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The AA hypernucleus AABe10 has been analyzed by use of a four-body a-a-A-A model which allows for dis­
tortion of the core by the A particles. In particular, the dependence of the internal energy of the core on the 
rms separation of the a particles is required. This was obtained from three-body a-a-A calculations for ABe9. 
Several types of a-a potentials, whose s-wave phase shifts had been previously obtained, were considered. 
Calculations for AABe10 were made for a singlet A-A Yukawa potential (I) of intrinsic range b = 1.48 F, appro­
priate to the exchange of two pions, and for a hard-core Yukawa potential (II) with a hard-core radius 
rc = 0A2 F and 6 = 2.66 F, appropriate to a range corresponding to two pion masses for the attractive 
Yukawa part. Results are also given for a hard-core meson-theory potential (III) which has rc = 0A2 F and 
6 = 1.48 F. Calculations for III were made for AAHe6, and the results were adapted to AABe10. For a-a poten­
tials which give s-wave phase shifts consistent with experiment, it is found that (almost independently of 
the details of the A-A potential) the effects of core distortion account for rather more than a third of the 
experimental additional binding energy of 4.5±0.5 MeV which is obtained after the A separation energy of 
ABe9 has been allowed for. Slightly more than half the contribution due to core distortion comes from the 
core energy of ABe9. The remainder is due to the further distortion of the core by the second A, which causes 
approximately a 10% decrease in the rms a-a separation relative to the value for ABe9. The effects of core 
distortion weaken the resulting A-A potential quite appreciably. For 6 = 1.48 F, one obtains the scattering 
length #AA~ ~ 1±0.3 F and the effective range roAA~ 3.3 ±0.6 F, approximately independent of the shape of 
the A-A potential. For II, one gets a AA = — 2.3_0.5

+0-8 F and rAA = 4.9_0.7
+1-1 F. The well-depth parameters are 

0.45±0.08, 0.675±0.065, and 0.77±0.04 for I, II, and III, respectively. These values are about 35%, 20%, 
and 12%, respectively, less than the values obtained for a rigid core with a three-body Be8-A-A model. The 
S-A-7T coupling constant, obtained with III , is close to the value obtained from the singlet A-N interaction 
for the same hard-core radius. 

1. INTRODUCTION 

DISTORTION of the core nucleus by the A 
hyperons in a AA hypernucleus will give an 

apparent binding between the two A particles. This 
must be known if reliable information about the A-A 
interaction is to be deduced from the experimental 
separation energy of both A particles, with respect to 
the ground-state energy of the core nucleus. Because of 
the exclusion principle, the relevant A-A interaction for 
the ground state is the singlet one. If B\ is the A 
separation energy for the A hypernucleus, then with a 
completely rigid core nucleus the "additional" binding 
energy ABAA=BAA—2BA may be rather directly related 
to the strength of the A-A interaction. This has been 
done by Dalitz and Rajasekaran1 for a Gaussian interac­
tion with the intrinsic range 6=1.48 F, appropriate to 
the two-pion-exchange mechanism, and by Tang et al? 
for a hard-core interaction of almost the same intrinsic 
range (1.5 F). However, if the core can be distorted by 
the A particles, then, even if there were no A-A interac­
tion, one might still get an appreciably positive value 
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1 R. H. Dalitz and G. Rajasekaran, Nucl. Phys. 50, 450 (1964). 
2 Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Letters 

10, 358 (1964). 

of A5AA. The core distortion will be a compression 
because this is energetically favored; for a rigid core, 
the binding due to given A-N and A-A interactions will 
increase as the core size is reduced. 

The most favored candidate for the event reported 
by Danysz et at? is AABe10 with A £ A A = 4 . 5 ± 0 . 5 MeV 
[ £ A A = 17=1=0.5 MeV, BA(ABe») = 6.5=1=0.15 MeV]. How­
ever, AABe11 is also a possible candidate. For AABe10, the 
effects of core distortion are expected to be particularly 
important, since the core nucleus Be8 is not even bound. 
The hypernucleus AABC10 has been considered in Refs. 1 
and 2, in which a rigid core was assumed. The effects of 
distortion of the Be8 core have been considered by 
Deloff4 and by Nakamura5 for an a-particle model. 
These authors reach contradictory results. Thus 
Nakamura finds a large effect due to core distortion, 
whereas Deloff obtains only a small effect. 

Our approach is also based on an a-particle model for 
the core, but uses a better trial wave function and, in 
particular, improved values for the core energy. 
Furthermore, we consider a variety of a-a interac­
tions and also consider both soft- and hard-core A-A 
interactions. 

We thus consider a four-body model of AABC10, 
consisting of two a particles and the two A particles. 

3 M. Danysz et al, Nucl. Phys. 49, 121 (1963). 
4 A. Deloff, Phys. Letters 6, 83 (1963). 
5 H. Nakamura, Phys. Letters 6, 207 (1963). 
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In view of the large binding and incompressibility of an 
a particle, the A particles are assumed to affect only the 
relative motion of the a particles and not these individ­
ually. This model allows a dynamical treatment of the 
Be8 core, and therefore also of distortion effects, and is 
a natural extension of a three-body (a-a-A) model of 
ABe9. This has been treated in detail by the authors.6 In 
particular, this model is remarkably consistent with 
a-a potentials which give excellent agreement with the 
experimental s-wave a-a phase shifts. This success 
gives confidence in the use of an a-a-A-A model for 
AABe10. The total binding energy of the a and A particles 
relative to each other will be very nearly the separation 
energy BAA, since the ground-state energy of Be8 is 
only 0.1 MeV. 

Our calculations are based on the use of the trial 
function 

^ = $ c (R)gAc (rcl)gAc 0c2)gAA (f AA)^0. (1) 

Here rei, rC2, and fAA are triangular coordinates: rc\ 
and rC2 are the A-core separations, and rAA is the A-A 
separation. The function XX0 is the singlet spin function 
for the A particles. The functions gkc{r) and £AA(V) 
are trial functions. As emphasized by Dalitz and 
Rajasekaran,1 it is essential to include the function 
ghA(f) in order to allow for the effect of A-A correlations 
resulting from the short-ranged and possibly strong 
A-A interaction. As justified below, the trial wave 
function $C(R) of the core may be considered as 
effectively depending only on one variational parameter 
R, which may be taken as the rms separation between 
the a particles. 

