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The strength of the A-A interaction in the ISo state is determined by analyzing the double hypernucleus 
AABe10 treated as a four-body system of 2a+2A. Thea-a potential chosen fits the !5o phase shifts up to a cm. 
energy of about 12 MeV. Thea-A potential is determined from the binding energy of AHe5, taking into proper 
account the size of the alpha particle and the range of the A-nucleon interaction. With these potentials, the 
binding energy of ABe9 is also given correctly. For the A-A part, a potential is used which has a hard core of 
radius 0.4 F and an attractive well of exponential shape. The intrinsic range is chosen as 1.5 F, corresponding 
to the mechanism of 2-pion exchange. Using a 12-parameter variational function, the A-A xSo potential 
which yields the observed separation energy of the two A particles in AABe10 is found to have a well-depth 
parameter of 0.732_o.o34+0'027, which is about 10% smaller than the value obtained by treating AABe10 as a 
three-body system of Be8+2A. The scattering length and effective range are equal to — (1.04_o.22+(UO) and 
2.91_o.27+0'46 F, respectively. Also, we found that the Be8 core in AABe10 is quite compressed, with the a-a 
separation about 12% smaller than the corresponding separation in ABe9. 

I. INTRODUCTION 

THE recent discovery of a double hypernucleus,1 

best interpreted as A ABe10, has made it possible 
to gain some information about the strength of the 
A-A interaction in the x5o state. Using a three-body 
model of Be8+A+A, it was found by the present authors 
that, with a hard-core A-A potential having an intrinsic 
range of 1.5 F suggested by the mechanism of 2-pion 
exchange, the well-depth parameter in the ^o state has 
a value of 0.817±0.029, which corresponds to a scat­
tering length of — (1.93_o.38+0-51) F and an effective 
range of 2.21db0.17 F.2 

The major defect of the three-body model lies in the 
fact that the distortion of the Be8 core is not taken into 
account. Since the Be8 nucleus is not even bound, it is 
to be expected that the two A particles will cause an 
appreciable distortion of the core. Hence, for a more 
realistic analysis, one should consider the hypernucleus 
AABe10 as a four-body system of 2a+2A. The detailed 
structure of the alpha particle does not need to be 
considered, since, due to its low compressibility, one 
can safely assume that the effect of the distortion of the 
alpha particle will be a rather unimportant one, 

Using the four-body model of 2a+2A for AABe10, 
analyses have already been made by Deloff3 and 
Nakamura.4 In these analyses, purely attractive A-A 
potentials have been used. This is somewhat unrealistic, 
since the presence of a short-range repulsion in the 

f Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 M . Danysz, K. Garbowska, J. Pniewski, T. Pniewski, J. 
Zokrzewski et aL, Phys. Rev. Letters 11, 29 (1963). 

2 Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Letters 
10, 358 (1964). With the three-body model, similar analysis has 
also been performed by R. H. Dalitz and G. Rajasekaran, Nucl. 
Phys. 50, 450 (1964). In their analysis, however, a purely attrac­
tive A-A potential has been assumed. 

3 A. Deloff, Phys. Letters 6, 83 (1963). 
4 H . Nakamura, Phys. Letters 6, 207 (1963). 
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nucleon-nucleon potential, usually represented by a 
hard core, suggests that a hard core of similar size may 
also be present in the A-A potential.5 Moreover, the 
a-a potential used in their calculations is not sufficiently 
repulsive; it yields a-a x50 phase shifts well above the 
experimental values. Furthermore, the variational wave 
functions they used do not seem to have enough flexi­
bility to describe in a reliable way the a-k correlation 
and the relative motion between the alpha particles. 
Thus, in our opinion, their results may not correspond 
too well to the real situation and a more detailed 
analysis, free of all these uncertainties, is clearly 
desired.6 

In our investigation with the four-body model, we 
use an a-a potential which fits the J5o phase shifts up 
to a cm. energy of about 12 MeV. The a-A potential is 
chosen to yield the binding energy BA of the A particle 
in the hypernucleus AHe5, with the alpha-particle size 
and the range of the A-nucleon interaction taken 
properly into account. For the A-A interaction, a hard­
core potential of core radius 0.4 F and an intrinsic range 
1.5 F, corresponding to the mechanism of 2-pion ex­
change, will be used. As for the variational wave 
function, we shall adopt a form originally proposed by 
Austern and Iano.7 In this form, the trial function is 
written as a product of two-particle correlation func­
tions, each depending individually on the interparticle 
distance. For each of these functions, the solution of an 
appropriate two-body Schrodinger equation is used up 
to a certain interparticle separation, which is then 
connected to a variational function for larger distances. 

