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Z)-State and Pickup Effects in Nucleon-Deuteron Scattering in the 
Impulse Approximation* 
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The effects of the D state of the deuteron wave function and of the pickup scattering on elastic nucleon-
deuteron scattering are investigated within the framework of the impulse approximation and with the 
neglect of the multiple scattering. A detailed examination is made of the various terms which arise from the 
identity of the incident nucleon with the target nucleons, and of these only the so-called pickup term is re
tained in the calculation. The latter term is treated only in Born approximation; the validity of this approxi
mation is discussed. The computations which are carried out at 40 and 150 MeV indicate that the effects of 
the D state and of the pickup scattering are quite large for scattering in the backward hemisphere. 

I. INTRODUCTION 

QUITE recently, several works have appeared which 
deal with the consistent mathematical formula

tion of the integral equations for three-body scattering 
problems as well as some schemes for solving these 
equations in an approximate fashion.1 It seems evident 
that further work along these lines will permit calcu
lations of moderately high-energy2-6 N (nucleon)-d 
(deuteron) scattering, in particular, which are superior 
to those existing at the present time.6-16 

The standard17'18 impulse-approximation (IA) cal
culations have yielded a fair description of N-d differ
ential cross sections and polarizations for small scatter
ing angles in the energy range from 40 to 150 MeV.6-15 

Those quantitative discrepancies which do exist in this 

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

1 L . D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) 
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)]; S. 
Weinberg, Phys. Rev. 153, B232 (1964); L. Rosenberg, ibid. 
135, B715 (1964); R. D. Amado, ibid. 132, 485 (1963); C. Love
lace, ibid. 135, B1225 (1964). The last-named work contains a 
rather extensive bibliography. 

2 Throughout this work we will be concerned only with elastic 
nucleon-deuteron scattering for incident nucleon energies high 
enough to be considered within the normal range of validity of 
the impulse approximation (IA) in its usual form (cf. Refs. 3-6). 

3 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952). 
4 J. Ashkin and G. C. Wick, Phys. Rev. 85, 686 (1952). 
6 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952). 
6 K. L. Kowalski and D. Feldman, Phys. Rev. 130, 276 (1963). 
7 M. Verde, Handbuch der Physik, edited by S. Fliigge (Springer-

Verlag, Berlin, 1957), Vol. 39, p. 142. 
8 Proceedings of the Conference on Nuclear Forces and the Few-

Nucleon Problem, London•, 1959, edited by T. C. Griffith and E. A. 
Power (Pergamon Press, Inc., London, I960), Vol. 1. 

9 T . Fulton and P. Schwed, Phys. Rev. 115, 973 (1959). 
10 L. Favella and M. Olivetti, Nuovo Cimento 11, 679 (1959). 
11 A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys. 

(N. Y.) 8, 551 (1959). 
12 J. Sawicki and S. Watanabe, Nucl. Phys. 1,0, 151 (1959). 
13 Y. Sakamoto and T. Sasakawa, Progr. Theoret. Phys. 

(Kyoto) 21, 879 (1954). 
14 H. Postma and R. Wilson, Phys. Rev. 121, 1229 (1961). 
15 L. Castillejo and L. S. Singh, Nuovo Cimento 11,131 (1959). 

See also Ref. 8, p. 193. 
16 N. M. Queen, Nucl. Phys. 55, 177 (1964). 
17 By "standard" we mean those calculations which neglect 

the multiple scattering. Queen (Ref. 16) has carried out an ap
proximate partial summation of the Watson (Ref. 18) multiple-
scattering expansion with some improvement over the single-
scattering approximations. 

18 K. M. Watson, Phys. Rev. 89, 575 (1953). 
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range of angles and energies perhaps can be largely 
accounted for by a somewhat more refined evaluation 
of the single-scattering integrals as well as by the use 
of more accurate deuteron wave functions. 

However, for large scattering angles and in the same 
energy range all existing calculations of elastic N-d 
scattering are at best only in qualitative agreement 
with the observed cross sections and polarizations and 
at worst in complete disagreement with experiment.19 

In view of this, it would seem that the need for more 
refined calculational techniques such as those alluded 
to above is now manifest. 

Nevertheless, it cannot be said that the entire content 
of the simple IA approach to N-d scattering with the 
neglect of multiple scattering has been fully exploited. 
We have in mind here the fact that the combined con
tributions of the (so-called) off-the-energy-shell effects, 
the pickup scattering, and the D state of the deuteron 
have never been properly examined. The object of the 
present investigation is to estimate just how the pre
dictions for the cross sections and polarizations, par
ticularly at large scattering angles, are modified when 
these effects are considered simultaneously. It is quite 
conceivable that such estimates will be useful in con
structing approximation procedures within the context 
of more sophisticated formalisms. 

