of some wave functions, and detailed formulas for the 
calculation of 7-ray transition probabilities are given. A model for the 2.15-MeV |~ state of Pb209 is also 
discussed. 
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two more complicated models which include an interac
tion between the outer nucleons and the surface of the 
core. One such calculation6 leads to about equally good 
agreement with the energies now available; another7 to 
considerably poorer agreement. 

The calculations with the simple model which had 
been used for Pb206 can also be made for Pb210, which 
has two neutrons outside the Pb208 core. Such calcula
tions are described in the present paper. A harmonic-
oscillator single-particle potential is used. Single-
particle energies are taken from the experimental 
spectrum of Pb209. A model for the 1/2" state in this 
spectrum will be discussed (Sec. I I) . Results for both 
Gaussian and Yukawa singlet-even interactions (Sec. 
I l l ) are given. The effects of additional central and 
central-f tensor triplet-odd interactions are also inves
tigated (Sec. V). For all interactions, the diagonal and 
off-diagonal matrix elements (1) for all configurations 
arising from all single-particle levels of the N = 127 to 
184 neutron shell have been calculated, by the recent 
method of Horie and Sasaki8 (Sec. IV). Multiple-
precision fixed-point arithmetic9 was used in the calcula
tion of these matrix elements on a digital computer.10 

After the computational part of the present paper 
(Sec. IV. 2) was completed, new experimental data on 
Pb210 were published.11 They provide a welcome 
opportunity for a more extensive comparison between 
theory and experiment. 

II. LEVELS OF Pb209 

In the reaction Pb208(d,£)Pb209 eight levels of Pb209 

with excitation below 3 MeV have been identified.12 One 
of these is especially weak; its probable spin and parity 
assignment is l /2~. The other seven are stronger and 
their probable assignments are those of the seven 
single-particle levels of the iV= 127 to 184 shell. The 
levels are shown in Fig. 1. I t is noteworthy that the 
next highest state strongly excited in this (d,p) reaction 
is at 3.97 MeV, that is, 1.45 MeV above the 3dd/2 level.12 

A detailed calculation for the l /2~ state at 2.15 MeV 
would require diagonalization of a matrix for two-
particle+one-hole configurations. A calculation with a 
zero-range interaction, without configuration interac
tion, has led to an estimate of the energy of this state.13 

A simplified model will be discussed here. I t is based on 
the assumption that the two particles are in the same 
state as in the lowest state for Pb210, with J'=0. This 
state is taken to be a superposition of the states j 2 / ' = 0 

6 Reference 3, Table XVI. 
7V. N. Guman, Yu. I. Kharitonov, L. A. Sliv, and G. A. 

Sogomonova, Nucl. Phys. 28, 192 (1961). 
8 H. Horie and K. Sasaki, Progr. Theoret. Phys. (Kyoto) 25, 

475 (1961). 
9 R. M. Baer and M. G. Redlich, Commun. Assoc. Computing 

Machinery 7, 657 (1964). 
10 M. G. Redlich and R. M. Baer (unpublished). 
11 P. Weinzierl, E. Ujlaki, G. Preinreich, and G. Eder, Phys. 

Rev. 134, B257 (1964). 
12 P. Mukherjee and B. L. Cohen, Phys. Rev. 127, 1284 (1962). 
13 H. Pollak, Bull. Classe Sci. Acad. Roy. Belg. 47, 1035 (1961). 
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FIG. 1. The en
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Pb208(<^)Pb209 (Ref. 
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assignment. 
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of several configurations (Sec. V). Then the hole state 
must be 3^>i/2, to give / = 1/2. This situation can also 
be pictured as two particles in the iV= 127 to 184 shell 
with a Pb207 l /2~ core. The energy differences between 
the following two pairs of nuclei should be equal: 

Pb2 0 80+, Pb 2 0 7 l /2~ and Pb2100+, Pb209 1/2-. 

For Pb210 the interaction between the 3^i/2 neutron and 
the two outer neutrons has been neglected. With the 
masses of the ground states of these nuclei (Sec. V, 
Ref. 27), one obtains an excitation energy 5=2.197 
MeV for the Pb209 1/2" state. 

Another estimate for 8 based upon the same model 
can be made in a quite different way. This estimate 
requires the energy e needed to excite one particle from 
a 3pi/2 state of the core into a 2g9/2 state outside the 
core. This energy will now be estimated in two ways: 
(a) The first estimate is e=3.34 MeV, the average of 
3.198 and 3.475 MeV, the energies of the 5~ and 4" ex
cited states14 of Pb208. The Pb207(d,£)Pb208 experiments12 

suggest that these states are mainly (2g9/2) (Spi/z)"1. 
The fact that these states differ in energy by 0.277 
MeV indicates that e actually depends somewhat upon 
the relative orientation of the spins \ and § of the Pb207 

core and the outer particle, (b) Another estimate of e can 
be based upon the assumption that the energy differences 
between the following pairs of nuclei should be equal: 

Pb209f+, Pb208 (2g9/2)(3^1/2)-1 and Pb208 0+ Pb 2 0 7 |~ . 