2. CORE ENERGY 

The core energy as a function of R is given by 

Eaa(R) = (*e(R) \ Ta«+ Vaa j * c ( * ) > , (2 ) 

where Vaa denotes the a-a potential and Taa is the 
kinetic-energy operator. The energy Eaa (R) was ob­
tained from three-body calculations for the a-a-A model 
of ABe9 by use of the procedures described in Ref. 6. 
These are based on the use of the trial function 
fak{raik)fak{ra2K)faa{raa), in an obvious notation. Thus 
for a given Vaa and a definite function /«A(V) (which 
is taken to be a superposition of exponentials), a 
Schrodinger eigenvalue problem is obtained for the a-a 
motion which is solved exactly. This solution then gives 
the best variational solution for /a«(r) and the cor­
responding three-body binding energy ^A[ /«A] appropri­
ate to the assumed function /«AW- The associated 
values of Eaa and of R={raa

2)112 may then also be 
obtained and from the latter also the rms radius R of 
the density distribution of the core. For a wide range 
of values of R, one finds the linear relation 

R=y/2a=0.381 (2.48+5), (3) 

6 A. R. Bodmer and S. AH, Nucl. Phys. 56, 657 (1964). 

where a is the oscillator size parameter, defined by 
Eq. (7), and where R, R, and a are in fermis. It is found 
that, to a very good approximation, Eaa depends only 
on R. Thus for a given R, the energy Eaa is almost 
independent of / «AW and of the strength of the a-A 
interaction—for both of which a wide range was 
considered. For a given a-A interaction, the binding 
energy i^UBe9) and the associated values oiR=RA and 
of Eaa which are realized for ABe9 are, of course, only 
obtained for that function fak(r) that maximizes the 
three-body energy J5A[/«A]. It thus seems very well 
justified to consider £«<*==£««(.#) as a function only of 
R and thus to consider the trial function #c(i?) as 
effectively depending only on R and, furthermore, to 
use for Eaa{R) the results obtained from our calculations 
for ABe9. In view of Eq. (3), it is clear that R or a could 
equally well be used, instead of R, for the variational 
parameter characterizing the core. 

It is convenient to expand Eaa(R) about the value 
R=RA to obtain 

Eaa(R) = Eaa(RA)-€1(R-RA) 
+ €2(R~-RA)2-€,(R-RA)K (4) 

A cubic polynomial was found to give satisfactory fits 
to the results for Eaa(R) for all our potentials Vaa and 
for the relevant values of R. The coefficients ei, e2, and 
€3 are all positive. This is a reflection of the fact that 
Eaa increases more rapidly as R is reduced. It is to be 
noted that, because Be8 is not bound, Eaa(R) does not 
have a minimum for any value of R. For a given Fa«, 
one may obtain RA as a function of BA by varying the 
strength of the a-A interaction used in the three-body 
calculations7 for ABe9. The value of RA for any particular 
Vaa was then chosen so as to give the experimental 
value £A(ABe9) = 6.5 MeV. The core energy in ABe9, 
which is effectively also the rearrangement energy, is 
then Eaa(RA). 

The results obtained for Eaa(R) are shown in Table I. 
The a-a potentials and the symbols used to label these 
are the same as those in Ref. 6. Thus the hard-core 
potentials a to g are defined by 

Vaa=co, r<c; 

F « a = - F 0 , c<r<d; (5) 

Vaa=W/r, r>d. 

The soft repulsive-core potentials p to s are given by 

Vaa(r)= VR exp(-Mi?V2)~ VA e x p ( - ^ V ) + 4 ^ / r . (6) 

All the potentials have a shape reasonably consistent 
with theoretical expectations and have all been chosen 
so as to give the ground-state energy (effectively zero) 
of Be8 correctly. In particular, the hard-core potentials 
[Eq. (5)] are thus characterized by the two parameters 
c and d, since, if these are given, F0 is then determined 

7 The a-A interaction is obtained as described in Ref. 6. The 
(spin-averaged) A-N interaction, having a Yukawa shape with a 
range ju 1=0.7 F, is folded into the a-particle density distribution. 
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TABLE I. Results for the core energy Eaa(R). 

Label 

a 
b 
d 
e 
f 
g 

P 
q 
r 
s 

Hard-core potentials [Eq. 
c(F) d(F) 

0.6 4 
1.7 4 
2.6 4 
1.7 3.5 
1.7 4.5 
1.7 5.0 

(5)] 
Fo(MeV) 

3.68 
7.20 

17.24 
11.10 
5.19 
4.04 

Soft-core potentials [Eq. (6)] 
/^(F-1) 7 A (MeV) 

0.341 30 
0.475 160 
0.475 160 
0.420 165 

by the condition that the 

/^(F- 1) 
0.637 
0.6 
0.7 
0.6 

Fa (MeV) 
96 

300 
750 
700 

RA 

(F) 

2.816 
3.627 
4.17 
3.432 
3.792 
3.932 

3.423 
3.480 
3.737 
4.162 

ground-state energy of Be8 

be given correctly. The s-wave a-a phase shifts for all 
our potentials are given in Ref. 6, 

The coefficient K, whose values 
up to about 12 MeV. 
are given in Table I, 

#A 
(F) 

1.427 
1.646 
1.792 
1.594 
1.691 
1.728 

1.591 
1.606 
1.676 
1.790 

FAcis 

FAOW 

Eaa(RA) 
(MeV) 

1.385 
0.836 
0.580 
0.753 
0.890 
0.932 

0.598 
1.216 
1.035 
0.594 

then 

Us 

2TT3^ 

€l 

(MeV F~ 

3.225 
2.634 
2.381 
2.493 
2.766 
2.821 

2.825 
2.914 
2.765 
2.502 

qV 
oH. 

€2 €3 

*) (MeVF-2) (MeVF~3) 

3.525 
4.536 
4.973 
4.895 
3.974 
3.424 

3.205 
4.547 
4.692 
2.833 

a'2-a2) 2 

a'2 3 

2.40 
4.656 
5.325 
5.776 
3.013 
2.125 

4.304 
6.342 
5.395 
0.865 

9 o 

— exDi -

a" J P\ 

K 
(MeV) 

24.71 
42.29 
54.98 
42.77 
39.08 
35.19 

27.92 
40.38 
45.34 
31.25 

9 

r \ 

is defined (in analogy with the usual compressibility 
coefficient) by K=A-lR2(d?Eaa/dIP)R=RK, where A = 8 
is the mass number of the core. Thus K has been 
obtained from e2 with the help of Eq. (3). It is interest­
ing that the values of K are comparable to, although 
somewhat smaller than, the values (>100 MeV) 
typically quoted for the compressibility coefficient of 
nuclear matter. Of course, our K is not really compar­
able with this, in particular, because Eaa(R) does not 
have a minimum since Be8 is unbound. 