* J. J. de Swart, Phys. Letters 5, 58 (1963).^ 
6 We should also mention here that, in spite of the fact that 

these authors have used similar potentials and variational wave 
functions, they have obtained contradictory results. Whereas 
Deloff concludes that the A-A interaction is quite attractive, 
Nakamura concludes that the A-A interaction is very weak. 

7 N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960). 
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To convince ourselves that the wave function de­
scribed above has enough flexibility to yield reliable 
results for AABC10, we shall give in the Appendix8 a 
demonstration of the usefulness of this type of trial 
wave function by considering the nuclear three- and 
four-body problems with purely attractive potentials. 
There we shall see that the upper and lower bound to 
the eigenvalue are quite close together, which indicates 
that not only is the upper bound very close to the 
eigenvalue, but also the trial function with the opti­
mum parameters is a good approximation to the 
eigenfunction. 

In the next section, we shall discuss the two-body 
potentials to be used in this calculation. I t will be seen 
that, with the a-a and a-A potentials used here, the 
binding energy of the hypernucleus ABe9 is also given 
correctly. This is somewhat to be expected, of course, 
since the addition of a comparatively weakly bound A 
particle should not destroy the alpha-particle feature 
of the Be8 core. In Sec. I l l , the double hypernucleus 
AABe10 will be analyzed. Using the observed separation 
energy £ A A equal to 17.5±0.5 MeV of the two A 
particles, the strength of the A-A potential in the 1So 
state can be determined. This latter strength will be 
compared with that obtained by us earlier with the 
three-body model. Also in this section, we shall give 
the value of £AA calculated for the double hypernucleus 
AAHe6 with the A-A potential determined from AABe10. 
Finally, in Sec. IV, we shall present a discussion of the 
results of this investigation. 

II. TWO-BODY POTENTIALS AND ABe9 

A. Two-Body Potentials 

The a-A potential is chosen in the same way as in 
the calculation of Dalitz and Downs on AHe5.9 Using a 
Gaussian shape for the nucleon distribution in the alpha 
particle with rms radius of 1.44 F and a A-nucleon 
interaction of a Gaussian form with an intrinsic range 
corresponding to the mechanism of 2-pion exchange, we 
get 

VaA (f) = — I>«A exp ( - \r2), (1) 

with \=0 .408 F~2. The depth vaA can be deduced from 
the solution of the Schrodinger equation for the motion 
of the A particle relative to the alpha particle. With 
Z?A=3 .1 MeV,10 numerical integration leads to 
VaA=43.98 MeV, which corresponds to a volume 
integral of 940 MeV-F3. 

8 This Appendix is essentially an extension to an earlier investi­
gation [Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. 
Rev. 134, B743 (1964)] where the nuclear three-body problem 
with purely attractive two-body potentials has been considered. 
For a similar calculation involving hard-core potentials in nuclear 
three- and four-body problems, see Y. C. Tang, E. W. Schmid, 
and R. C. Herndon, Nucl. Phys. (to be published). 

9 R. H. Dalitz and B. W. Downs, Phys. Rev. I l l , 967 (1958). 
10 R. Levi-Setti, in Proceedings of the International Conference 

on Hyperfragments, St. Cergue, Switzerland, 1963 (unpublished). 
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FIG. 1. a-a ^ o phase shifts as a function of incident 
energy in the laboratory system. 

For the a-a potential, we use a type which has been 
used in the investigations of Suh11 and Bodmer and 
AH12 on the hypernucleus ABe9. I t has the form 

Vaa (r) = vR exp ( - ixR
2r2) - vA exp ( - ixAV2) + Vc ( r) , (2) 

with Vc(r) denoting the Coulomb interaction. Using a 
rms radius of 1.44 F for the alpha particle, this latter 
interaction can be approximately written as13 

7c(r) = (4*/r)*(*r) , (3) 

where $(#) is the error function, defined as 

2 r* 
$(*) = — / exp(—P)dt 

T T W O 

and v is equal to 0.602 F_ 1 . 
To gain confidence in the validity of the 2a+2A 

model for AABC10, we would like to make sure that the 
2a+A model works for ABe9 at least. This means that, 
with the a-A potential given by Eq. (1) and the a-a 
potential yielding the a-a lS$ phase shifts in the low-
energy region, we should get the binding energy of 
ABe9 correctly. For this purpose, we shall calculate 
with three different a-a potentials to see how sensitive 
the binding energy of ABe9 is to the variation in the a-a 
interaction. The parameters of these three potentials 

TABLE I. Parameters of the a-a-potential. 