With the experimental masses (Ref. 27), one obtains 
€=3.432 MeV. 

A state of (2g9/2)2(l^i/2)"~1 would have energy ~ € 
relative to (2g9/2)1 if there were no interaction between 
the outer nucleons. Actually, there will be appreciable 
interaction, and their wave function will again be 
assumed to be that for the ground state of Pb210 with 

14 These are the second and third excited states of Pb208. The 
first excited state at 2.165 MeV, with 3~", does not involve the 
configuration (2g9/2) {3py2)~

l. 
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admixtures to (2g9/2)
2 and with binding energy approxi

mately 1.25 MeV, from experiment as well as from 
calculations (Sec. V). Therefore, the actual excitation 
energy of the 1/2"" state in Pb209 should be approximately 
8=3.34-1.25 = 2.09 MeV with the first e, and 2.18 
MeV with the second e. The close agreement of these 
estimates with the measured energy may, however, 
be accidental, and this model may not be accurate. 

In the present paper the single-particle energies will 
be assumed to be those of the remaining seven levels in 
Fig. 1. The possibility that the lju/2 and lin /2 levels 
should be interchanged12 will be examined. 

III. EFFECTIVE INTERACTIONS BETWEEN 
THE OUTER NUCLEONS 

The interaction of (1) will be written as 

V(l,2) = ZxVz(l,2)PI, (2) 

where Px is one or a linear combination of exchange 
operators. The subscript X can be W, M, B, or H; the 
corresponding operators are P ^ = l , PM= space-coor
dinate exchange operator, PB = spin-coordinate ex
change operator and PH~PMPB. The operator Px can 
also be any linear combination of the preceding four 
operators. In particular, operators Px with X=SE 
(singlet even), TE (triplet even), and TO (triplet odd) 
will be used here. 

Only the singlet-even and triplet-odd interactions are 
needed for Pb210. In the present calculation, the singlet-
even interaction between two free protons at <3.6 MeV 
with the parameters of Jackson and Blatt15 will be used. 
The detailed shape is not determined by these data; 
here, Gaussian and Yukawa potentials will be used. 
They are written as 

FsE(l,2)=F0exp(-r2An
2), (3) 

with V0= -31.61 MeV and rn= 1.7765 F, and 

VB*(l,2)=Vo<r'*»/(r/rn)f (4) 

with Vo= -47.31 MeV and r n= 1.1653 F. The poten
tials (3) and (4) are based upon the effective ranges and 
scattering lengths of Table IX, Ref. 15. These differ 
only slightly from more recent data.16 It will be seen in 
Sec. IV. 1 that the nuclear matrix elements are not 
sensitive to changes of the order ~ 5 % in the effective 
range, or the related parameter rn. 

Calculations have been made with two different 
assumptions for the triplet-odd interaction. The first 
is simply 

FTO(1,2)=O:FSE(1,2) , Yukawa or Gaussian (5) 

where a is a constant. The second is based upon the 

15 J. D. Jackson andJJ. M. Blatt, Rev. Mod. Phys. 22, 77 (1950). 
16 M. A. Preston, Physics o£ the Nucleus (Addison-Wesley 

Publishing Company, Inc., Reading, Massachusetts, 1962). 

triplet-even (TE) interaction 

r-g—r/rcn g—r/rtn—i 

F T E ( 1 , 2 ) = F O | +7S12 , (6) 
L f/fen r/ftn J 

with the tensor operator 5i2. Feshbach and Schwinger17 

calculated tables of the sets of parameters for which 
the interaction (6) will describe the TE neutron-proton 
scattering at low energies and the properties of the 
ground state of the deuteron. Here the following param
eters will be used: 

rcn= 1.1653 F , V0= -41.73 MeV, 

r,n= 1.5350 F , 7=0.7820. 

The range parameter rcn has been chosen equal to the 
rn for the SE interaction (4). The remaining parameters 
are determined by the fit to experimental data.18 The 
second assumption for the TO interaction is now 

F T O(1,2) = - 0 . 5 F T E ( 1 , 2 ) , (7) 

with FTE(1,2) given by (6). 
There is no a priori reason to assume that these 

interactions should also be accurate for the outer 
nucleons in a nucleus, which are expected to have much 
larger energies. Some recent calculations for Bi210 and 
Po210 were based on an interaction with a Gaussian SE 
part which had considerably different parameters.19 In 
the present paper, however, the consequences for Pb210 

of interactions based upon the low-energy data will be 
examined. 