3. AA-BINDING ENERGY EXCLUSIVE 
OF THE CORE ENERGY 

For a given value of R, the binding energy 6AA, 
which is specifically due to the interactions of the A 
particles with each other and with the Be8 core, was 
obtained with the trial function of Eq. (1). The total 
binding energy is £AA=&AA—-£<*«, and the energy 6AA 

is thus the binding energy exclusive of the internal core 
energy and would be the actual separation energy for 
a rigid core whose size is characterized by R. The three-
body trial function gAc(̂ ci)̂ Ac(̂ c2)̂ AA(̂ AA) is thus used 
to obtain 6AA, the size parameter R of the core entering 
only through the A-core potential FAc. This was 
obtained by folding a Gaussian A-N interaction, with 
an intrinsic range b= 1.48 F appropriate to the two-pion-
exchange mechanism, into the core-density distribution. 

For this, an harmonic-oscillator density distribution 
was used appropriate to four Is and four \p nucleons. 
Normalized to unity, this is 

1 r 2 f 2 l r r h 
p( r) = 1+ exp , (7) 

where a is the oscillator-size parameter and the corre­
sponding value of R is given by Eq. (3). The potential 

with a /2=a2+x2, where x is the Gaussian range of the 
A-N interaction (#=0.697 b) and the relevant volume 
integral Us is eight times the spin-averaged volume 
integral of the A-N interaction. 

By numerical solution of the A-core eigenvalue 
problem, the value Us—1990.1 MeV F3 was chosen to 
give a binding energy of 6.5 MeV for a single A to the 
core for a= 1.65 F (.#=3.64 F). This value of a is close 
to the values obtained from three-body calculations for 
ABe9, with potentials Vaa which give a satisfactory fit 
to the a-a phase shifts. As will become clear below, 
the precise value of a is not important so long as FAc 

gives approximately the correct binding for a single A. 
For other (neighboring) values of a (a= 1.5 and 1.6 F), 
the potential FAc is given by Eq. (8) with the above 
value of U8 which is obtained for a=1.65F. This 
corresponds to a fixed A-N interaction as is appropriate 
for our subsequent calculation of &AA as a function of R. 

Calculations for AABe10 were made for two types of 
A-A interactions. The first, denoted by I, is a purely 
attractive Yukawa potential 

VAA(r) = -WAA(e-»r/ixr), (I) 

with jLt~1=M2T~1 = 0.7 F, appropriate to the two-pion-
exchange mechanism. Its intrinsic range is 1.48 F. The 
interaction I may also be characterized by its volume 
integral UAA. The second interaction II is a hard-core 
Yukawa potential 

FAAW=*> for r<rc 

= -WAA(e->"/tir) for r>rc, (II) 

also with M~ 1 =0.7 F and with rc=0.3 ju^-^0.42 F. The 
intrinsic range of II is 2.66 F. 

Some results will also be given for the A-A potential 
obtained from meson theory for even SA parity. A hard 
core of radius rc=0.3/xT~1 was used. For the attractive 
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part of the potential, which is due to the exchange of 
two pions, the static meson-theory expressions given by 
de Swart8 and by de Swart and Iddings9 were used. We 
have neglected the coupling with the 22 channel 
This is well justified for the singlet A-A interaction, if 
/ss is not too large (<0.1). The attractive part is then 
proportional to /SA4, where /SA is the 2-A-7T coupling 
constant. This hard-core potential, denoted by III, 
has an intrinsic range which is very nearly the same as 
that of the Yukawa potential I. 

The numerical calculation of bAA was made with the 
three-body method of Ref. 6 in a manner analogous to 
the one described there for ABe9. Its application to the 
present problem therefore needs only to be briefly 
sketched. Thus, for any given FAA and FAc, one obtains 
a Schrodinger equation for the A-A motion with the 
effective A-A potential FAA+^AA (3)C^AC,FAJ, where 
FAA(3) is a functional of gAc and FAC and represents the 
effects due to the presence of the third particle, i.e., 
the core. Then the eigenvalue obtained as a solution of 
this Schrodinger eigenvalue problem is the value of 
bAA£gAc,VAc2 corresponding to the best variational 
function gAA appropriate to a given function gAc. 

The potentials FAC, obtained from Eq. (8), are fitted 
by a superposition of exponentials. For BA~6.5 MeV, 
the A-core eigensolutions for the fitted potentials are 
then found to give almost the same values of Us 
(within 0.05%) as are obtained from the eigensolutions 
for the original potentials FAC. For gAcy the three-
parameter trial function used is 

gAc(r) = e-<*r+se~e\ (9) 

This is expected to be an excellent trial function. Thus a 
variational calculation for the two-body A-core problem 
with the fitted potential and with the trial function of 
Eq. (9) gives an energy which is within 1% of the exact 
value obtained by numerical solution of the eigenvalue 
problem for the original potential FAC. 

With the fitted potentials and with fu (r) of the form 
of Eq. (9), one then gets an algebraic expression for 
FAA(3), which, in particular, depends on the variational 
parameters a, 0, and s. Numerical solution of the A-A 
eigenvalue problem with the potential FAA+ FAA(3) then 
gives the three-body binding energy bAAi^^s ;R,WAA)* 
The maximum of this as a function of the variational 
parameters a, £, s then gives the required result 
&AAOR,1FAA), which now depends only on R (through 
the potential FAC for a given A-N interaction) and on 
the strength TFAA for a given shape of FAA. The method 
is very accurate not only for a "soft" A-N potential 
but also for one with a hard core, since it treats the 
A-A correlation exactly. 