Potential 
type 

A 
B 
C 

fAA 

(F-1) 

0.475 
0.475 
0.475 

VA 

(MeV) 

160 
160 
160 

PR 

(F-1) 

0.6 
0.635 
0.7 

VR 

(MeV) 

300 
400 
750 

11 K. S. Suh, Phys. Rev. I l l , 941 (1958). 
» A. R. Bodmer and S. Ali, Nucl. Phys. 56, 657 (1964). 
« E. Van der Spuy, Nucl. Phys. 11, 615 (1959). 
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TABLE II. Results for ABe9.* 
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a-a 
Potential 

A 
B 
C 

Oif 

(F-1) 

0.43 
0.43 
0.46 

0/ 
(F-i) 

2.5 
2.4 
2.0 

(MeV) 

- 3 . 0 
- 3 . 2 
- 3 . 6 

(F) 

2.9 
3.0 
3.3 

dg 

(F"1) 

0.295 
0.280 
0.258 

(F"1) 

5.0 
5.0 
5.0 

(MeV) 

- 6 . 0 
- 5 . 5 
- 4 . 2 

dg 

(F) 

1.5 
1.5 
1.5 

Eu 
(MeV) 

-6.71=fc0.08 
-6.43±0.08 
-5.88±0.08 

BA 
(MeV) 

6.81±0.08 
6.53±0.08 
5.98±0.08 

<f l2 2 > 1 / 2 

(F) 

3.51 
3.65 
3.88 

* The statistical accuracy in this table is achieved with 45 000 estimates in the Monte Carlo calculation. 

are listed in Table I and they will be called potentials 
A, B, and C, respectively.14 

The behavior of the a-a 1SQ phase shifts calculated 
with these potentials is shown in Fig. 1, where a com­
parison with experimental data15 is also made. It is 
seen that all three potentials fit quite well the experi­
mental phases in the cm. energy range of zero to about 
12 MeV, with potential B giving the best over-all 
agreement. 

The A-A potential used in this investigation has the 
same spatial dependence as that used in our previous 
study of AABe10 with the three-body model,2 i.e., 

F A A 0 ) = O O > (r<rc) 
= — t>AAexp[—K(V—rc)~], (r>rc) (4) 

with rc equal to 0.4 F and K equal to 5.059 F_1. This 
potential has an intrinsic range of 1.5 F, which corre­
sponds to the mechanism of 2-pion exchange. The 
depth AAA is a variable parameter in our calculation; it 
will be varied to yield the observed separation energy 
BAA of the two A particles in the double hypernucleus 
AABe10. 

B. Binding Energy of ABe9 

Using the potentials described above, the binding 
energy of ABe9 in the 2a+A model will be computed 
with a variational method. The variational wave 
function adopted is of the form 

* = F(r12)G(rn)G(r2Z)Xs (5) 

where 1 and 2 denote the two alpha particles and 3 
denotes the A particle. The function Xs represents the 
appropriate spin function for the ground state of ABe9. 
For the function F(r), we use a form originally proposed 
by Austern and Iano,7 i.e., 

F(r) = uf(r)/r, 
= A /r~1/2[exp (—a/r) 

+£/exp( -

(r<df) 

-Ml, (r>df), (6) 
14 Except for a minor difference in Ve(r), potentials A and C 

are the same as potentials q and r of Bodmer and Ali (Ref. 12). 
16 N. P. Heydenburg and G. M. Temmer, Phys. Rev. 104, 123 

(1956); C. W. Reich, J. L. Russell and G. C. Phillips, ibid. 104, 
135 (1956); R. Nilson, W. K. Jentschke, G. R. Briggs, R. O. 
Kerman, and J. N. Snyder, ibid. 109, 850 (1958); C. M. Jones, 
G. C. Phillips, and P. D. Miller, ibid. 117, 525 (1960); N. Berk, 
F. E. Steigert, and G. L. Salinger, ibid. 117, 531 (1960); J. R. 
Dunning, A. M. Smith, and F. E. Steigert, ibid. 121, 580 (1961). 

where u/(r) is a solution of the equation 

- (AV2M/)(rf2/^2)«/W+[Faa(r)-e /> /('-)=0, (7) 

with ju/ being the reduced mass of the two alpha par­
ticles. The constants A/ and Bf in Eq. (6) are adjusted 
such that the function F(f) and its first derivative are 
continuous at the separation distance df. There are a 
total number of four variational parameters in this 
function, namely, a/, ($/, e/, and df. The function G(r) 
is defined in an analogous manner, except that #/ is 
replaced by fxg, the reduced mass of the a and the A 
particle, and the potential function in Eq. (7) is replaced 
by the potential VaA(r). The variational parameters 
in this latter function are ag, fig, eg, and dg. 