II. IMPULSE AND SINGLE-SCATTERING 
APPROXIMATIONS 

If we employ the (IA) and neglect the multiple 
scattering the transition operator T for N-d scattering 
can be written as the sum20 

in which 

Td^ 

TP= 

Te^ 

T=Td+Tp+Te 

- J E t(a)(E-HQ+ie')-

) 

T^V ,V*rl, 

(2.1) 

(2.2a) 

(2.2b) 

(2.2c) 

19 H. E. Conzett, H. S. Goldberg, E. Shield, R. J. Slobodrian, 
and S. Yamabe, Phys. Letters, 11, 68 (1964). 

20 K. L. Kowalski, Nuovo Cimento 30, 266 (1963). 
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represent the contributions of the direct, the pickup, 
and the target-exchange20,21 scattering processes, respec
tively. Here t(a) is the two-body transition operator 
which satisfies 

t{a)=Vs{a)+hVs{a){E,a-K,-Ka^ief)~%a), (2.3) 

with £o« a two-body energy which will be specified 
later. Also, 

F s ( a ) = F o a ( l - P o « ) 
and 

where Voa(=Vao) represents the interaction between 
the incident projectile (0) and the target nucleon 
a ( a = l , 2), Hn is the deuteron Hamiltonian, and KQ, 
Ka are kinetic-energy operators for the indicated par
ticles. The exchange operator for all the variables of 
particles 0 and a is denoted by Poa. Finally, we remark 
that in the formulation of Eqs. (2.1) and (2.2) an 
isotopic spin convention has been employed so that 
all nucleons are regarded as identical.20 

The physical transition probability amplitudes are 
obtained from the matrix elements of T with respect 
to the unperturbed states |<£) which satisfy 

ffo|0>=E|0>, 
where 

£ = £ o + € , 

Eo is the energy of the incident particle, and e is the 
energy of the target including its c m . motion. The 
particular value of E which occurs in Eq. (2.2c) corre
sponds to the initial values of EQ and e. The states 
|0) are presumed to be completely antisymmetrized 
with respect to all the target-nucleon variables. 

III. KINEMATIC AND ISOSPIN STRUCTURE 

In this section we will study the kinematic and 
isospin structure of the matrix elements (0/[ 7U10»), 
where A = d, p, e for the specific case of elastic nucleon-
deuteron scattering.22 Parts of this material are readily 
available in the literature6,16 but are reproduced for the 
sake of continuity as well as to indicate clearly the 
particular features and limitations of the present 
calculation. 

The initial (final) states |0»-) ( |0/)) of the nucleon 
and the deuteron (in its ground state) will be written as 

I <£*,/)= I k»,/jPt\/>f i,/) I Xi,f) • 

Here k* (k/) and P* (P/) are the initial (final) wave 
vectors of the projectile and the c m . of the deuteron, 
respectively. The index f refers to a three-nucleon 
ordinary-spin state which is symmetric in the deuteron 
variables and |X*)= \xf) represents the isospin state of 
the free nucleon and the isosinglet deuteron. We will 

21 G. Takeda and K. M. Watson, Phys. Rev. 97, 1336 (1955). 
22 We will neglect any possible electromagnetic effects. At the 

energies and angles with which we will be concerned this is 
certainly a valid approximation. 
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, adhere throughout this paper to the normalization 
conventions of Ref. 6. 

: It will prove convenient to express Voa explicitly in 
terms of the isosinglet F(0)(o;) and the isotriplet 
F(1)(a) parts of the nucleon-nucleon potential: 

{ Voa=V^(a)Po(a)+V^(odPi(a). 

The projection operators on the isosinglet ( r = 0 ) and 
the isotriplet ( r = l ) states of particles 0 and a are 
denoted by PT(a). 

Similarly, t(a) can be written in terms of the two-
nucleon transition operators t(r)(a) which correspond 
to scattering in each of the two isospin states: 

/(a) = ^o ) ( a )p 0 ( a )+^a ) ( a )p 1 ( a ) . (3.1) 

] The operators *<T>(«) satisfy Eq. (2.3) with Vs(a) re
placed by Vs

(T)(a) which is defined by 

F s ( r ) ( a ) = F ( r ) ( a ) [ 1 + ( _ 1 ) T ( P o J j 

where (Poa is the exchange operator in all the variables 
of particles 0 and a excepting isospin. 

A. Direct Terms 

The direct amplitude is given by23 

(4>f | Td 10<> = Kk^f,13*<D (a)+*<» (a) | k,,P,,f ,->. (3.2) 

The matrix elements of 2(T)(a) are6 

<k/,p/,r/|*<*>|kJ>p<lfi> 

= 5(K / -K, - )<f / |^ (k / ,k / ) l r i >, (3.3) 
with 

^W,k/)=J<%,t(q-K)(fk/+!K 

-k|4 ( r ) | fk/- |q)^(q) , (3.4) 
and 

K=k+P, 
k'=f(k-iP), 
K=i (k / -V) . 