IV. DETAILS OF THE MODEL AND 
THE CALCULATIONS 

1. The Harmonic-Oscillator Parameter v 

The harmonic-oscillator single-particle potential con
tains just one parameter20 v. For all states of the N—127 
to 184 shell except I715/2, the equation 

(nlj\r*\nlj)= 15/(2v) (8) 

holds. The wave functions have a factor exp(—%vr2). 
The range/radius parameter X, defined by Horie 

and Sasaki,8 is useful for calculations with either 
Gaussian or Yukawa interactions. With rn defined by 
(3) or (4), this parameter is given by 

\ = rn(ivy\ (9) 
An empirical rule. If SflZi and 3TC2 are two central-

interaction matrix elements of type (1) for Pb210, for 
either Gaussian or Yukawa shape, with F0,i, Xi, and 
Vo,2, X2, respectively, then 

mb/Mi** Fo,2 X2
2/Fo,i \i2, (10) 

17 H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951). 
18 These parameters differ slightly from one of the sets given by 

Feshbach and Schwinger, Ref. 17, Table V. An interpolation has 
been made, by means of their Rule 4, p. 199. 

19 Y. E. Kim and J. O. Rasmussen, Nucl. Phys. 47, 184 (1963). 
2 0 1 . Talmi, Helv. Phys. Acta 25, 185 (1952). 
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if X2 and Xi differ by ~ 5 % or less. In the region of 
parameter X values used in the present paper, the rule 
(10) is usually accurate to about do^x% if X2 and Xi 
differ by x%. Occasionally, a very large deviation 
appears; the largest found was 2.5#%. 

This rule originated with the observation that matrix 
elements 3H of type (1) change only slightly with 
changes in the effective range ro of the two-nucleon 
interaction, for a given v. Such changes affect the well 
depth parameter s only slightly, but affect rn very 
strongly, as is seen from Jackson and Blatt, Ref. 15, 
Eqs. (11.3 G) and (11.3 Y). The depth V0 is given by 

VQ= csr7r
2=^csv\~2, 

with c equal to a constant which depends upon the 
shape of the interaction. Here, cs is almost constant 
when r0 and rn are changed, and (10) leads to approxi
mately the same matrix elements for two interactions 
differing by a few percent in rn or r0. 

Equivalent v for Pbm. The calculations2'3 for Pb206 

had been made with potentials which differed somewhat 
from (3) and (4). With the above rule, the results of 
True and Ford6 are approximately those obtained with 
(3) and v=0.20539 F~2. The X values differ by x= 1.4%. 
The results of Kearsley2 are equivalent to (4) plus (5) 
with a =—0.559, and y=0.16832. Here, the X values 
differ by *=5.8%. 

2. The Horie-Sasaki Method 

The two-nucleon potential Fx(l,2) of (2) will be 
written as 

Vx(l,2)=VXQ(r)+Vxi(r) S12. (11) 

The subscript K of Vx<(r) equals 0 for the central and 2 
for the tensor interactions. Matrix elements of each 
term of (11) can be calculated for harmonic-oscillator 
wave functions by use of the Horie-Sasaki method.8 In 
this method, each such matrix element is expressed as 
a linear combination of radial integrals i£m

(,c), which 
depend only upon VXK(T) and v. The coefficients of the 
Km

M are independent of VXK(I) and v. The subscript 
m takes integer values < 14 for states up to and includ
ing IJ15/2. Thus, 

(jiJ2J\VxK(r)PxQK\ji'J2'J) 
= E » Cw( / i i , Jx'jY,/; X,K) Km™ (12) 

with <2o=l, and Q2=Si2. The coefficients Cm can be 
expressed as d1/2 e/f, with d, e, and / integers, when 
harmonic-oscillator single-particle wave functions are 
used. The Km

M are related21 to the /W
(K) defined in 

Ref. 8 by 
Km

M = Jm w X 2- / (2m+1) 11.. (13) 

These K integrals can be written as simple linear 
combinations of the Talmi integrals h of Ref. 20. 

21H. Horie (unpublished work). 

For the zero-range central interaction 

Vxo(r)Px=r-H(r)Px, (14) 

and the singular zero-range tensor interaction 

Vx2(r)PxS12=r-*8(r) PXS12, (15) 

the K integrals Km
M have the nonzero values Km

i0) 

= (2^A)1/2 for m>0 and Km™= (2m+3)V5 for 
m>l. Here, I\ is a Talmi integral.20 These values 
permit a check of the coefficients Cm, because the matrix 
elements of (14) and (15) can be calculated in an 
entirely independent way for both central22 and tensor23 

interactions. 
The calculations of this paper have been carried out 

on an IBM 7090/94 computer. Multiple-precision 
fixed-point arithmetic9 was used throughout (a) the 
calculation of the coefficients Cm and (b) the separate 
calculation of the zero-range matrix elements needed to 
check the values of each set of these coefficients.10 

Decimal approximations were not used for any part of 
the calculations (a) or (b). 

Double-precision floating-point arithmetic was used, 
however, in FORTRAN II programs for the calculation of 
the K integrals for Gaussian and Yukawa interactions 
with range >0. These integrals depend upon the range/ 
radius parameter X of Eq. (9). The integrals calculated 
by the programs for both Gaussian and Yukawa 
interactions for the values X=0.2 (0.1) 1.0 have been 
compared with tables21 and some additional calcula
tions, all made with a desk calculator. 