The various expectation values are computed by a 
Monte Carlo method which has been described previ­
ously.16 The results are shown in Table II,17 where Eu 
denotes the upper bound to the eigenvalue, (ri2

2)1/2 

denotes the rms distance of separation between the 
two alpha particles, and BA denotes the binding energy 
of the A particle in ABe9. To obtain the values of BA, 
a resonant energy of about 0.1 MeV for the ground 
state of Be8 has been used.18 

As demonstrated by the three- and four-body cases 
in the Appendix, we expect the upper bound obtained 
by this type of trial function to be very close to the 
eigenvalue. In this particular case of ABe9, we believe 
that the difference between the upper bound and the 
eigenvalue is, in all likelihood, less than 0.1 MeV, 
which is smaller than the experimental uncertainty in 
the value of £A.19 

From Table II, it is seen that potential B yields a 
value of BA which agrees very well with the experi­
mental value of 6.50±0.16 MeV.10 This is interesting, 
since potential B also gives the best agreement with the 
experimentally determined a-a xSo phase shifts in the 
low-energy region.20 In addition, we note that BA is 
rather sensitive to the variation in the a-a potential. 
Although potential A and potential C yield phase 
shifts which are not too different, the values of BA 

16 E. W. Schmid, Nucl. Phys. 32, 82 (1962); E. W. Schmid, 
Y. C. Tang, and R. C. Herndon, ibid. 42, 95 (1963). 

17 The computation on ABe9 was done on the IBM 7094 com­
puter at the Brookhaven National Laboratory. 

18 F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 1 
(1959). 

19 For this reason, we have simply identified the total binding 
energy as the negative of the upper bound in both ABe9 and AABe10. 

20 The same conclusion has also been reached by Bodmer and 
Ali (Ref. 12) in their analysis of ABe9. 
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TABLE III. Results for AABe10.a 

^AA a/ (3/ e/ df 
(MeV) (F-1) (F-1) (MeV) (F) 

ag 
(p- i ) ( F - i ) (MeV) 

d0 ah (3h eh dh Eu BAA {rn2)1/2 

(F) (F-1) (F-1) (MeV) (F) (MeV) (MeV) (F) 

910 

980 

L056 

0.49 

0.50 

0.52 

2.0 

2.0 

2.2 

- 7 . 0 

- 5 . 5 

- 4 . 0 

3.0 

3.0 

3.0 

0.29 

0.29 

0.29 

5.5 

5.0 

5.0 

- 8 . 0 

- 8 . 0 

- 8 . 5 

1.5 

1.5 

1.5 

0.035 

0.060 

0.10 

1.8 

1.3 

1.3 

-23 .0 1.1 

-18 .0 1.1 

-12 .0 1.1 

-16.96 
±0.22 

-17.97 
±0.23 

-19.24 
±0.26 

17.06 
±0.22 

18.07 
±0.23 

19.34 
±0.26 

3.24 

3.20 

3.14 

a The statistical uncertainty in this table is achieved with 60 000 estimates in the Monte Carlo calculation. 

obtained with these potentials differ by almost 1 
MeV. 

We wish to point out that the arbitrariness in the 
choice of the spatial dependence of the a-a potential 
does not affect the conclusion mentioned above, since 
it has been shown by Bodmer and Ali12 that, for two 
a-a potentials of different shape which yield nearly the 
same 25o phase shifts, the values of BA in ABe9 are also 
nearly the same. Thus, this analysis supports strongly 
the validity of the 2a+A model for ABe9, which, in 
turn, means that the results we shall obtain for AABC10 

using the 2a+2A model will similarly be quite reliable. 
For potential B, (rn2)112 has a value of 3.65 F which 

is larger than twice the rms radius of the alpha particle. 
This indicates that the two alpha particles do not 
overlap appreciably, thus strongly supporting the a-
particle model for the Be8 core. 