The deuteron ground-state wave function in momen
tum space <£(q) and the matrix element of tc

{r) which 
appears in (3.4) are regarded as operators in ordinary 
spin space. The cm. motion of the deuteron has been 
separated out of 0(q). 

The operator /C
( T ) («) is defined in terms of /(r)(a) by 

= 5(k/+V-ki-k-)<k/,V|^(^(«)|k,,V> (3.5) 

which is permissible provided the two-nucleon inter
action is translationally invariant.24 In Eq. (3.5) ka 

denotes the wave vector of the relevant target nucleon. 
23 Equation (3.2) is, of course, independent of the particle 

index a. When no confusion is likely to arise we will, for simplicity 
of notation, write /(T) instead of tM(a) and similarly for related 
operators. 

24 We suppose, in addition, that the interactions are Galilean 
invariant. 
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In order to specify the energy E0a in Eq. (2.3), let us 
suppose that both k* and k/ refer to the laboratory 
system. Then it is consistent with the introduction of 
the (IA) to take EQU as EQ, namely, the lab energy of 
the incident particle.25,26 With this agreed upon, the 
integral equation in the space of relative coordinates 
satisfied by the operator tc

ir)(a) appropriate to the 
matrix element in (3.4) is 

X(Ec-K0a+i€,)-%(T)(a)J (3.6) 
where 

E c = E / - | ( ^ / 2 J f ) q 2 , 

and Koa is the kinetic-energy operator for the relative 
motion of particles 0 and a. The reduced two-nucleon 
mass is denoted by M. The extent of the condensation 
in the notation used in Eqs. (3.3) and (3.4) should now 
be evident. 

Several methods for evaluating the integral (3.4) 
were discussed in Ref. 6. We will employ only one of 
these techniques, namely, we will set q=|K in the 
matrix element of /C

(T) which appears in (3.4) and, in 
addition, we take E c ~£/ . 2 7 Then the momentum inte
gration in (3.4) involves only the deuteron wave 
functions and, moreover, the only matrix elements of 
/c

(r) which appear are related to the two-nucleon transi
tion amplitudes. This approximation was found6 to 
yield results not appreciably different from those ob
tained with a more refined evaluation of the so-called 
off-the-energy-shell effects. 

B. Pickup Terms 

It is clear for the case at hand that 

(0y| Tp\<j>%)= - K k / ^ f / l / ^ W ^ 
X | k ? v P ^ ) , (a5*0). 

Thus, the simple pickup scattering involves only the 
isosinglet part of the nucleon-nucleon interaction as 
one might expect. 

One finds that 

<k/,P/,r/1 <<°> («)CPO/I | fc,p.-,r.-> 
= 5(K /-K,)<r/ |^(V,k/) |f ,) , 

25 The choice of the two-body energy in Eq. (2.3) Is not uniquely 
determined in the course of invoking the (IA) at least within the 
context of the Watson (Ref. 18) form of multiple-scattering 
theory. The procedure followed here seems reasonable enough for 
the single-scattering terms. However, owing to the recoil of the 
target during the intermediate scatterings, the use of EQ in (2.3) 
is not free from contradiction. Indeed, in general the proper two-
body energy would appear to be the consequence of some sort of 
self-consistency requirement. (See, for example, Ref. 26.) These 
considerations merely reflect the well-known lack of a precise 
characterization of the (IA) in a multiple-scattering theory 
except under certain additional restrictions. 

26 K. M. Watson, Phys. Rev. 105, 1388 (1957). 
27 In Ref. 6 this prescription was termed the linear approxima

tion. Strictly speaking, the name does not apply when the D state 
of the deuteron is included. 

with 

tp(k/,k/) = ^ t ( i k /+k / ) f c /q (k /+ |k /1 tcW (a) 

X|q>S0**(q), ("*P)> (3.7) 
where So/s is the ordinary spin-exchange operator. If we 
adopt the previous definition of the two-body operator 
t(a) which satisfies (2.3) then one finds that the integral 
equation satisfied by £c

(0)(«) appropriate to the matrix 
element in (3.7) is just Eq. (3.6) with Ec replaced by 
Eo, namely, the incident-particle energy in the lab 
system. 

