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was not observed in the inelastic proton-proton scatter
ing experiments the momentum transfers were larger 
than those included in the {p,pir+) reaction. 
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I. INTRODUCTION 

THE relationship between the single-particle reso
nance of a shell-model potential and resonances 

associated with particle-hole states is extremely crucial 
to a consistent, indeed a correct, calculation of a nu
clear-reaction cross section. In fact, a considerable 
amount of insight into the correctness or the usefulness 
of a particular formulation of reaction theory can be 
gained from the way in which single-particle resonances 
are handled, particularly when they occur near thresh
olds. A resonance associated with any nonzero value of 
angular momentum becomes increasingly narrow if the 
resonance energy is decreased. Not only does the reso
nance then become more difficult to distinguish experi
mentally from a "compound nuclear resonance," but 
appreciable configuration mixing with discrete shell-
model states may make this distinction less meaningful. 
The single-particle resonance is parceled out among 
more complex levels (e.g., two-particles, one-hole states) 
in precisely the manner discussed by Lane, Thomas, and 
Wigner.1 We shall learn from our analysis of a low-lying 
resonance that in this situation the "doorway state" is 
a single-particle state, or one quasiparticle state. 
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The considerations of this paper are based on the 
shell-model reaction theory outlined in earlier papers,2 

and the results of a specific calculation will be presented 
for the 3̂/2 resonance in the elastic scattering of neu
trons on O16. For the purpose of testing a reaction theory 
the situation which obtains in the nuclei with 4̂ = 15, 
16, and 17 is nearly ideal and this paper is preliminary 
to a more extensive survey of the reactions involving 
these nuclei. 

The J3/2 resonance observed in Ou(n,n)Ou occurs at 
0.934 MeV with a width of only 90 keV. This width is 
approximately what one should expect for a d-wave 
resonance produced by the average Hartree field in this 
nucleus. A corresponding resonance also occurs in pro
ton scattering on O16. Since these resonances arise from 
the average potential generated by O16, we should also 
expect to find d3/2 resonances in the nucleon scattering 
on O15 and N15. In the simplest shell model these nuclei 
are described as belonging to the configuration lpi/i"1, 
a hole in the lpi/2 shell. Overlooking the distinction 
between bound and continuum states for the moment, 
we could describe the resonance observed in nucleon 
scattering on N15 and O15 as "belonging to the configura
tion ^i/2_1 ^3/2." Similarly if elastic scattering could be 
performed on O15 and N15 in their first excited state 

2 W. M. MacDonald, Nucl. Phys. 54, 393 (1964): 56, 636, 647 
(1964). 
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The ds/2 state in oxygen is observed as a very sharp scattering resonance in Ou(n,n) O16. The state is a 
"virtual" state, therefore, and its inclusion among the single-particle discrete states employed in the shell-
model description of states of O16 requires some justification. In this paper a unified reaction theory re
cently given by one of the authors is used as the basis of a description in which the resonance is described as 
arising from the virtual transitions into a true bound state. The continuum states of this description are 
nonresonant because the continuum d3/2 resonance is replaced by a bound ^3/2 state which plays the role 
of a new "doorway state." This description leads to the conventional shell-model description of the particle-
hole resonances of O16 and simplifies the description of the interaction between virtual and bound states. 
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(pwT1 in the shell model), resonances would be observed 
which could be described as "belonging to lpz/r1 d3/2." 

Now actually a central potential can only describe 
nucleon scattering in the lowest approximation, and 
therefore even the continuum states pi/2~1 d3/2 and pz/2~l 

dz/2 are not eigenstates of the complete Hamiltonian 
with a real two-body interaction. A diagonalization of 
the full Hamiltonian using just these continuum states 
will yield eigenstates which are a linear superposition 
of these two configurations. Such a calculation is equiva
lent to rinding the inelastic scattering which is produced 
by the two-body interaction in a direct interaction. 

The calculation of the nucleon scattering is further 
complicated, however, by the fact that discrete bound 
states belonging to the configurations pi/2~1 d5/2, pzj2~l 

d$/2, Pm~l 2si/2, and ^3/2-1 2si/2 also interact strongly 
with the resonant continuum states (which have large 
amplitudes over the nuclear volume). In the shell-model 
calculations of the bound and the "resonant states' ' of 
O16 a dz/2 state is included among the particle states 
from which the particle-hole states are constructed. 
Since a bound dy2 state does not actually exist in O17, 
it is clear that such a state is actually a representative 
of the J3/2 single-particle resonance. The conventional 
shell-model diagonalization can then be viewed in some 
sense as an approximate diagonalization of the full 
Hamiltonian on the discrete shell-model states and on 
certain resonant continuum states.3 

This description of the role of resonant continuum 
states is accurate, but it does not readily lend itself 
to an accurate calculation of the detailed shape of reso
nances, particularly when two or more resonances over
lap. Therefore we shall develop another formulation 
which does provide a basis for such analyses. The moti
vation for the development of the next section is pro
vided by the observation that a slightly deeper d3/2 

potential would provide a bound d3/2 state. This state 
would then give discrete states of the configurations 
pifT1 dy2 and />3/2

-1 ^3/2. The interaction of these states 
would then easily be found by diagonalizing the Hamil
tonian on this discrete set. We shall now proceed to 
show how to remedy the failure of nature to present us 
with this simpler situation. 