III. ANALYSIS OF AABe10 

The trial wave function used for AABC10 is 

*=F{n*)l I I GM]f f ( f84)x . , 
*=1,2 
£ = 3 , 4 

(8) 

where 1, 2 denote the a particles and 3, 4 denote the A 
particles. The function Xs is a singlet spin function 
describing the coupling of the A particles into a ^ o 
state. For the functions F(r) and G(r), we adopt the 
same forms as those used for ABC9. Also, a similar pro­
cedure is used to define the function H(r); one only 
needs to note that, in Eq. (7), ju/ is to be replaced by 
fih, the reduced mass of the two A particles, and the 
potential function Vaa(r) is to be replaced by the 
potential function FAA(V). There is a total of twelve 
parameters in the trial function # , namely, a/, $/, i / , 
eh <*g, £#, tg> dg> ah Ph, eh, and dh. Although the number 
of variational parameters is rather large, we have found 
that it was not overly difficult to find their optimum 
values, since the upper bound is rather insensitive to 
the variation in about half of these parameters. 

The upper bounds to the eigenvalues of AABC10 are 
calculated with a-a potential B for three values of #AA, 
namely, 1056, 980, and 910 MeV. The results are given 
in Table III.21 From this table, we see that, for 

VAA= 1056 MeV, the four-body model yields an upper 
bound of -19 .24 MeV which is 1.84 MeV lower than 
the corresponding value obtained with the three-body 
model.2 This indicates clearly that the effect of the 
distortion of the Be8 core plays an important role in 
the determination of the strength of the A-A interaction. 

To have some idea about how close the upper bound 
is to the eigenvalue, we have also computed the lower 
bound for $AA= 1056 MeV, using a formula of Temple,22 

EL= (H)-(m- <#> 2 ) / ( £ i - <H» , (9) 

where H is the Hamiltonian of AABC10, and E\ is the 
energy of the first excited state, which, in this case, is 
equal to —11.08 MeV, the energy of the double hyper-
nucleus AAHC6 computed with this value of ^AA-2 The 
result obtained with the optimum parameters of the 
upper bound is E L = — 37.4 MeV, which is about 18 
MeV lower than the upper bound. Using the experience 
we gained from calculations in nuclear three- and four-
body problems with hard-core potentials,23 we believe 
that a gap of this size between the two bounds means 
that the upper bound is about 0.3 MeV away from the 
eigenvalue. Since the latter magnitude is only about 
half of the experimental uncertainty in BAA, we shall, 
in the following, simply identify the total binding 
energy of AABC10 as the negative of the value of the 
upper bound. 

From BAA of 17.5±0.5 MeV for AABC10, we get, with 
the results of Table I I I , 

%A=944„44
+35MeV, (10) 

where the error quoted is that due to the uncertainty 
in BAA and the statistical uncertainty arising from the 
Monte Carlo calculation. 

The comparison between the results of this calcu­
lation for the well-depth parameter SAA, scattering 
length aAA, and effective range (>O)AA with those of our 
previous study with the three-body model,2 and those 
of Dalitz and Rajasekaran,2 is made in Table IV. From 
this table, we note that the values of these quantities 
are quite different in the three- and four-body model, 
thus indicating strongly that a reliable value for ^AA 

21 The computation on AABe10 was done on the CDC 3600 com­
puter at the Lawrence Radiation Laboratory, Livermore. 

22 G. Temple, Proc. Roy. Soc. (London) 119, 276 (1928). 
23 Y. C. Tang, E. W. Schmid, and R. C. Herndon, Nucl. Phys. 

(to be published). 
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TABLE IV. Well-depth parameter, scattering length, and effective range of the A-A potential. 
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Model 
for AABe10 

SAA 

#AA 

(F) 
OO)AA 

(F) 

This analysis 

Tang, Herndon, and Schmida 

Dalitz and Rajasekarana 

2a+2A 

Be8+2A 

Be8+2A 

0 7™+0.027 

0.817=fc0.029 

0.599=fc0.048 - (1.76±0.33) 

2 - 9 1 -0 .27 

2.21d=0.17 

2.10±0.12 

a Reference 2. 

can be obtained only when the effect of the distortion 
of the Be8 core is taken into account. 

We wish to point out also that the Be8 core is quite 
compressed. With ^ A A = ° 4 4 MeV, the value of </i2

2)1/2 

is only 3.22 F, which is about 12% less than the corre­
sponding value in ABe9. Fortunately, however, it is 
still more than twice the rms radius of the nucleon 
distribution in the alpha particle, which means that 
the a-particle model for the Be8 core in AABe10 is still a 
rather good one. 