In contrast to the direct terms, the factorization of 
the integral (3.7) by somehow extracting some average 
value of the matrix element of £c

(0)(«) is not possible 
owing to the divergence of the residual integral. How
ever, the fact that the Green's function in the integral 
equation for tc

i0)(a) is defined with respect to the 
energy EQ rather than to an energy on the order of 
\EQ [cf. Eq. (3.6)] suggests that when EQ is large a 
reasonable first approximation to (3.7) can be achieved 
by employing the Born approximation for tc^(a), viz., 

*c(0)(a)«TV°>(a). (3.8) 

Then, if we use the wave equation for the deuteron, 
Eq. (3.7) becomes simply 

*P(k/,k/) = ~ 2[ | ed | + (¥/2M) ( k / + | k / ) 2 ] 
X 0 t ( i k / + k / ) S o ^ ( k / + | k / ) , (3.9) 

where \ea\ is the deuteron binding energy. We have 
recovered in (3.9) the usual Born-approximation result 
for the pickup scattering.7,28 

Naturally, it is of interest to inquire how much an 
improved approximation to tc

m(a) will change the 
result (3.9). If EQ is large enough, then in accord with 
the philosophy which led to (3.8), it seems reasonable 
to obtain a correction to (3.9) by considering tc

m(a) 
in second Born approximation, 

*>>(a)«F/°>(a)+iF/°>(«) 
XiEo-Kofi+Wy-iV.wfa), (3.10) 

rather than (3.8). 
In order to estimate the contribution of the second 

term in (3.10) to (3.7) we employed a simple, pure 
5-state Hulthen deuteron wave function and an ap
propriate exponential isosinglet potential.29 All integrals 
involved can then be evaluated in closed form. For 
£o=40 MeV the magnitude of the correction to (3.7) 
was about 70% of the magnitude of (3.7) with the 
predominant contribution arising from the imaginary 
part of the second Born term. At 150 MeV the magni
tude of the corrections was about one-third of the 
magnitude of (3.7). In this case the real and imaginary 
parts of the corrections were roughly the same. 

28 G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950). 
29 J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John 

Wiley & Sons, Inc., New York, 1952), p. 201. 
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It is well known, of course, that for energies below 
100 MeV the Born series is quite unreliable particularly 
for the isosinglet part of the nucleon-nucleon potential.30 

The preceding results at 40 MeV are therefore not too 
surprising.31 The very large differences between the 
observed and the calculated cross sections16 obtained 
using (3.9) for backward scattering, where the pickup 
term is expected to dominate,7,28 also tend to indicate 
that (3.9) is a poor approximation at this energy. 

Despite the spurious nature of (3.9) at 40 MeV we 
will, nevertheless, employ it in our own calculations 
and thus our results at this energy and large-scattering 
angles are only of qualitative interest.32 At 150 MeV 
the situation is somewhat improved, and in fact there 
is reason to suspect that the Born series for tc

m con
verges rather rapidly at this energy.31 The apparent 
approximate validity of (3.9) at 150 MeV and the lack 
of it at 40 MeV will be seen to be reflected roughly in 
our calculations. 

The integral (3.7) does not appear to possess any 
simplifying feature which would lend itself to the sort 
of analysis carried out in Ref. 6. In particular, any 
relation between the matrix element of 2C

(0) in (3.7) to 
the nucleon-nucleon scattering amplitudes seems singu
larly remote. Possibly the most consistent way by 
which to evaluate (3.7) is by the use of a formalism 
developed previously specifically for the sort of highly 
off-shell two-body matrix elements which appear there.33 

One simplifying feature of such a calculation, in con
trast to the direct terms,6 is the circumstance that only 
those terms in the partial-wave expansion of /c

(0) with 
total angular momentum / such that 7<3.0 con
tribute to (3.7). 

C. Target-Exchange Terms 

We next consider, briefly, the matrix elements of 
Te. Let us state at the outset, however, that we do not 
intend to calculate these matrix elements in any degree 
of approximation. Our primary motivation for including 
this material in this paper arises from the lack of 
explicit mention of these terms in most works on N-d 
scattering. 

The states | <£*,/) are to be completely antisym-
metrized with respect to the target nucleon variables. 
Therefore, the sum over intermediate states in Eq. 
(2.2c) will involve only such target states. With this 
in mind, one finds using the same techniques which 

80 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). The argu
ments of R. Aaron, R. D. Amado, and B. W. Lee, ibid. 121, 319 
(1961), are also certainly relevant here. 

31 We recall, however, that owing to the peculiar structure of 
the pickup transition term, 40 MeV for the N-d problem corre
sponds to a two-body lab energy of 80 MeV. Similarly, 150 MeV 
for N-d scattering will correspond to 300 MeV for the two-body 
case. 

32 The same remark applies to the calculation of Ref. 16. 
33 K. L. Kowalski and D. Feldman, J. Math. Phys. 4, 507 

(1963). 

were employed for the direct and pickup terms that 

<*/|r.|fcH8(K,-K<) 

X E I fdkn%^(k/,kn';v) 
T=0 p J 

X[0p<*> ( | kn , +k/ ) ] tS 0 ^(k /+ |k / ) , 

*«<'W,k»'; p)= f A# t (q -K)<!V+i iCn-k 

X|*.<r>|!*»'-*q>*p(r)(q), (3.11) 

K „ = M k / - k / ) . 