The results obtained for bAA(R,WAA) as a function of 

8 J. J. de Swart, Phys. Letters 5, 58 (1963). 
9 J. J. de Swart and C. Iddings, Phys. Rev. 128, 2810 (1962). 

R may be represented by the quadratic expression 

bAA(R,WAA) = bAA-h(R-RA)+b2(R-RAr> (10) 

where bAA) &I> and b% are functions of TFAA. 
The energy difference 

AbAA=bAA(RAyWAA)-2bA(RA) (11) 

is the energy difference ABAA appropriate to a rigid core. 
Results for AbAA for AABe10 with a= 1.65 F are shown in 
Tables II and III for the interactions I and II, respec­
tively. The associated values of the scattering length 
#AA are also shown. For obtaining AbAA from our results 
for bAA, we used the value bA= 6.455 MeV obtained from 
a two-body variational calculation of the A-core binding 
energy. This calculation used the trial function of Eq. 
(9) for a=1.65F and the value of U% given above 
(which gives 6.5 MeV with the exact eigenvalue solu­
tion). The results of the variational calculations of 
bAA and bA should then be strictly comparable. In 
particular, the value of AbAA (FAA=0)== 0.14 MeV 
[&AA(FAA=0)= 13.05 MeV] will be given quite ac­
curately, since for FAA=0 the optimum function 
gAc(«=0.725 F-1, 0= 1.60 F~\ S= -0.594) is quite close 
to the optimum function for the two-body A-core 
problem (a=0.75 F-1, 0= 1.80 F~x, *= -0.6285). 

As pointed out in Ref. 1, the small positive value of 
AbAA for FAA=0 arises because the A particles are 
correlated as a result of the finite mass of the core.10 

Thus, roughly, the reduced mass effective for each A 
is increased by the presence of the other A, with a 
consequent reduction in the kinetic energy. (The value 
of AbAA obtained for FAA=0 is, in fact, roughly con­
sistent with an estimate in which the reduced mass used 
for the second A corresponds to a core of mass MC+Jf A 
and the kinetic energy of a single A is taken to be 
TA=8.4 MeV. This estimate gives A£AA=0.24 MeV.) 

Tables II and III also show the rigid-core results 
AbAA for AAHe6. These were obtained in the same way as 
for AABe10 for a Gaussian a-particle density distribution 
with rms radius JB«=1.44F and for a Yukawa A-N 
interaction of range M~ 1 = = 0.7F. For a A separation 
energy BA(AHe5) = 3.1 MeV, the corresponding varia­
tional result with a trial function of the form (9) is 
5A = 3.05 MeV, and with this one gets A5AA(FAA=0) 
= 0.28 MeV. This is, as expected, about twice the 
value for A ABe10. 

The results for AbAA are seen to be quite similar for 
AABe10 and AAHe6. This is in agreement with the conclu­
sions of Dalitz and Rajasekaran.1 Furthermore, very 
nearly the same results as those in Table I were obtained 
in our calculation of bAA for both AAHe6 and AABC10 with 
different core radii (a—1.5F for Be8 and JRa=1.54F 
for He4) and with FAC of the corresponding strengths to 
give the correct values of BA. It is clear that AbAA is 

10 If the core is infinitely massive then one has, as expected, the 
relation bAA = 2bA for FAA=0J# as has been shown in Ref. 6. Numer­
ical calculations for AAHe6 with Me— °° reproduce this result. 
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rather insensitive to the details of the core size as well 
as to the value of BA. 

Our results for the Yukawa interaction I are in 
good agreement with those obtained by Dalitz and 
Rajasekaran1 for a Gaussian interaction of the same 
intrinsic range. In particular, the results for OAA as a 
function of &AA are in good agreement. However, for a 
given value of A6AA, the values of OAA for the hard-core 
Yukawa potential I I are considerably larger than for I. 
This is a reflection of the larger intrinsic range of I I . 

Calculations for AAHC6 have also been made with 
the meson-theory potential I I I . The results are in good 
agreement with those of Tang et al? who used a hard­
core potential with only a slightly greater intrinsic 
range and a slightly smaller hard-core radius than for 
our potential I I I . Furthermore, the results for aAA as a 
function of A5AA are quite similar to those obtained for 
I. Thus for a given intrinsic range the scattering lengths 
as a function of AbAA are insensitive to the shape of FAA. 

The results for I I I are shown in Table I I , which gives 
the values of /SA appropriate to the relevant values of 
A6AA(AAHC6). The resulting relation between UAA and 
/SA is very nearly the same as is obtained for AABC10, 
if the relation between /SA and A^AACAAHC6) is adjusted 
to AABe10 with the aid of the results for I which were 
obtained for both AAHC6 and AABC10. Table I I also shows 
the values of #AA for the corresponding values of /SA 
for the potential I I I . 

The coefficient h in Eq. (10) is positive, since the 
binding increases as the core size decreases. For the 
Yukawa interaction I, the coefficient h as a function of 

UAA (in MeV F3) is given by 

h(U AA) = ^<0 )[1+5.54X 10~41/AA 

- 2 . 5 5 X 1 0 - 7 L 7 A A 2 ] . (12a) 

For the interaction I I , the expression obtained for bi 
as a function of the strength WAA (in MeV) is 

^ I ( ^ A A ) = ^ I ( 0 ) C 1 + 3 . 3 1 X 1 0 ~ 4 ( ^ A A ™ ^ A A ( 0 ) ) 

+ 3 . 6 6 X 1 0 ~ 6 ( P F A A » ^ A A ( 0 ) ) 2 ] , (12b) 

where P F A A ( 0 ) = 1 4 0 MeV is the strength which gives 
the value A £ A A = 0 . 1 4 MeV appropriate to F A A = 0 . This 

value of WAA(0) is close to that which gives ^ = 0 . The 
precise value which is used for WAA®} is, in fact, not very 
important. Both (12a) and (12b) thus correspond to 
expansions in the strength of the interaction about the 
strength appropriate to F A A = 0 . The value of hm 

which, as expected, is very nearly the same for both 
(12a) and (12b), is i1<°> = 7.2 MeV F"1. 

However, the values which we have used for hm 

are, in fact, somewhat different from this; they are 
smaller and give rise to smaller distortion effects. 
They include allowance for the fact that the dependence 
of ^AAC^JFAA) on R should be consistent with an 
a-particle description for the core. This will modify 
&i(0) from the above value, which is obtained on the 
assumption that the core has no structure and is 
represented merely by a density distribution of the 
appropriate mass. 

Thus if one uses for ABe9 the wave function $C(R) 
XF(fAC), which is the analog of Eq. (1) for AABe10, 

TABLE II. Results for the Yukawa interaction I. All energies are in MeV, the lengths #AA and 8R are in F. 