The value of BAA as a function of Z>AA for the double 
hypernucleus AAHC6 considered as a + 2 A has been 
calculated previously.24 The results are listed in Table 
V. Using AAA=944 MeV obtained from the analysis of 
AABe10, the value of BAA is 9.33 MeV. 

IV. CONCLUSION 

In this investigation, we determine the strength of 
the A-A interaction by analyzing the double hyper­
nucleus AABe10 considered as a four-body system of 
2a+2A. The A-A potential used as a hard core of radius 
0.4 F and an attractive well of exponential shape. The 
intrinsic range is chosen as 1.5 F, corresponding to the 
mechanism of 2-pion exchange. Using the observed 
separation energy of the two A particles in AABC10, we 
find that the well-depth parameter of the A-A potential 
in the tfo state has a value of 0.732_0.o34+0-027. This 
value is about 10% smaller than that obtained when 
AABe10 is considered as a three-body system of Be8+2A,2 

which indicates that the effect of the distortion of the 
Be8 core is quite essential in the determination of the 
strength of the A-A interaction from the binding energy 
of AABe10. 

The value of the well-depth parameter determined 
here is still somewhat overestimated due to two factors. 
First, the distortion of the two alpha particles in AABe10 

is not considered. Second, our trial wave function yields 
and upper bound which is estimated to be about 0.3 
MeV higher than the eigenvalue. If both of these 
factors are properly taken into account, there will 

24 The value of BAA for Z>AA= 1056 MeV has already been given 
in Ref. 2. In that calculation, the a-A potential is slightly different 
from that used here. Also, the trial wave function used has a 
different form. However, we believe that the results for J5AA are 
very nearly the same as those which would be obtained if we had 
used the «-A potential and the type of trial function of this 
investigation. 

probably be a small reduction of about 3 to 4 % in the 
value of the well-depth parameter, which is not too 
significant, however, since this reduction is even smaller 
than the uncertainty in the well-depth parameter 
arising from the experimental uncertainty in the value 
of BAA of AABe10. 

Due to the relative weakness of the average A-
nucleon interaction, it is generally believed that there 
is no 1=1 bound state for AH3.25 Since, in the double 
hypernucleus AAH3 or AA^3, the average A-nucleon 
interaction is the same as that in the 1=1 configuration 
of AH3 and the A-A well-depth parameter is smaller 
than the nucleon-nucleon well-depth parameter in the 
lSo state, we would expect that there is no bound 
system of AAH3 or AA^3.26 For the double hypernucleus 
AAH4, the situation is not so simple, and a detailed 
calculation using the A-A potential determined here 
and the A-nucleon potential determined previously27 is 
really required in order to decide whether or not there 
exists a bound state for AAH4. 

Finally, we wish to mention that Danysz et al.1 have 
pointed out that the double hypernuclear event which 
they discovered might be interpreted as AABe11 with 
separation energy 19.0±0.6 MeV relative to Be9+2A. 
If this interpretation is adopted, then a modified 
analysis is required, which, however, would not be 
expected to change appreciably the value of ^AA ar­
rived at in this investigation.28 

TABLE V. Values of .BAA for AAHe6.a 

PAA 

(MeV) 
-BAA 

(MeV) 

750 
950 

1056 
1120 

7.27±0.07 
9.40dz0.09 

11.08=1=0.11 
12.28=fc0.13 

* Number of estimates used in the Monte Carlo calculation is 40 000. 

25 B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 
(1959). 

26 H. Nakamura, Progr. Theoret. Phys. (Kyoto) 30, 84 
(1963). 

27 R. C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. Rev. 
(to be published). 

28 For a discussion on this point, see R. H. Dalitz, in Pro­
ceedings of the International Conference on Hyperfragments, 
St. Cergue, Switzerland, 1963 (unpublished). 
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APPENDIX A: TESTS ON THE 
TRIAL FUNCTION 

To show that the type of trial function used in this 
investigation is capable of yielding an upper bound 
very close to the eigenvalue E0, we present here the 
results of a calculation with purely attractive two-body 
potentials for the nuclear three- and four-body prob­
lems. In this calculation, both the upper bound Eu and 
the lower bound EL are computed. For the upper bound, 
we employ the usual Rayleigh-Ritz method, while, for 
the lower bound, Temple's formula given by Eq. (9) 
is adopted.29 

Two-body potentials of both Gaussian and expo­
nential dependence have been used. They have the 
forms 