The sum over p in (3.11) refers to an integration over 
the intermediate continuum states and a discrete con
tribution from the deuteron ground state for r = 0 . The 
continuum two-nucleon wave functions in momentum 
space #p(T)(<l) correspond to excited states of the 
target with (relative) energy (^2/2M)p2 and an isospin 
state T. 

The fact that the energy denominator in (2.2c) has 
disappeared upon evaluating the matrix element is a 
result peculiar to the deuteron target. A similar remark 
applies to the form of the pickup terms in Born 
approximation. 

Physically, one may think of (3.11) as representing 
the distortion of the initial state of a free nucleon and 
the deuteron target due to identity effects.34 This term 
then gives rise to the so-called "polarization" effects 
which are important in N-d scattering at low energies.7 

There exist quite plausible physical reasons20'21 to 
expect the target-exchange scattering to be negligible 
at energies for which the (IA) is expected to be valid, 
and these constitute our justification for not consider
ing (3.11) in our calculations. Nonetheless, it is not at 
all obvious from Eq. (3.11) when this term is small 
compared to the direct and pickup matrix elements.35'36 

Clearly the difficulty in obtaining such an estimate 
arises from the sum over the continuum two-nucleon 
states. It would appear that some more quantitative 
investigation of the target-exchange scattering is neces
sary before including such supposed higher order effects 
as multiple scattering particularly at moderate energies 
and large-scattering angles. 

IV. SPIN STRUCTURE 

We will now address ourselves to the problem of 
evaluating the matrix elements of the operators (3.4) 
and (3.9) with respect to the three-nucleon spin states 
|f). The target-exchange terms (3.11) will not be 
considered. 

34 Compare the interpretation given in Ref. 21. 
35 It should be pointed out that the rough estimates of Refs. 

21 and 36 are not relevant to Eq. (3.11). 
36 J. Sawicki, Nuovo Cimento 15, 606 (1960). 
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The deuteron wave function ^(r) in coordinate space 
is related to 0(q) by 

drexp(-iq-r)iKr), 

where r is the relative position vector. Here ^(r) is 
also an operator in the two-nucleon spin space and can 
be written in the form37 

with S\2 denoting the ordinary tensor operator. The 
(scalar) functions u(r) and w(r) are the S- and In
state radial wave functions, respectively, which are 
normalized such that 

f dr[u2(r)+w2(r)2=l. 

In our detailed calculations we will use the forms for 
u{r) and w(r) derived from the Yale potential.38,39 

It will be convenient to write the states | f) as 

lr>=£c(rw)iM(i,2)>i*(o)>, (4.1) 

where |/0 denotes a two-nucleon spin state and \s) is 
a single-nucleon spin state. We recall that |f) is sym
metric in the indices 1, 2. Then 

0(q)lr)=2/f,,(M,cr/)0,,,(q)k(O,a))|/O5)), a^$ (4.2) 

with the sums on the right-hand side understood to be 
over repeated indices. The matrix elements of (f> are 
defined by 

^.M(q)s<Kl,2)|0(q)|/*(l,2)>. (4.3) 

The (real) quantities C and / in Eqs. (4.1) and (4.2), 
respectively, can be expressed in terms of the Clebsch-
Gordan coefficients in an elementary manner.40'41 

One finds, using (4.2) and the "linear approximation" 
described in Sec. (III-A), that 

(r/I^^CkAk/)!^ 

X(p/,or / |/c<^|p,,^)5s /,s., (4.4) 
where 

7« ("/,/*/1 ^-,M<)= M dq 0,/lM/*(q-*)*,<,, <(q), (4.5) 

and 
P i — ^R-i • J K , P/=ik,+jK. 

The functions FK are the generalizations of the usual 
37 L. Hulthen and M. Sugawara, Ref. 7, p. 1. 
38 K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. Mc

Donald, and G. Breit, Phys. Rev. 126, 881 (1962). 
39 H. Kottler and K. L. Kowalski, Nucl. Phys. 53, 334 (1964). 
40 In our calculations we adopted the phase conventions of 

Ref. 41 for the Clebsch-Gordan coefficients and spherical 
harmonics. 

41 Appendix A of Ref. 29. 

deuteron form-factor integral when the D state is 
neglected.6 We note that | p»| = | p / | . 

For computational purposes the integrals (4.5) are 
more convenient when expressed in terms of the co
ordinate-space wave functions, viz., 

FibfiPflviiPi) 

• / • 

= / dr exp(-fK-r)^ / iM/*(r)^ i iMi(r). (4.6) 

The matrix elements of ^(r) are defined by Eq. (4.3) 
with 0(q) replaced by ^(r). 