After the Cm and the Km
M have been calculated, the 

simple final steps of Eq. (12) are carried out, also with 
double-precision floating-point arithmetic. However, 
only a few sample checks have been made of this part 
of the calculation. No separate, entirely independent 
check of each final matrix element for range > 0 has 
been made. Therefore, the accuracy of these matrix 
elements is less certain than that of the coefficients 
Cm. A check of the programs for the final matrix 
elements has, however, been made for the N=S3 to 
126 shell. Energies obtained from diagonalization of 
matrices for this shell with the model and parameters of 
True and Ford5 have been compared with all energies 
of their Table VIII. The average magnitude of the 
difference between an energy of their table and that 
calculated with the present method is below 2 keV. 
The largest discrepancy is 7 keV. 

3. The Shell Model for Pb210 

There are 28 configurations of the type 

nihji, n2hJ2 
22 N. Newby, Jr. and E. J. Konopinski, Phys. Rev. 115, 434 

(1959); A. de-Shalit, Phys. Rev. 91, 1479 (1953). 
23 The diagonal matrix elements of the interactions (15) have 

been calculated for configurations (nl)2 in L-S coupling by 
M. Moshinsky, Nucl. Phys. 8, 19 (1958). A general formula has 
since been derived by the author (unpublished work). 
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FIG. 2. (a) Observed levels of Pb210. The ordinate is the energy of interaction between the two outer nucleons. The energy of the 
nucleons in the ground state is taken from data as —1.250 MeV. The remaining schemes show calculated levels: (b) Gaussian SE 
interaction, (c) Gaussian SE+repulsive TO interaction, from Eqs. (3) and (5) with «=— 0.5. (d) Yukawa SE interaction, (e) Yukawa 
SE+repulsive TO interaction from Eqs. (4) and (5) with a =—0.559. (f) Yukawa SE+Feshbach-Schwinger central-{-tensor TO 
interaction, from Eq. (7). The radius parameter v equals 0.20539 F"2 for both (b) and (c), and 0.18457 F"2 for (d), (e), and (f). Theoret
ical levels with parity + are labeled Jx; those with parity — are labeled J~x. Here, x indicates the order, with # = a for the lowest state. 
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for the seven single-particle states of Fig. 1. Taking 
into account the permitted values of / for each con
figuration, there are altogether 141 states with two 
neutrons in the N= 127 to 184 shell. All diagonal and 
off-diagonal (interconfiguration) matrix elements for 
all these states have been calculated, for each interaction 
and each set of parameters described in Sec. V. An 
earlier calculation based upon a model which includes 
an interaction between the outer nucleons and the 
surface of the core took into account five single-particle 
states.7 

The diagonal single-particle energies will be denoted 
A(ji). They are taken relative to the energy of the 
2g9/2 state (see Fig. 1). Matrices of the type 

A=\\M{jijk ,ji>jk>,J)+ZMji)+A(i*)IM* (16) 

with Sfll from (1), were formed for all possible values of 
/ and parity. They were diagonalized on the computer. 
Each diagonalization was checked by substitution of 
each eigenvalue e» and its corresponding eigenvector Bi 
into the matrix equation ABi— uBi. 

In these calculations, all conventions of Racah24'25 

have been followed. In particular, spin and orbital 
angular momentum couple in the order 

s+l=j. (17) 

The signs of the radial wave functions and the param
eter v are those of Talmi20 and Horie and Sasaki.8 

V. RESULTS OF THE CALCULATIONS 

1. Experimental Data 

It will be assumed here that the binding energy of an 
outer neutron in the 2g9/2 or in a higher state due to 
its interaction with the core does not change with the 
addition of a second outer neutron. If such a neutron is 
added to Pb209, it will, however, interact not only with 
the core, but also with the other outer neutron. The 
state of lowest energy will be a superposition of states 
of (2g9/2)

2 and higher configurations. Here, B will 
denote the binding energy of the two outer neutrons in 
their lowest state minus the binding energy which they 
would have in the lowest state [configuration (2g9/2)2] 
if each outer nucleon interacted only with the core, that 
is, if the interaction between the outer nucleons were 
exactly zero. B is given by 

B=SnQ?bm)-Sn(Pb™), (18) 

where Sn is a neutron separation energy. The energy B 
can be obtained from three sources: (i) recent data26 

on S„(Pb209); on the reaction Bi209(^,7)Bi210, and the 
0--decay energies'of Pb209 and Pb210; (ii) a new table of 

24 G. Racah, Phys. Rev. 62, 438 (1942); Physica 16, 651 (1950). 
25 A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic 