Vg(r) = -Vo9exp(-Kgr>) (Al) 
and 

Ve(r) = - V0e exp(-Ker), (A2) 

with V0o=Sl.S MeV, /c,=0.3906 F"2, V0e=96.937 
MeV, and ne= 1.156 F_1. The potential Vg(r) was used 
in a calculation by Baker et al.zo on the nuclear three-
body problem, while the potential Ve(r) is an average 
of the potential in the triplet-even and singlet-even 
states used by Rarita and Present in a study on the 
nuclear two-, three-, and four-body systems.31 

The trial function employed is of the type described 
in Sec. II. Its spatial part is given by 

<*>= I I / f a ) , (A3) 

with N equal to three for the triton and four for the 
alpha particle. For the function f(r), we use either 

fi(r) or /2(f), which are 

fi(r) = u(r)/r9 (r<d) 
= i4r-i/w-i)[exp(-ar) 

+£exp( - /3 r ) ] , (r>d) (A4) 
and 

f*(r) = u(r)/r, (r<d) 

==^ r-i/(;v-i)[exp(-ar)+£ exp(-/fr) 
+ C e x p ( - T r ) ] , (r>d), (AS) 

where u(r) is a solution of the equation 

- (h2/m) (d2/dr2) u+ [V (r) - e~]u=0, (A6) 

with V(r) representing either Vg(r) or Ve(r). When the 
function fi(r) is used, the constants A and B are 
adjusted such that the function /i(V) and its first deriva­
tive are continuous at the separation distance d. There 
are a total of four variational parameters in this func­
tion, namely, a, ft, e, and d. When f2(r) is used, the 
additional constant C is utilized to insure that its 
second derivative is also continuous at the separation 
distance. In this latter function, there are five vari­
ational parameters, namely, a, ft, 7, e, and d. 

The significance of the factor f-i/c^-D has been ex­
plained previously23,27; hence, we shall not go into it 
further here. It suffices to say that, if our trial function 
represents the eigenfunction closely, then the vari-
ationally determined value of a should be approxi­
mately equal to the value of ol given by 

af = {[_2m/N{N- l )^ ] (£ i -E 0 )} 1 / 2 , (A7) 

where (E1—E0) is the separation energy of a single 
nucleon from the rest of the system. 

A.l. The Three-Body System (Triton) 

In Table VI, we show the results obtained for the 
three-body system. To get the values of EL, values of 
Ei equal to the eigenvalues of the two-body system 
are used. With Vg(r) and Ve(r), these values are calcu­
lated to be —0.40 and —0.35 MeV, respectively. 

TABLE VI. Results for the three-body system.a 

Two-body 
potential 

Trial 
function 

Optimum parameters of Eu 
a j8 7 e d 

(F-i) (F-i) (F-i) (MeV) (F) 

Optimum parameters of EL 
a (5 y e d Eu EL 

(F"1) (F-1) (F"1) (MeV) (F) (MeV) (MeV) 

v0 
vg 
Ve, 
Ve 

hh 

h 
/lb 

h 

0.288 
0.270 
0.260 
0.243 

5.15 
0.80 
1.60 
0.62 

1.18 

1.24 

-2.0 
-0.3 
0 

-0.1 

1.5 
1.5 
1.2 
1.2 

0.292 
0.265 
0.250 
0.253 

2.55 
0.80 
1.60 
0.62 

1.20 

1.26 

-0.6 
-0.6 
-1.0 
-0.5 

1.8 
1.5 
1.2 
1.2 

-9.74o±0.05 
-9.745±0.04 
-7.65o±0.05 
-7.654±0.04 

-10.04±0.06 
-9.99dbO.05 
-7.84±0.08 
-7.79±0.07 

a The numbers of estimates used are 80 000 and 40 000 for the cases with Va(r) and Ve(r), respectively. 
b These results have been given previously [Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Rev. 134, B743 (1964)]. Here, we have corrected a 

small mistake made before in computing the statistical uncertainty of EL. 

29 For a discussion on the variational methods, see Ref. 23. 
30 G. A. Baker, Jr., J. L. Gammel, B. J. Hill, and J. G. Wills, Phys. Rev. 125, 1754 (1962). 
31 W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1937). 

-9.99dbO.05
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From the Table VI, it is seen that the difference in 
the values of the upper bound obtained with fx(r) and 
/2(f) is rather unimportant, being much smaller than 
the statistical uncertainty arising from the Monte Carlo 
calculation. In the case of the lower bound, the differ­
ence is small but more significant. For both potentials, 
the improvement in the lower bound calculated with 
/2(f) over that with /i(V) is about 10 times the corre­
sponding improvement in the upper bound. 