The matrix elements of ^(r) have the general form37 

^.i.(r) = Cl/(4ir)1/V]{«(f)8,^ 
+A9,Mr)Y2m(t9Pi)}. (4.7) 

The numerical coefficients AV)fl are real and FjOT(r,p») 
denotes the normalized spherical harmonic which is 
defined with respect to a polar axis in the direction of 
our axis of spin quantization p4. In (4.7) we have 
suppressed the dependence of m on v and /*. 

The angular integrations which are implied in (4.6) 
after one has employed (4.7) can be carried out in a 
straightforward manner with the aid of various ex
pressions for the products of spherical harmonics.41 Then 
one finds that the overlap integrals (4.6) can be ex
pressed in terms of the five radial integrals 

/•OO 

II(K)= I dr j0(Kr)«2(f), 00= ( 
Jo 

Jo 
12(K) = / dr j2(icr)u(r)w(r), 

Jo 
/.OO 

h OO = / dr jo (KT) W2 (r), 
Jo 

1100 = I dr j2 (Kr)w2 (r), 
Jo 

/.oo 

IS(K)= / drjA(Kr)w2(r), 

where ji denotes the spherical Bessel function of order L 
The numerical evaluation of these integrals will be 
discussed in the next section. 

The matrix elements (4.4) can now be expressed 
entirely in terms of the integrals /*•(*), the spherical 
harmonics FZ

W(K,P0, and the nucleon-nucleon scatter
ing amplitudes. The explicit forms for these matrix 
elements are given elsewhere.42,43 

42 H. Kottler, thesis, Case Institute of Technology (unpub
lished). Copies of the various unlisted matrix elements referred 
to in this paper will be supplied upon request. 

43 We might mention that our original motivation for our 
rather laborious approach to the evaluation of the spin matrix 
elements and their subsequent summation was to obtain ex
pressions for the amplitudes which would be adaptable to a study 
of the off-the-energy-shell effects. (Cf. Ref. 6.) 
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By using procedures similar to those utilized in 
evaluating the direct terms, we find that in the ap
proximation (3.9) 

<J7|*,(k/,k/)|r<> 
= - 2[ | ed| + (&2/2M)C2]XS/r^Gu/,^/) 

X C G - . - ^ , J / ) « . / . - < ' * V . M / ( Q / ) ^ . « ( Q O I (4-8) 
where 

Qi=k/+iW, Q / = | k / + k / . 
We note that 

|Qi| = | Q / N e -
The evaluation of the deuteron wave function factors 
in (4.8) will entail the computation of the radial 
integrals 

Ji(Q)= [ drru(r)j0(Qr), > - / 
Jo 

> - / 
Jo 

MQ)= drrw(r)j2(Qr). 
Jo 

The details of this computation will be discussed in the 
next section. The explicit forms of the matrix elements 
(4.8) in terms of the integrals Ji(Q) and the spherical 
harmonics Fjw(Q*-,p»), Fjm(Q/,p») are given elsewhere.42 

V. NUMERICAL DETAILS 

Our calculations were carried out at incident nucleon 
(lab) energies of 40 and 150 MeV for which there exists 
a reasonable body of experimental information.14,19 
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FIG. 2. Nucleon-deuteron polarizations at 40 MeV. The experi

mental points are taken from Ref. 19. 

These two energies are of particular interest in that 
one (40 MeV) corresponds to a situation where the 
simple (IA) might begin to fail3 while the other (150 
MeV) is high enough to expect the (IA) to be excellent. 
We will now summarize the procedures followed in our 
evaluation of the direct and pickup amplitudes and 
the consequent cross sections and polarizations. 

The two-nucleon amplitudes appearing in the direct 
terms were calculated using the Yale phase shifts.44 

FIG. 1. Nucleon-deuteron cross sections at 40 MeV. The ex
perimental points are taken from J. H. Williams and M. K. 
Brussel, Phys. Rev. 110, 136 (1958). 

90 „ 120 
9 ( d e g ) 

FIG. 3. Nucleon-deuteron cross sections at 150 MeV. The experi
mental points are taken from Ref. 14. 

44 G. Breit, M. H. Hull, Jr., K. E. Lassila, K. D. Pyatt, Jr., 
and H. M. Ruppel, Phys. Rev. 128, 827 (1962). M. H. Hull, Jr., 
K. E. Lassila, H. M. Ruppel, F. A. Mc Donald, and G. Breit, 
ibid. 128, 830 (1962). 
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FIG. 4. Nucleon-deuteron polarizations at 150 MeV. The experi
mental points are taken from Ref. 14. 