Press Inc., New York, 1963). 
26 Reference 4, NRC 5-3-88 to 121 (May 1963). 
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FIG. 3. Continuation of the level schemes of Fig. 2 (a) and (b) 
up to energy E—3.0 MeV (energy of excitation 4.25 MeV). 
Part (a) shows the observed levels, Part (b), those calculated for 
the Gaussian SE interaction. Experimental results indicate that 
the (5~) state with E=2.27 MeV (excitation 3.52 MeV) is core-
excited. (The level ll'b should be at 1.94 MeV instead of 2.94 
MeV.) 

masses of heavy elements27; (iii) the 1961 Table of 
Nuclidic Masses.28 These values of B are compared 
with the calculation using the singlet-even Gaussian 
interaction (3) and v=0.20539 F"2, described in Part 2 
of this section, and plotted in Fig. 2(b): 

Experimental data (i) 
(ii) 
(iii) 

Theory, SE Gaussian 

1.243±0.029MeV, 
1.235 MeV, 
1.273±0.070MeV. 
1.254 MeV. 

In Fig. 2 (a), experimental energies are plotted. The 
energy of the ground state is taken as —5=—-1.250' 
MeV. The energies of the excited states are then given 
by the data of Weinzierl, Ujlaki, Preinreich, and Eder.11 

27 V. E. Viola, Jr., and G. T. Seaborg (to be published). 
28 L. A. Konig, J. H. E. Mattauch, and A. H. Wapstra, Nucl, 

Phys. 31, 18 (1962). 
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2. Results for Several Interactions 

Each of the theoretical level schemes of Fig. 2 (b)-(f) 
will be described separately, and some calculations for 
which no schemes are given will be discussed. The 
levels with parity + are labeled Jx, and those with 
parity — are labeled J~x. Here x=a, b, c, • • •, denotes 
the order of the states; the lowest state with / is J a. 
For some / , there is only one state; then the label x is 
omitted. The energy of the state Jx due to the two-
nucleon interaction is denoted E(Jx); it is the ordinate 
of Fig. 2. In many instances there are two or more 
states with calculated energies which differ only by a 
few keV. For all these states only one line is drawn and 
it is marked with the labels of all the states, separated 
by commas. 

Figure 2 (b) shows the results for the Gaussian inter
action (3) between nucleons in SE states only. The 
interaction is zero for TO states. The radius parameter 
v equals 0.20539 F~2. This value leads to approximately 
the best agreement with all energies now available. 
From Eq. (7), the square root of the expectation value 
of r2 for all single-particle states except 1J15/2 is given by 

(r2)i/2=6.043 F = 1.017X2101'3 F. 

The above value of v happens to be also the value 
which leads to the results of True and Ford5 for Pb206, 
from the empirical rule of Sec. IV. 1. Another calculation 
(not shown) has been made for the exact interaction and 
v of True and Ford. The average difference between the 
energies of this calculation and those of Fig. 2 (b) is far 
below 1%. The maximum absolute energy difference 
for all levels is 15 keV.29 

Figure 2 (c) gives the levels for the same SE interac
tion and v as for Fig. 2 (b), with the additional repulsive 
central TO interaction (5) with a =—0.5. The results 
are rather similar to those for the SE interaction alone, 
There is, however, a sharp difference in E(la) for the 
two interactions: The value for Fig. 2 (b) is 0.770 MeV; 
for Fig. 2 (c), it is 1.213 MeV. A separate calculation 
has been made for an attractive TO interaction (5) 
with a— +0.5. The resulting levels are displaced relative 
to those of Fig. 2 (b) by approximately the same 
magnitudes as those of Fig. 2 (c), but in the opposite 
direction. 

Figure 2 (d) shows the results for the central Yukawa 
interaction (4), between SE states only. Here, v 
= 0.18457. This parameter is considerably larger than 
the y=0.16832 determined by the fit to the work of 
Kearsley.2 From the rule of Eq. (10), the magnitudes of 
the matrix elements increase approximately linearly 
with v, if the other parameters are kept fixed. The 

29 The calculations of True and Ford (Ref. 5) and Kearsley 
(Ref. 2) did not, however, include all of the configurations of the 
^ = 8 3 to 126 main shell. Calculations by the present methods 
indicate that the inclusion of all these configurations leads to 
agreement similar to that of True and Ford, provided that a 
value of v approximately 8% lower than that given by them 
is used. 

magnitude of the energy of the lowest state with each 
/ , obtained after diagonalization of the matrix, also 
usually increases with v, although not necessarily 
linearly. The large v of Fig. 2 (d) has been chosen in an 
attempt to fit the energy of the 2+ state. We see that 
the calculated \E(2a)\ is still too small, although 
|£(0a)| is too large. 

Figure 2 (e) gives results for the same SE interaction 
and v, with the repulsive central TO interaction used 
by Kearsley, that is, (5) with a =—0.559. It is still 
not possible to fit both the binding energy of the ground 
state and the excitation energy of the first 2+ state. In 
Pb206 there is a similar, but smaller discrepancy.2 The 
state la lies appreciably higher than for the SE interac
tion, as in the Gaussian level schemes. 