The above-mentioned results lead us to conclude 
that if the sole purpose is to obtain a good upper bound, 
then the function /i(V) is flexible enough for most 
problems. On the other hand, if one is interested in a 
trial function which can give a very good approximation 
to the eigenfunction, then it might be worthwhile to 
consider the function fc{r). From Table VI, it is evident 
that f2(r) represents the eigenfunction even better than 
/i(r), since the optimum parameters of the upper and 
lower bound are closer to each other for f2(r) than they 
are for fi(r). 

From the closeness of the two bounds and the way 
they improve when fi(r) is changed to /2(f), we believe 
strongly that the eigenvalue is equal to — 9.77d=0.04 
MeV when the potential is Vg(r), and equal to 
-7.67±0.04 MeV when the potential is Fe(r).

32-33 

Using the values of EQ predicted, we can calculate a! 
from Eq. (A7), which turns out to be equal to 0.274 
and 0.242 F"1, for the cases with Vg(r) and Ve(r), 
respectively. Comparing with the values of a given in 
Table VI, we note that the values of ol are almost 
identical to those of a for the upper bound with the 
trial function /2<V)> which is another indication that 
the function f2(r) with the optimum parameters of the 
upper bound is a very good approximation to the 
eigenfunction. 

A.2. The Four-Body System (Alpha Particle) 

The results obtained for the four-body system with 
the potential Ve(r) and the trial function /i(V) are as 
follows: 

Upper bound: 

a=0.293F~1, 0=3.0 F"1, 

e= -4 .0 MeV, i = 1 . 2 F , 

Ec7=-31.45±0.14MeV, 

number of estimates=60 000; (A8) 
32 It is interesting to point out that, by improving the inde­

pendent-pair method of H. J. Mang and W. Wild [Z. Physik 154, 
182 (1959)] for light nuclei, R. Folk [Bull. Am. Phys. Soc. 10, 
112 (1965)] has obtained a value for EQ with the potential Vg(r) 
which is almost identical with our value here. 

33 In a previous publication [Phys. Rev. 134, B743 (1964)], we 
have made a statement that our result for Eu with Vg(r) is not 
too consistent with the result obtained by Kalos [M. H. Kalos, 

Lower bound: 

a-0.295 F~S 0=1.66 F-1 , 

e = - 2 . 7 MeV, rf=1.2F, 

EL=-31.81±0.18MeV, 

number of estimates = 120 000. (A9) 

To get the values of Eu and EL, the Coulomb potential 
between the two protons has been taken into con­
sideration. Also, the value of Ei used is —7.67 MeV, 
which is the eigenvalue for the triton predicted in a 
previous paragraph. 

From Eqs. (A8) and (A9), we note that the gap 
between the two bounds is 0.36 MeV, which is only 
about 1% of the magnitude of the upper bound. This 
indicates that, as in the three-body case, the function 
fi(r) is capable of yielding a very good upper bound. 
In fact, even without further calculation with a more 
flexible function, we can safely predict that the eigen­
value is -31.50dz0.14 MeV. 

As in the three-body case, the self-consistency con­
dition (A7) is quite well satisfied. The value of a! 
calculated with the value of Eo given above is 0.309 
F_1, which is rather close to the value of a obtained 
from the variational calculation. 

Our investigation with the nuclear three- and four-
body problems shows, therefore, that, with purely 
attractive potentials, the trial function <j> of Eq. (A3) 
with fi(r) can not only yield a very good upper bound 
but also give a good representation of the eigenfunction. 
When the potential has a hard core, the situation is 
somewhat more complicated, since, from a recent 
study,23 we have found that a trial function of this 
type does not describe the eigenfunction too well when 
three or more particles are close to each other. However, 
we have also noted in that same study that the proba­
bility of such close-packing of particles is not large 
enough to affect the upper bound to an appreciable 
extent, although it is large enough to depress the lower 
bound quite considerably. Thus, together with the 
results of this investigation, we conclude that, in the 
case with hard-core potentials, the type of trial wave 
function used here is capable of giving a proper de­
scription of the eigenfunction except for a rather small 
region in the configuration space. Since this latter 
defect does not influence the upper bound very much, 
it is still safe to assert that the upper bound produced 
by this trial function is a good approximation to the 
eigenvalue. 

Phys. Rev. 128, 1791 (1962)] using a different method.^ This 
statement was made as the consequence of a misinterpretation of 
Kalos' result. Upon a careful reexamination, we have instead 
come to the conclusion that the results of Kalos' and our calcu­
lations are entirely consistent with each other. 