UAA 
(MeV 
F3) aAA 

Rigid-core results* a-a potential2* 

A&AA 
(AAHe«) 

A&AA 
(AABe*>) hk #AA 

-100 0.2 -0.43 -0 .51 0.2386 0.1 

0 0.02 0.28 0.14 0.2466 - 0 . 1 

100 -0 .23 1.27 1.005 0.2551 -0 .41 

200 -0 .62 2.56 2.205 0.2638 -0.89 

300 -1 .43 4.50 3.86 0.2723 -1 .73 

A3AA 
EAA 
Ea<x(RAk) 
8R 

ABAA 
EAA 
Eaa(RAA) 
8R 

ABAA 
EAA 
Eaa(RAA) 
8R 

ABAA 
EAA 
Eaa(RAA) 
8R 

ABAA. 
EAA 
Eaa(RAA) 
8R 

1.69 
0.82 
4.01 
0.48 

2.54 
1.01 
4.38 
0.52 

3.65 
1.26 
4.88 
0.58 

5.17 
1.58 
5.59 
0.65 

7.24 
2.00 
6.61 
0.73 

0.67 
0.34 
1.905 
0.26 

1.405 
0.43 
2.06 
0.28 

2.37 
0.53 
2.24 
0.31 

3.68 
0.64 
2.465 
0.34 

5.465 
0.77 
2.75 
0.38 

0.32 
0.25 
1.355 
0.21 

1.03 
0.31 
1.47 
0.23 

1.97 
0.38 
1.60 
0.255 

3.245 
0.46 
1.755 
0.28 

4.99 
0.55 
1.94 
0.31 

0.52 
0.27 
1.595 
0.22 

1.23 
0.34 
1.72 
0.24 

2.175 
0.42 
1.855 
0.26 

3.46 
0.50 
2.02 
0.29 

5.21 
0.60 
2.22 
0.32 

0.86 
0.48 
2.425 
0.34 

1.63 
0.60 
2.65 
0.38 

2.64 
0.74 
2.93 
0.41 

4.01 
0.91 
3.30 
0.46 

5.88 
1.13 
3.80 
0.52 

1.06 
0.64 
3.02 
0.44 

1.87 
0.80 
3.32 
0.48 

2.93 
0.99 
3.73 
0.53 

4.38 
1.24 
4.30 
0.60 

6.36 
1.57 
5.11 
0.68 

0.63 
0.54 
2.20 
0.36 

1.41 
0.67 
2.41 
0.385 

2.42 
0.82 
2.67 
0.42 

3.80 
0.99 
3.00 
0.46 

5.67 
1.21 
3.44 
0.51 

1.10 
0.39 
2.39 
0.26 

1.84 
0.48 
2.55 
0.28 

2.81 
0.59 
2.74 
0.31 

4.135 
0.71 
2.96 
0.34 

5.93 
0.86 
3.25 
0.37 

0.88 
0.355 
2.13 
0.255 

1.62 
0.44 
2.29 
0.28 

2.58 
0.54 
2.47 
0.305 

3.90 
0.66 
2.69 
0.335 

5.69 
0.79 
2.97 
0.37 

0.84 
0.76 
3.30 
0.60 

1.69 
0.95 
3.74 
0.66 

2.81 
1.21 
4.40 
0.75 

4.38 
1.58 
5.43 
0.88 

6.57 
2.12 
7.07 
1.025 

a To obtain the values of BAA from those for ABAA the value BA =6.455 MeV should be used. For the results for AAHe6 the value 6A =3.05 MeV should 
be used. 
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TABLE III. Results for the hard-core Yukawa interaction II. Energies are in MeV, the difference 8R is in F. 

WAA #AA Rigid-core resultsa 

(MeV) (F) A&AA(AAHe5) AfcAA(AABe">) 
a-a potential** 

/ i 

100 0.06 

140 -0 .33 

150 -0 .46 

250 -2 .03 

365 -21.51 

-0.75 

0.00 

0.21 

2.58 

6.63 

-0.58 

0.14 

0.33 

2.62 

6.35 

A£AA 
EAA 
Eaa(RAA) 
8R 

A£AA 
£AA 
Eaa(fiud 
8R 

A £ A A 
EAA 
Eaa(RAA) 
8R 

A#AA 
EAA 
Eaa(RAA) 
dR 

ABAA 
EAA 
Eatx(RAA) 
8R 

1.62 
0.815 
3.74 
0.45 

2.42 
0.89 
3.97 
0.475 

2.63 
0.92 
4.03 
0.48 

5.26 
1.26 
4.72 
0.56 

9.61 
1.87 
5.49 
0.64 

0.63 
0.37 
1.89 
0.26 

1.375 
0.40 
1.96 
0.27 

1.57 
0.41 
1.98 
0.27 

4.00 
0.55 
2.235 
0.31 

8.03 
0.845 
2.63 
0.365 

0.28 
0.275 
1.36 
0.21 

1.01 
0.29 
1.41 
0.22 

1.21 
0.30 
1.42 
0.22 

3.595 
0.40 
1.61 
0.26 

7.56 
0.625 
1.91 
0.30 

0.475 
0.30 
1.60 
0.22 

1.21 
0.32 
1.65 
0.23 

1.41 
0.33 
1.66 
0.23 

3.805 
0.435 
1.86 
0.26 

7.79 
0.68 
2.18 
0.31 

0.82 
0.50 
2.35 
0.33 

1.58 
0.545 
2.46 
0.35 

1.78 
0.56 
2.495 
0.35 

4.265 
0.76 
2.89 
0.41 

8.40 
1.16 
3.42 
0.475 

1.00 
0.65 
2.83 
0.41 

1.78 
0.71 
3.01 
0.44 

1.99 
0.73 
3.06 
0.45 

4.55 
1.00 
3.62 
0.52 

8.79 
1.50 
4.28 
0.60 

0.58 
0.565 
2.12 
0.34 

1.35 
0.61 
2.23 
0.36 

1.55 
0.62 
2.26 
0.365 

4.05 
0.83 
2.63 
0.415 

8.20 
1.24 
3.11 
0.47 

1.06 
0.42 
2.37 
0.26 

1.81 
0.45 
2.445 
0.27 

2.01 
0.46 
2.47 
0.27 

4.45 
0.61 
2.73 
0.31 

8.51 
0.94 
3.14 
0.36 

0.84 
0.39 
2.12 
0.25 

1.59 
0.41 
2.19 
0.26 

1.79 
0.42 
2.21 
0.27 

4.22 
0.565 
2.465 
0.305 

8.26 
0.87 
2.86 
0.36 

0.74 
0.72 
2.87 
0.53 

1.54 
0.81 
3.16 
0.58 

1.76 
0.835 
3.24 
0.59 

4.395 
1.185 
4.10 
0.71 

8.71 
1.76 
4.92 
0.81 

a See footnote a to Table II. 