II. RESONANCE THEORY OF SINGLE-
PARTICLE SCATTERING 

We apply the formalism of the shell-model reaction 
theory2 to the analysis of low-energy single-particle 
resonance. Let U be a central potential which describes 
the elastic scattering and which therefore fits the reso
nance. For the purpose of the subsequent analysis we 
regard the cross section given by U as exact. The T-
matrix element is 

. r ( k ' ) k)=($ k - | f / | xk+) , (l) 
3 R. A. Ferrell, Eastern Theoretical Physics Conference, edited by 

M. E. Rose (Gordon and Breach Science Publishers, New York, 
1963). 
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where <£k' is a plane wave of momentum k' and xk+ is 
the exact scattering wave function for the potential 
U with outgoing scattered waves at infinity. 

Introduce now the potential U which is sufficiently 
deeper than U to possess a bound single-particle state 
of the same quantum numbers as the sharp resonance 
of U. The energy of this state will be denoted by 
Ed(= —EB, the binding energy). Let fi=K+Ube the 
"model Hamiltonian/ ' and use the scattering states 
Xk+ of H to calculate 2T(k',k). 

Using the equation 

X k + = X k + + ( £ + - # ) - * AXk+, (2) 
where 

A=U-U, 

we can obtain by operator algebra4 

r(k',k)=<$k«| tf |£k+>+<*k-| r|a»+>. (3) 
The "reduced transition operator" T is given by the 
equation 

r=A+A(E+-8)-lr. (4) 

This equation is the starting point for our development 
of a resonance theory of single-particle scattering. 

Since the potential U will not have a resonance at low 
energy, T is the quantity which introduces a resonance 
into the scattering amplitude. This resonance can be 
exhibited explicitly by separating ¥ into a nonresonant 
"effective interaction" Te and a resonant term of the 
Breit-Wigner form. The Te is defined by the equation 

n = A + A ( £ + - # ) - i p c n , (5) 

where Pc projects on the continuum states of i? . From 
Eqs. (4) and (5) it follows that 

r= r.+ repd(E+-a~pdrepd)-'pdre, (6) 
where Pd projects on the discrete bound state of i ? 
which corresponds to the narrow resonance of H. The 
T-matrix amplitude is then given by 

r(k',k)=<<M tf | fc+>+<*k- | <r.|*k+> 

E-Ed~S+i(Td/2) 

The denominator of the resonance term is defined by 

S-iTd/2^(d\re\d) (8) 

with S being called the level shift and Td being the level 
width of the state. Both S and Td are dependent upon 
the energy of the incident nucleon, but at resonance 
Ed+S(ER)=ER, the resonance energy, and Td(ER) is 
the width of the single-particle resonance. 

The effective interaction, which determines the reso
nance energy and width through Eq. (9), is itself non-
resonant. In a lowest approximation Te is just equal to 

4 M. Gell-Mann and M. Goldberger, Phys. Rev. 91, 398 (1953). 
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FIG. 1. The potential U provides the resonant ^3/2 scattering 
cross section which is regarded as exact. The potential U possesses 
the bound dzn state whose displacement by the perturbation 
A = U— U gives rise to the scattering resonance of U. 

A, the perturbation which pushes the bound state of 
H into the continuum and mixes it with the continuum 
levels of H. The deviation of fe from A arises from 
virtual transitions into continuum states with a conse
quent modification of the perturbing interaction. The 
optical theorem for Te, 

imre= -Trepcd(E^--ii)Pcr; (9) 
leads to the familiar expression for Td 

Td(E) = 27r\(d\re\$+(E))\*p(E), (10) 

where p(E) is the density of states. 
As should be anticipated from this view of matters, 

there is a simple relation between 5 and Td- This is 
easily found by writing the explicit equation for Te 

Te=A+APc(E+-PcHPc)~
lPcA. (ID 

One finds the states \p+(E) which diagonalize PCHPCJ 

(++(E')\PcHPc\j,+(E)) = E8(E-E') (12) 

and uses these to deduce from Eq. (8) 

Td(E) = 2ir\(d\A\++(E))\*p(E), (13) 

r W ' ) 
S(E) = (d\ A\d)+(2w)~1(P / dEf , (14) 

J E—E' 

where P denotes "principal part." The second of these 
two equations leads to an extremely simple way of cal
culating the energy-dependent level shift to second 
order in A. 