Two further calculations with Yukawa shape and a 
central TO interaction equal to —0.559 times the SE 
interaction have been made. For the first, the same 
potential as in Fig. 2(e) was used, but a smaller har
monic-oscillator parameter, namely, i>=0.16832. This 
v was determined by the fit to the work of Kearsley2 for 
Pb206 (Sec. IV. 1). This leads to a spectrum very similar 
to Fig. 2 (e), but shifted upward, with .E(0a) = —1.14 
MeV. The 2a level lies at -0.249 MeV, which is too 
high. For the second calculation the exact parameters of 
Kearsley were used. The maximum absolute energy 
difference between corresponding levels in the two 
calculations is 14 keV. 

Figure 2 (f) shows the levels for the same SE Yukawa 
interaction and v as in Fig. 2(d), but the central + 
tensor TO interaction (7). Its strength is — \ times that 
of the Feshbach-Schwinger TE interaction. The level 
schemes of Fig. 2 (e) and (f) are similar for the lowest 
five levels, but they differ qualitatively for some higher 
levels. For example, in Fig. 2 (f) the state la almost 
coincides with 10a and 0b; in Fig. 2 (e) it lies about 
0.5 MeV higher. 

It does not seem possible to exclude either this inter
action or a central TO interaction at the present time. 
Nor can a Yukawa shape for the SE interaction be 
excluded. The Gaussian SE interaction does, however, 
lead to the best agreement with the data now available, 
of all the interactions investigated so far. Further 
details will be given for the results with this interaction. 

3. Results for the Gaussian SE Interaction 

For this section the SE interaction is just (3) with the 
parameters of Sec. I l l ; the TO interaction equals zero, 
and v=0.20539. The level diagrams of Fig. 2 (a) and 
(b) are extended to higher energies in Fig. 3. There are 
several groups of levels, with gaps between them. The 
first group, levels 0a to 8a, belongs predominantly to the 
configuration (2g9/2)

2, the next, levels 10a to la except 
0b} belongs to 2g9/2lin/2. The next higher group of 
levels, 2d to 7b together with the levels 0b, 2c, and 3~a, 
belongs predominantly to three configurations; these 
are: 2gmMm, (Uiy*)2, and l/i5/22g9/2. 
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TABLE I. Energies of excited states in MeV, calculated for a singlet-even Gaussian interaction (3) with Fo = — 31.61 MeV and 
rn= 1.7765 F, and harmonic-oscillator parameter v=0.20539 F~~2. Each energy is given relative to the energy of the ground state; it is: 
E(Jx)—E(0a). The label x ahead of each energy indicates the order of the state; a is the state with lowest energy for given / . All 
energies below 4.25 MeV are given, and also a few of the higher ones. The energies are listed by the configuration which has the largest 
amplitude amax in the corresponding wave function. If amax>0.99, the energy is given in italics. 

Parity -f-
(2#9/2)2 

(linn)2 

2^9/21*11/2 

2^9/23^5/2 

2^9/246*1/2 

2g9/22g7/2 

2g$/23dz/2 

(lil5/2)2 

Him3d5/2 

1*11/245*1/2 

1*11/22^7/2 

1^11/23^3/2 

(3<*5/2)2 

Parity — 
1^15/22^9/2 

l i l5 /2 l* l l /2 

1.715/23^5/2 

(1715/2)2 

1^*15/22^9/2 

l i l 5 /2 l* l l / 2 

/ = 0 

a 0 
b 1.651 

d 3.649 

c 3.359 

/ = 1 1 

a 2.565 
b 3.191 

1 

a 2.024 

b 3.724 

12 

4.008 
a 2.664 
b 3.430 

2 

a 0.802 
d 2.345 
b 1.964 
c 2.101 

e* 3.625 
/ a 3.728 

(a) 

h 4.093 

g 3.915 

3.428 

13 

2.672 

3 

a 2.007 
b 2.694 

d 3.724 

e 3.759 

c 3.584 

f 4.338 

a 2.157 
b 3.408 

14 

4.019 

4 

a 1.041 
d 2.596 
b 1.966 
c 2.398 
e 3.053 
g 3.620 

h 3.723 
i 3.855 
/ 3.517 

I 4.432 
k 4.236 
j 4.155 

a 2.517 
b 3.427 

5 

a 2.001 
b 2.769 
c 3.284 
e 3.724 

f 3.735 

d 3.567 
g 4.054 
h 4.424 
i 4.514 

a 2.439 
b 3.381 
c 3.930 

6 

a 1.123 
d 2.681 
b 1.938 
c 2.564 

g 3.632 

e 3.331 
i 3.949 
/ 3.519 
h 3.914 
j 4.386 
k 4.507 

a 2.598 
b 3.429 
c 4.183 

7 

a 1.993 
b 2.814 

d 3.724 

c 3.558 

e 4.463 
f 4.536 

a 2.512 
b 3.349 
c 4.069 

8 

a 1.153 
c 2.693 
b 1.873 

d 3.089 

/ 3.974 
e 3.412 

g 4.440 

a 2.629 
b 3.430 
c 4.208 

9 

a 1.983 

b 4.485 

a 2.546 
b 3.300 
c 4.134 

10 

b 2.741 
a 1.613 

c 3.996b 

a 2.648h 

b 3.430° 
c 4.224 

a Both states 2e and 2 / have the largest amplitude for 2g9/22g7/2. The (Iju/z)2 amplitude is only slightly smaller for both of them. 
b Continued for J > 1 0 at bottom of table. 