then, for the A separation energy as a function of the 
variational parameter R, one has 

BA(R) = bA(R)-Eaa(R), (13) 

where bA(R) is obtained by solving the two-body A-core 
Schrodinger equation for the wave function F(r) with 
the potential VAC (which depends on R). For R=RA, 
the value of BA(R) must then be a maximum and one 
must have (dBA/dR)R^RA=0 and thus (dbA/dR)R==RA 

= (dEaa/dR)R^RA which, by Eq. (4), is equal to — ei. 
Further, one expects that b1

i0)=—2(dbA/dR)R:=,RA 

to a very good approximation. This has, in fact, been 
checked by explicit calculation. Thus, with the aid of 
Eq. (3) one obtains (dbA/dR)R==RA=-3.63 MeV F"1 

for <z=1.65 F. It will then be seen that the values of 
ei in Table I are somewhat, although not much, less 
than |&i(0). This difference is then to be understood as 
due to the a-particle structure of the core. For any 
given Vaa, we have therefore used 

61w = 2ei. (14) 

The values of 6i(0) now, of course, depend somewhat on 
the potential FAA. 

This modification then ensures that the A-core 
system stabilizes at the appropriate value of RAj which 
is obtained from the three-body calculations for ABe9. 
This is now consistent with our use of the trial wave 
function (1) and in particular with our core energies 
Eaa(R). Use of Eq. (14) thereby allows for the effect 
of the a-particle structure of the core on the R depend­
ence of bAA(R,WAA). 

For J2
(0) = M F A A = 0 ) , we obtain 2.63 MeV F~2 for 

I and 2.10 MeV F - 2 for I I ; for the corresponding ratios 

&2(0)/*i(0\ the values are 0.36 F"1 and 0.285 F"1. We then 
use these ratios together with Eq. (14), i.e., we use 
62

(0) = 0.72 ei and 0.57 ei for I and II, respectively. The 
dependence on the strength of VAA is given by 

b2= &2
(0)[1+5.54X 10-4£/AA- 2.55X 10-7^7AA2] (15a) 

for I, and by 

^ 2 = & 2 ( 0 ) [ 1 + 3 . 1 9 X 1 0 - 3 ( ^ A A - ^ A A ( 0 ) ) 

- 1 . 2 8 X 1 0 - 5 ( ^ A A - ^ A A ( 0 ) ) 2 ] (15b) 

for II. In fact, the curvature of bAA(R,WAA) with 
respect to R turns out to be fairly small, and, con­
sequently, the core distortion is rather little affected 
by 62. Hence, the precise values used for #2 are not too 
important. Thus our final results are not much changed 
if the dependence of #2 on WAA is neglected, or even 
if #2 is neglected entirely, 

4. A A BINDING ENERGY AND THE 
A - A INTERACTION 

The binding energy of both A particles obtained with 
the trial function of Eq. (1) is finally given as a function 
of the remaining variational parameter R by 

BAA(R,WAA) = bAA(R,WAA)~Ea<x(R). (16) 

Maximization of this with respect to R then gives the 
value of BAA=BAA(RAA,WAA) together with the core 
radius RAA and the core energy Eaa(RAA) for AABC10. 
The energy difference ABAA, which is of principal 
interest, is given by 

ABAA=BAA(RAA,WAA)-2BA(RA) , (17) 
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where BA(RA) is given by Eq. (13) with the values of the 
core energy E^RA) for ABe9 given in Table I. 

I t is instructive to write ABAA in the form 

A £ A A = A 6 A A + £ « « C R A ) + £ A A . (18) 

The energy difference A#AA, given by Eq. (11), has 
already been discussed. I t is the only nonvanishing 
contribution for a rigid core. The contribution to 
ABAA due to core distortion is thus £ A A ( # A ) + £ A A , 

where 

£ A A = [ M * A A , ^ A A ) - M * A , ^ A A ) ] 

-tEaa(RAA)-Eaa(RA)l. (19) 

The energy EAA is thus the gain in binding energy 
which arises from the additional core distortion due to 
the second A. I t is to be noted that even if there were no 
such further distortion, i.e., if RAA—RA and thus 
£ A A = 0 , then, in addition to A#AA, there would still be 
the contribution from the core energy Eaa(RA) of 
ABe9. This is because, from Eq. (13), the term 2BA in 
Eq. (17) brings Eaa(RA) in twice, whereas, if there 
were no further distortion by the second A, the core 
energy of AABC10 would be just Eaa{Rh). 

The results obtained by maximizing BAA(R,WAA) are 
shown in Tables I I and I I I for the interactions I and II , 
respectively; 5R—RA—RAA is the decrease in R when 
the second A is added. The values of AJ3AA differ 
appreciably, although not too much, between different 
Vaa, except for the potential a, which has far too little 
repulsion and gives a-a phase shifts which are very 
considerably larger than the experimental ones. In this 
connection, it is to be remembered that all our potentials 
give the ground-state resonance energy of Be8 correctly 
and that RA for each FAA was chosen so as to give 
$A(ABC9) correctly. For the same values of A&AA, the 

results for the core distortion are quite similar for I and 
II, the distortion being slightly smaller for the hard-core 
interaction II . 

For a given Fa«, the additional distortion energy 
EAA increases only slowly with the strength of FAA 
and is mostly somewhat smaller than Eaa(RA), although 
the core energy Eaa(RAA) is mostly substantially 
larger than Eaa(RA)> The total distortion energy 
EAA+Eaa(RA) thus also increases only slowly with 
the strength of FAA and is in the region of 1.5—2 MeV, 
i.e., it is rather more than one-third of the experimental 
value A ^ A A - 4 . 5 MeV. 

The second A causes a quite appreciable radial 
compression of the core. Thus the decrease bR is in the 
region of 10% of RA, except for potentials a and s for 
which it is considerably larger. Clearly, if the values of 
RA and/or RAA are less than about twice the rms radius 
of the a particle (as is the case for potential a and to a 
lesser extent for potential p, both of which have too 
little repulsion), then an a-particle model for the core 
cannot be expected to have too much validity because 
of the large overlap of the two a particles. 