III. NUMERICAL EXAMPLE 

This approach was used to describe the dy2 resonance 
at 0.934 MeV in elastic neutron scattering from O16. 
For simplicity U was chosen to be a square well whose 
depth of 29.905 MeV and radius of 3.75 F were chosen to 
fit the resonance energy and the width at half-maxi
mum, respectively. The well U was also chosen as a 
square well, and with the same radius as U. The depth 
of U, however, was chosen to give a bound state whose 

energy was varied from -E<*=0 to Ed= —10 MeV as 
a check on the sensitivity of the calculation to the choice 
of Ed- The results were found to be very insensitive to 
this quantity and we quote only the results for the cal
culation with Ed=— 0.1 MeV, for which the depth of 
U was 31.723 MeV. (See Fig.JL) 

After determining U and U, we first calculated the 
resonance energy ER = Ed+S and T(ER) in the lowest 
approximation for cTe=A. The resonance energy ER(1) 

was found to be ER= 1.009 MeV and the width at reso
nance was approximately 100 keV. Since Td

a)(E) is 
a function of energy from which the second-order cor
rection to the level shift is calculated, its dependence 
on E was calculated for the range 0<E<50 MeV and 
is shown in Fig. 2. 

The energy shift was then calculated to second order, 
using the equation 

S^ =(d\A\d)+ (2TT)-1(P / dE' . (15) 
J E-E' 

Since the second-order correction given by the last term 
of this equation is a function of energy, we plot it in 
Fig. 3. Notice that it is very small and is smoothly vary
ing through the resonance region around 1 MeV. The 
dependence of S(2) on the energy, however, means that 
the resonance energy ER(2) must be found by solving 
the equation 

ERW-Ed-S(ERW) = 0. (16) 

The resonance energy is found to be ER{2) = 0.937 MeV. 
Within the accuracy of our calculation this is the exact 
resonance energy. 

The width is much more difficult to calculate to sec
ond order in A. Therefore we adopted another method 
of estimating the effect upon Td of the second-order 
correction to T*e. Make the approximation 

re = 0A, (17) 

where 6 is a constant whose magnitude is fixed by the 
exact resonance energy. 

ER = 0.934 MeV=Ed+d(d\A\d). (18) 

ENERGY (MeV) 

FIG. 2. The width function Td
{1) calculated with Te = A. 
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FIG. 3. The second-order correction to the energy of the inter
mediate state [cf. Eq. (14)] is given as a function of the excitation 
energy. 

The width is then calculated with this approximation 
to f̂  and is found to be 90 keV at resonance. 

The scattering cross section is proportional to sin253/2. 
As a further check on the intermediate-state representa
tion of the resonance cross section, the quantity sin253/2 

was calculated from Eq. (7) using Ed+S=0.934 MeV 
and rd(E) = 27r|{J|M[x+)[2p(-£) for all energies. The 
result agreed with the exact calculation of sin253/2 to 
better than 1% except where the cross section was small 
or rapidly varying. Maximum errors of 3% at such 
places are obviously a consequence of the crude approxi
mations used in evaluating the resonance amplitude. 

IV. SUMMARY 

The significance of our work is that we have shown 
that narrow, single-particle resonances are easily treated 
by introducing a bound state which plays the role of an 
intermediate state in a Breit-Wigner resonance ampli
tude. The resonance energy and the width of the state 
are determined by a one-body effective interaction 
which is nonresonant. This means that the 3̂/2 reso
nance observed in nucleon scattering on O16 can be in
corporated into the shell model by introducing a dy2 

bound state, which is then treated on the same footing 
as the other bound single-particle states. In O16 this 
dz/2 state can be combined with the lps/2~~1 hole states 
in the same way as are the U5/2 and 2syz bound states. 

The shell-model diagonalization which is to be carried 
out with a particle-hole interaction will then include in 
a relatively simple way the effect of configuration inter
action between all the resonant continuum states (asso
ciated with the dZ/2 single-particle resonance) and the 
bound states. 

The only essential modification required of the par
ticle-hole treatment of O16 is the addition of the one-
body interaction in the U3/2 state. In the shell-model 
diagonalization which leads to the resonant energies and 
the compound states the only effect of this additional 
interaction is to "restore" the ^3/2 single-particle energy 
to the position of the resonance observed in O17. The 
shell-model calculation is then of same form as that of 
Elliott and Flowers,5 Brown,6 and others.7 

In the calculation of particle widths for the states of 
O16 the one-body interaction in the J3/2 state is a direct 
consequence of the fact that this state is not bound. 
Consequently, even in the absence of a particle-hole 
interaction the 24.8-MeV state of O16, which belongs 
mostly to pzji"1 ^3/2, would decay. This contribution to 
the particle width of the compound states is properly 
included by the procedure of this paper. 

Finally, we wish to point out that the J3/2 inter
mediate state introduced to describe the scattering reso
nance in O17 is properly regarded as a "doorway state'' 
although this state does not satisfy the definition of such 
states given by Block and Feshbach.8 Such states are 
commonly thought of as being states which differ from 
the initial state by the excitation of a nucleon. In cur
rent parlance, "doorway states" differ by two quasi-
particles from the initial state. More properly, however, 
a doorway state should be regarded as merely a reso
nant configuration which is directly coupled to the in
cident channel and also to more complex excitations of 
the compound system. The J3/2 state clearly meets this 
criterion. 

The application of this formalism to a complete anal
ysis of the states of O16 is being carried out and will be 
reported in another paper. 
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