In Table I the energies of excitation E(Jx)—E(0a) 
are given for all levels up to 4.25-MeV excitation and 
for a few higher ones. They are listed by that configura
tion which has the largest amplitude #max

 m the wave 
function of the state. Many states are rather pure, with 
#max>0.99. The energies of these states are italicized in 
the table. It must be emphasized that even though 
#max>0.99, the amplitudes of other configurations may 
still be rather large. For example, the wave function 
for S~a has amplitudes 0.9908 and 0.1177 for lju^gw 
and 1̂ 15/23̂ 5/2, respectively. 

The wave functions for all states with E(Jx)<2AS 
MeV (excitation <3.40 MeV) and parity + except 
those with amax>0.99 are given in Table II. Only two 
states with parity— and E(Jx)<2.15 MeV have 
^max^0.99. Their wave functions are specified by the 
amplitudes of the following table: 

J~x 
E(J~x) 
in MeV lil5/22g9/2 lil5/2l^ll/2 ^jlhl^glli 

11-a 1.311 
1.937 

-0.9868 
0.1450 

0.1376 
0.9855 

0.0850 
0.0880 

Configuration interaction plays an important part in 
determining the energies of some states. For example, 
the state (2g9/2)2 with 7 = 0 has energy —0.805 MeV; 
configuration interaction leads to a state 0a with —1.254 

MeV. The wave functions generally do not vary greatly 
with v, or with an additional TO interaction. 

Comparison with experimental data. The energy of the 
ground state, E(0a), was already compared with data 
in Part 1 of this section. Four excited states have been 
at least tentatively identified; their energies of excita
tion, E(Jx)—E(0a), from theory and from experiment11 

are given below. 

State 2a 4a 6a Ac 

Theory 
Experiment 

0.802 
0.795 

1.041 
1.09 

1.123 
1.17 

2.398 MeV 
2.40 MeV 

Comparison of the experimental and theoretical 
schemes of Fig. 2 (a), (b), and Fig. 3 suggests the 
identification of several other states primarily on the 
basis of the proximity of one or two possible theoretical 
states to an experimental one. More experimental 
information is needed, however, before one can trust 
such identifications. The excited state at 2.93 MeV with 
£=1.68 MeV [Fig. 3 (a)] does not lie close to any 
calculated level. Possibly it is one of the first core-excited 
states. 

Interchange of liu/2 and lj'15/2 single-particle states. As 
mentioned in Sec. II, it is not entirely certain from 
experiment that the order of these two states in Pb209 

is correct. The SE Gaussian interaction calculations 
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have been repeated with the assumption that these two 
single-particle levels are interchanged. The changes in 
the energies of the lowest five levels are only of the 
order of 20 keV. There is now a state 46 at 2.357 MeV 
excitation; this leads to somewhat worse agreement with 
a state identified as (4+) than the 4c state of Table I. 
The changes in energy for those states which are 
rather pure (amax>0.99) are consistent with the 
expectation that states of configurations with one lin/2 

state would be raised by approximately 0.64 MeV, 
with a corresponding lowering of configurations with 
one lju/2 state. For example, the states la, 3a, 5a, 7a, 
and 9a, which are predominantly 2g9/2liii/2 (see Table 
I), should now have energies approximately 2.66, 2.65, 
2.64, 2.63, and 2.62 MeV, respectively. These predic
tions are correct within 0.02 MeV. At present, neither 
these nor other states whose energies change substan
tially with the exchange of the lin/2 and ljn/2 single-
particle states have been identified experimentally. 
Therefore it is not possible now to draw a conclusion 
from Pb210 about the order of these states. 

Remarks about y-ray transition probabilities. When 
more experimental data on Pb210 become available, it 
may be useful to calculate estimates of Y-ray transition 
probabilities with the wave functions of the present 
investigation. Such calculations must be made in the 
scheme of Refs. 24, 25, and 20, because this scheme was 
used in the calculation of the wave functions. If the 
phase conventions are not followed strictly, some 
calculated transition probabilities may be incorrect by 
a factor of a few orders of magnitude. Therefore, 
details of such calculations will be given in the Appen
dix. The Y-ray transition probabilities are, however, 
much more sensitive to details of the wave functions 
than are the energies. They may depend strongly upon 
very small admixtures of core-excited states. Also, 
it is usually necessary to make a more or less arbitrary 
assumption about an "effective" neutron charge in the 
calculation of these transition probabilities. 