For the hard-core a-a potentials [Eq. (5)J, our 
results may be considered as a function of only the 
hard-core radius c, the outer square-well radius d being 
kept fixed—or conversely. Thus for the sequence of 
potentials a, b, d, the outer radius d = 4 F is kept fixed 
and c increases from 0.6 to 2.6 F, while for g, f, b, and e 
the hard-core radius c=1.7 F is fixed and d decreases 
from 5 to 3.5 F. For both these sequences, there is 
thus an effective increase in the repulsive part with a 
corresponding decrease in the s-wave a-a phase shifts. 

Consequently, both sequences correspond to a de­
creasing core compressibility and, correspondingly, as 
may be seen from Table I, e2, e3, and RA increase along 
these sequences, while Eaa(RA) and €i, and therefore 
also #i and b2, decrease. If b\ and b% decrease, while at 
the same time 62 and €3 increase, then core distortion 
will become less. This is, in fact, the case for both 
sequences and, in particular, our results for a given 
FAA have a reasonable behavior as a function of c or d. 

I t is interesting to observe that, for a given FAA, 
the energy difference ABAA is reasonably sensitive, in 
particular, to c for fixed d. This would allow, in principle, 
a test of the a-a-A-A model of AABC10, if FAA were 
reasonably well known, for example, from AAHC6, for 
which distortion effects are expected to be much less 
important than for AABC10. 

Of course, experimental errors in BAA would make any 
such conclusion correspondingly uncertain. Thus if, 
for example, one had AZ?AA(AAHe6) = 2.5db0.5 MeV, 
then one would get for the interaction I the value 
£ / A A = 2 0 0 ± 3 5 MeV F3. With A£AA(AABe10) = 4.5d=:0.5 
MeV, one then gets <;=1.0_o.6+1"°F for d = 4 F . The 
errors are too large for this value of c to be a significant 
result, and it would certainly be consistent with a Vaa 

which gives reasonable phase shifts. If there were no 
errors in the value Ai?AA(AAHe6) = 2.5 MeV, then one 
would get c= 1.0±0.4 F. This would be more significant 
since it is somewhat, although not too much, on the 
small side and would correspond to rather too little 
repulsion for Vaa- The corresponding results for I I are 
quite similar. 

We now discuss the results obtained for the A-A 
interaction. For the hard-core a-a potentials, an 
acceptable fit to the experimental a-a phase shifts is 
obtained with J « 4 . 0 ± 0 . 5 F, c—1.7 F, and with c^ 1.7 
± 0 . 3 F, d = 4 F ; the potential b (that of Van der Spuy 
and Pienaar11) gives about the best over-all agreement. 
The considerations of Ref. 6 for ABe9, where the A is 
regarded as a nuclear probe (realized by assuming that 
the a-A potential for ABe9 is the same as that obtained 
from AHe5), give a-a potentials consistent with these 
but within narrower limits, namely, t = 1 . 7 7 ± 0 . 1 F , 
d=i F and ^=4.17±0.2 F, c= 1.7 F. For the soft-core 
potentials [Eq. (6)] both q and r give reasonable 
phase shifts, and analysis of ABe9 suggests that a best 
potential would be one with an intermediate range 

11 E. Van der Spuy and H. J. Pienaar, Nucl. Phys. 7, 397 (1958). 
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TABLE IV. Results for the A-A interaction. 

B651 

A-A 
potential 

I 

I I 

III 

rigid core 
with core distortion 
rigid core 
with core distortion 
rigid core 
with core distortion 

Strength* 

330±25 
233±43 
312±15 
260±25 

0.275±0.002 
0.267±0.0035 

#AA 

(F) 

- (UG-O.SO-*3-44) 
- (0.89_o.28+0-31) 
- (4.85-1.1+1-86) 
- (2.30_o.54+0-80) 
- (2.36_o.48+0-68) 
-(1.13_o.27+°-38) 

roAA 
(F) 

2.54_o.2o+0-24 

3.70_o.58+0-82 

3.6U.28+0-0 

4.93_o.73+107 

2.18_o.i8+0-19 

3.08_o.45+0-60 

SAA 

0.64 ±0.05 
0.45 ±0.08 
0.81 ±0.04 
0.675±0.065 
0.87 ±0.03 
0.77 ±0.04 

£««CKA)+£AA 
(MeV) 

1.72±0.23 

1.65±0.25 

as for I 

• This is l/AA(MeV F») for I, WAA(MeV) for II, and / S A for III. 

(M22—0-65 F_1) for the repulsive core. The best soft-core 
potentials give only slightly larger values of ABAA 

than the best hard-core potentials. One may then 
consider the potentials b, f, q, r to span a reasonable 
range of acceptable potentials. 

The corresponding results obtained with A£AA=4.5 
±0.5 MeV are shown in Table IV. The quantities r0AA 
and SAA are the effective range and the well-depth 
parameter, respectively. The uncertainty in the choice 
of Vaa contributes about half as much to the error in 
the potential strengths as does the error in A#AA. The 
results for the hard-core, meson-theory potential III 
have been obtained from those for I by use of the 
relation between /SA and £/AA, which is given implicitly 
in Table II. This procedure seems well justified, since I 
and III have very nearly the same intrinsic range and 
since associated values of /SA and £/AA, which give the 
same A&AA, are then also expected to give similar core 
distortions. Moreover, I and II, which have different 
intrinsic ranges, give quite similar core distortions for 
the same value of A6AA. 

The fact that the energy Eaa(Rk)+EAK due to 
distortion seems rather insensitive to the shape of FAA 
for a given value of A6AA implies that our results for 
the core distortion may be used to determine the 
parameters for any shape of FAA, if the appropriate 
rigid-core results for A6AA have been calculated. 

The inherent error of our four-body calculation of 
AJBAA for a given Vaa is expected to be fairly small and 
less than the error due to uncertainties in the choice 
of Vaa. This is because, on the one hand, the major 
part of the distortion energy is E««(JRA), which is given 
reliably by the three-body calculations for ABe9. On 
the other hand, for obtaining the additional distortion 
energy EAA, reliable values have been used for the 
internal energy Eaa{R) of the core. This is confirmed 
by the consistency of our results for different a-a 
potentials. Furthermore, by use of Eq. (14), the a-
particle structure of the core has been taken into account 
consistently. Also, both the slow variation of EAA with 
the strength WAA and also explicit calculations imply 
that the precise dependence of &AACR,WAA) on WAA, 
given through Eqs. (13) and (15), is not crucial. 