Since all of these amplitudes were on the energy shell 
the procedures followed were standard.45 

All of the radial integrals I{ and Ji were evaluated 
using the specific deuteron wave function mentioned 
previously.39 With this (analytic) form for u(r), the 
integral Ji could be integrated in closed form. The 
integral 75 did not appear in our final expressions for 
the amplitudes and therefore was not computed. The 
remaining integrals were evaluated numerically with 
the upper limit of integration cut off at a distance of 
either six (12,13,1 A) or eight (J2J1) pion Compton 
wavelengths. The maximum possible errors as a result 
of the cutoffs were estimated to be no more than a 
few percent. The largest possible errors were confined 
to the region of the smallest values of K and Q considered. 

The direct and pickup amplitudes were employed in 
the usual manner46 to calculate for several different 
cases the cross section a (0) and the polarization P(0), 
as a function of the three-body cm. scattering angle 
0. The results of these computations are presented in 
Figs. 1-4. 

Four different cases were investigated. First of all, 
in order to provide a basis of comparison with the 
standard approximations we calculated cr(0) and P(0) 
using only the direct terms and the pure S-state 
deuteron wave function which in this case was normal
ized to unity for the sake of consistency. Next, the 
D state was properly incorporated into the direct terms 
but the pickup scattering was neglected. Then, the 
pickup scattering was included but the D state was 
neglected in both the direct and the pickup ampli
tudes. Finally, the D state was properly accounted for 
in both the direct and pickup amplitudes. 

VI. RESULTS AND DISCUSSION 

Let us consider first the various cross sections at 40 
MeV which are plotted in Fig. 1. In the angular range 
0<75° the fit obtained to the data is somewhat of an 
improvement over most previous calculations carried 

out in the same degree of approximation.6i12*15'16 This 
is most probably due to our use of a more accurate 
deuteron wave function. It is evident that in this 
angular range the pickup scattering is entirely negligi
ble. On the other hand, the difference between the 
results obtained with and without the inclusion of the 
deuteron D state is small but not insignificant at least 
for these angles. 

The cross sections calculated using only the direct 
terms are seen to agree rather well with the data up 
to about 120°. For 0>75° this is probably fortuitous. 
As one expects, the agreement is poor for 0> 150°. The 
effect of the D state on the cross section when the 
pickup scattering is neglected is about the same at all 
angles. 

The pickup process dominates the scattering for 
0>12O°. In this region the cross sections computed 
using the combined direct and pickup amplitudes pro
vide a very poor quantitative fit to the data. The 
contributions of the D state in these cases is insignificant. 

An examination of the computed polarizations at 40 
MeV (Fig. 2) shows virtually a complete failure of our 
calculations in any degree of approximation to provide 
even a qualitative fit over practically the entire angular 
range under consideration. This great disagreement is 
to be contrasted with our comparatively good results 
for o-(0), particularly for 0<75°. Of course, the polari
zation is notoriously sensitive to effects which only 
slightly alter the cross section. In this regard we note 
the greater influence of the D state on P(0) than on 

The principal inadequacy of the polarization pre
dictions is the complete failure to account for the very 
large negative peak in the observed P(0). Although 
data is available only at a few energies14'19,47 it seems 
to be a characteristic feature of N-d scattering even at 
relatively low energies47 for P(0) to be quite negatively 
peaked in the neighborhood of 0= 100°. It also appears 
to be characteristic of the standard (IA) calculations 
to underestimate this peak.6'11,14'15 

It should be pointed out that of all the various 
calculations6'11-15 of P(0) at 40 MeV the prediction of 
Ref. 11 seems to be in best qualitative accord with 
experiment in the angular range 30°^0^75°. This 
calculation appears to be unique in predicting the 
change of sign in P(0) at about 70°.48-49 Of course, for 
0>8O° the magnitude of P(0) is grossly underestimated. 
It is interesting to point out that the approximation 
procedures used in Ref. 11 were considerably less 
refined than those employed here. This inverse correla
tion between the degree of refinement in calculation 

46 H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev. 
105, 302 (1957). 

46 L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956). 

47 H. E. Conzett, G. Igo, and W. J. Knox, Phys. Rev. Letters 
12, 222 (1964). 

48 This calculation is also unique in that the Gammel-Thaler 
(Ref. 49) N-N phase shifts are employed. It is unclear how 
sensitive our 40-MeV polarization calculations are with respect to 
any inaccuracies in the assumed N-N phase shifts (Ref. 42). 