VI. DISCUSSION OF THE RESULTS 

It has been known for a long time that the nucleon-
nucleon scattering data at low energies are consistent 
with simple effective interactions in the singlet and 
triplet states with relative angular momentum zero 
(XS and 3S states). To account also for the properties of 
the ground state of the deuteron, a somewhat more 
complicated effective interaction is needed, and its 
parameters are not uniquely specified.17 Even this 
interaction, however, is much simpler than those which 
appear to be necessary to account for nucleon-nucleon 
scattering at high energies.16 

At the present time there is no indication that any 
of the simpler interactions can account for the properties 
of nuclei due to the inner nucleons, for example, for the 
total binding energy of the ground state of Pb208. How
ever, the results for Pb206 and Pb210 suggest the possibil-
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ity that a simple effective interaction which gives 
agreement for XS proton-proton scattering at low 
energies leads to approximately correct matrix elements 
for not only XS, but also x£>, 1g, • • • states of relative 
angular momentum of two outer neutrons of these two 
heavy nuclei. At present, the agreement appears to be 
somewhat better with a Gaussian shape for this effective 
interaction than with a Yukawa shape. 

Although the SE Gaussian and Yukawa interactions 
(3) and (4) are equivalent for low-energy p-p scattering, 
they are not accurately equivalent for the outer neutrons 
of Pb210. A value of the harmonic-oscillator parameter v 
of about 0.205 F~2 gives the best fit for the Gaussian 
interaction (3) in Pb210, whereas *>=0.185 F~2 or still 
less for best fit with the Yukawa interaction (4). Even 
for these parameters, the energies of corresponding 
states differ somewhat. 

For many states, the main contribution to the binding 
energy of the outer nucleons calculated here comes from 
the SE interaction. Even a substantial TO interaction 
will make only a small contribution to their matrix 
elements. This is especially true for the lowest five 
states. It is not surprising, therefore, that it does not 
seem possible at present to draw any detailed conclu
sions about the effective TO interaction. It seems 
probable, however, that the strength of its central 
part lies in the interval from —1/2 to +1/2 times that 
of the SE interaction. A more complete level scheme for 
Pb210 may yield information on this strength. A central 
+tensor TO interaction (7), with —1/2 times the 
strength of the TE interaction (6), has a large effect 
only on the energy of the state la, among the low 
states of Fig. 2 (f). It may be noted that high-energy 
nucleon-nucleon scattering experiments suggest a weak 
TO interaction.16 
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APPENDIX. ON THE CALCULATION OF y-RAY 
TRANSITION PROBABILITIES 

This Appendix will be based upon de-Shalit and 
Talmi,25 Chapter 17, and True and Ford3 (TF), Sec. 
IV. B. 1. The notation of TF will be used. Equations 
TF (13) to (17) fit into the framework of the present 
paper without changes. Equation TF (18) for 

<ii '/ll^x||w'T>= 0y/ | | [Jfx(l)+Mx(2)] | | i /7 ' )« (19) 

also fits, and has been checked. The subscript a in (19) 
indicates that the wave functions for both the initial 
and the final states are antisymmetric. 

The operator for an Ml transition, from Ref. 25, 
Eq. (17.10), is given by 

[Mi(f)]»=g I/«
(1)(f)+g^*a)(i), (20) 

where Z(1) and s(l) are the operators for orbital and spin 
angular momentum, in the usual irreducible tensor 
form. The diagonal reduced matrix element is given by 
TF (19), but the off-diagonal reduced matrix element, 
for J9*j'9 is 

(JllM^f^iinlJllMSnlf) 
•3 2/(/+l)-]1/2 

• ( - ! ) > - » * ( * - g . ) P 
L47T 

x — —• 
(2/+l)J 2Mc 

(21) 

Equation (21), for the present scheme [see Eq. (17)J, 
differs from TF (20) by a factor of - 1 . 

The operator for an EX transition, from Ref. 25, 
Eq. (17.9), is given by 

[£?A(*)]m=*eff (fi)X Ym*(0idi), (22) 

where Fm
x is a spherical harmonic, and the coordinates 

of the ith particle are (r»,0»,#»). The reduced matrix 
elements of Q\ are 

4TT 
= ee(((nl\r*\n'l')\ (-)*-*( WiX.,. 

L 4TT J U - t 0/ 

r [ x ] [ j ] i " 2 , 

(23a) 

(23b) 

(23c) 

where Y\ is the irreducible tensor operator for the The formula for the reduced matrix element contains a 
spherical harmonics (Ref. 25, p. 521), rjx]=2*+l, and 3-j symbol in (23b), and a vector-addition coefficient 

, 1 if i+\+p is even i n (23c^ F o r m u l a (23c) for X = 2 differs from TF (21) 
' ' by a factor of (—1)3''~3', because of the phase convention 8j,x.i' = 

0, otherwise. used here. 