49 J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291, 1337 
(1957). 
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procedures and the agreement with the 40-MeV polari
zation data has been observed before.19 

Next let us examine our results at 150 MeV. Again, 
we consider first the cross sections (Fig. 3). The over-
estimation of a (6) at 0=30° is particularly interesting. 
At this angle and energy it is customarily expected 
that the simple (IA) should yield an excellent represen
tation of the scattering amplitude. Yet several calcu
lations carried out with varying degrees of refine
ment6'11'14'15 and with the use of a variety of N-N data 
and deuteron wave functions or form factors all seem 
to yield a somewhat larger cross section than experi
ment at this particular angle even when the neighbor
ing data are reasonably well approximated.14 Further 
experimental data in the region of 0=30° for both 
<r(d) and P(6) would be most informative in identifying 
any theoretical shortcomings. 

Excepting the point 0=30°, a fair fit for <r(d) is ob
tained with all of the different approximations for 
0<75°. For larger values of 6 the pickup scattering 
and the D state both play an important role. Consider
ing the approximations employed, we obtain a rather 
remarkable fit to <r(0) over the entire angular range 
when both the pickup scattering and the D state are 
included. We note that the cross sections computed 
without the pickup scattering are lowered relative to 
the corresponding curves obtained in Ref. 6. Again we 
attribute this to the use of an improved deuteron 
wave function over that employed in Ref. 6. 

One phenomenon associated with the D state should 
be pointed out. It is clear from Fig. 3 that with the 
D state included the pickup amplitude becomes im
portant at considerably smaller angles than is the case 
without the D state. This effect is present in all our 
calculations although it is somewhat subdued at 40 
MeV. 

Finally, we consider the polarizations at 150 MeV 
(Fig. 4). The results for 0<75° are about the same as 
those obtained in previous calculations6'11'14'15 except 
for the somewhat better agreement at 30°. In this 
angular range the pickup amplitude contributes negli
gibly; however, the effect of the D state is quite 
noticeable. 

Certainly the most striking feature of Fig. 4 is the 
behavior of P(d) in the neighborhood of 0=120°. The 
effect of the D state on P(0) in this angular range when 
the pickup scattering is neglected is enormous. It 
should be remarked that the calculation of P(0) with 
the D state included is extremely sensitive to apparently 
small changes in the matrix elements (4.4). Our original 
calculations were carried out neglecting all but the 
dominant Z>-state terms in the matrix elements (4.4). 
In this case, we obtained curves for P(0) more in 
accord with the 5-state curves. The present computa
tion evaluated all terms in (4.4). 

Since we have treated the pickup term only in Born 
approximation this amplitude by itself will not give rise 
to a polarization of the outgoing nucleon. Therefore, 
in our approximation, the pickup process influences 
P(B) only through its interference with the direct 
terms.50 With this in mind it is very interesting to note 
the large "damping" of the P(0) curves, particularly 
in the instate case, for 0>1OO°. This appears to be 
due primarily to the fact that a{B) is rapidly increasing 
for large 0 when the pickup term is included as com
pared to a (6) calculated using only the direct terms. 
It is not entirely clear why the polarizations found at 
large 0 using both the direct and pickup terms appear 
to be independent of whether the D state is included 
or not.51 

VII. CONCLUSION 

Our calculations indicate that the D state of the 
deuteron and the pickup process contribute to elastic 
N-d scattering to a greater degree and at smaller 
angles than was previously suspected. The approxi
mations which were introduced (impulse approxima
tion, neglect of multiple scattering, etc.) in the course 
of this computation were all physically plausible and 
we expect that they form a reasonable first-order repre
sentation of the "actual" situation. Therefore, there 
exists some justification for supposing that the qualita
tive aspects of our results will be valid even when the 
scattering amplitude is evaluated by more refined 
techniques.52 

Note added in proof. After this manuscript was sub
mitted for publication, we became aware of a calculation 
of the nucleon-deuteron cross section at 155 MeV by 
Benoist-Gueutal and Gomez-Gimeno [Phys. Letters 13, 
68 (1964)]. These authors took into account the deu
teron D state as well as the pickup term. Consequently, 
their results are in close accord with the direct+pickup 
(S+D state) curve presented in Fig. 3 of the present 
paper. 

ACKNOWLEDGMENTS 

One of us (K. L. K.) would like to thank Dr. Murray 
Peshkin for the hospitality extended to him at the 
Argonne National Laboratory where part of this work 
was carried out. We both extend our thanks to R. 
Stieglitz for his considerable aid with the programing. 
Thanks are also due to C. Lennon for his advice. 

50 It is a matter of taste whether or not one calls a change in 
the magnitude of P(0) arising from a change in <r(0) an inter
ference effect. 

51 Our semiquantitative reproduction of the backward positive 
peak in P{6) offers support to the conjecture of Postma and 
Wilson (Ref. 14) as to the origin of this peak. 

52 The identification of part of the scattering amplitude as the 
"pickup" term may or may not be useful or meaningful depending 
upon the formalism and approximation procedures employed. 