No account has been taken of the possibility that the 
a particles, individually, may be compressed by the 
presence of the A particles. This effect would lead to 

larger distortion energies than we have obtained with 
a four-body model and to correspondingly smaller 
strengths for FAA- However, distortion of the individual 
a particles is expected to be rather small, in view of the 
expected small compressibility of the a particle. This 
seems to be confirmed by the quantitative success of 
the a-a-A model for ABe9. 

The rigid-core results for our interactions I, II, and 
III (Table IV) have already been commented on. The 
results for I and III, which have the same intrinsic 
range, show that, also with core distortion, the scatter­
ing length and effective range are fairly well determined 
for a given intrinsic range, independently of the shape 
of the interaction. The well-depth parameter then 
increases as the hard-core radius becomes larger. 
Because of the larger intrinsic range of II, the values 
of #AA and roAA are correspondingly larger than the 
values for I and III. However, SAA is quite similar for 
II and III, both of which have the same hard-core 
radius. 

Table IV shows that the effect of core distortion 
weakens the resulting A-A interaction quite appreciably; 
in particular, the well-depth parameter is quite sub­
stantially reduced. The singlet A-A interaction then 
turns out to be considerably weaker than the singlet 
A-N- interaction. In fact, the results obtained for the 
latter12,13 are quite similar to those obtained for the 
A-A interaction, but with a rigid core for A ABe10. 

Clearly, the evidence is strongly against a bound 
singlet state of the A-A system. Neither is a bound 
triplet state to be expected, since it seems likely that 
the triplet is weaker than the singlet interaction, in 
view of the fact that this is the case for the closely 
related A-N interaction. Furthermore, the three-body 
system (either AAH3 or AA^3) is also not expected to be 
bound. Thus not only is the relevant A-iV interaction 
for AAH3 considerably weaker than for the loosely bound 
hypertriton AH3, but also the singlet A-A interaction is 
much weaker than the triplet n-p interaction which is 
relevant for AH3. In fact, the average A-N force for 
AAH3 is the same as for the T= 1 state of AH3 which is 
not expected to be bound.12 

The interpretation of #AA in terms of the meson-theory 

12 B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959). 
13 R. C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. Rev. 

137, B294 (1965). 
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potentials has been discussed, in particular for even SA 
parity, by Dalitz,14 by de Swart8 and by Dalitz and 
Rajasekaran.1 Our results for the meson-theory interac­
tion I I I (which is appropriate to even 2A parity) show 
that the value of /SA is quite close to the comparable 
value / S A = 0.276 (for / s s = 0 ) which is obtained from 
the singlet A-N interaction.9 (The attractive part of 
this, due to the exchange of two pions, has the same 
shape as for FAA but is proportional to /^/NN2-) This 
is in agreement with the conclusions of Dalitz and 
Rajasekaran1 which were based on the values of #AA-

However, as has been emphasized especially by 
Dalitz,1,14 any results deduced for /SA are very sensitive 
to the value used for the hard-core radius. (Thus for 
rc=0.35/x7r

_1 and / s s = 0 , one has / S A = 0 . 3 0 for aA\ 
= — 1 F.) This is because of the strong cancellation 
between the effects of the hard-core repulsion and the 
short-range attraction due to the exchange of two pions. 
One must therefore have some understanding of the 
relation between the hard-core radii for the A-N and 
A-A potentials if one is to reliably relate the attractive 
parts of these potentials. Furthermore, for VAN, one 
can have, for example, exchange of single K mesons, 
which is not possible for FAA-

Finally, if the event described in Ref. 3 is interpreted 
14 R. H. Dalitz, Phys. Letters 5, 53 (1963). 

ACCORDING to the accepted quantum numbers 
0"-+= JPG for the rj meson, the final state reached 

in the decay rj —> 7r+7r-7r° must have T= 1, Jp=0r. For 

* Work supported in part by the U. S. Atomic Energy Com­
mission under Contract Nos. AT(11-1)-881 and AT(11-1)-123. 

L as AABe11, then the conclusions about the A-A interaction 
1 will have to be modified accordingly. As pointed out by 
- Dalitz,14 the appropriate value A J B A A = 4 . 5 ± 1 . 0 MeV 
r for AABe11 is quite similar to the value for the most 
2 probable interpretation AABe10. With a rigid Be9 core for 
i AABe11, a A-A-core model will yield very nearly the same 
f results for VAA as are obtained for AABe10 with a rigid 
3 core. Since the odd neutron in Be9 has a separation 
5 energy of only 1.7 MeV, an a-a-n model might be 
i expected to be quite good for Be9 with a rms separation 

between the a particles which is rather larger than for 
T ABe9. The contribution to A^AA(AABen) due to distortion 
i may then be expected to be somewhat more than half 
; of that for AABe10, in view of our results for Eaa(RA) 
i and for EAA. The results for the A-A interaction will 
i then be roughly intermediate between those obtained 
; for AABe10 with a rigid core, on the one hand, and with 

core distortion included, on the other. 
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this state, the most general decay amplitude is1 

M= (TI-T2)T3/(COI,CO2,CO3)+ (c.p.) , (1) 

where (c.p.) means cyclic permutation of the indices 
1, 2, 3 ; *i is the isotopic spin vector of pion i; and / is 

1 K . C. Wali, Phys. Rev. Letters 9, 120 (1962). 
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The decay modes of the rj° meson have been investigated in the Lawrence Radiation Laboratory 72-in. 
hydrogen bubble chamber. The 17's were produced in the reaction ir++p —>Tr+-\-p+r] at 1225 and 1275 
MeV/c and were studied by analysis of all four-prong and two-prong+7 events. There appears to be a 
discrepancy in the measured branching ratio R = Tv(000)/Tv(+ — 0) as compared with theoretical predic­
tions based on various models relating R to the spectrum of TV in yf —»7r+7r~7r°. The theoretical predictions 
calculated from the observed spectrum are uniformly higher than the observed value i? = 0.90±0.24. For 
the Brown and Singer theory of a T = 0, S = 0 dipion resonance, we find wff = 407_i2

+25 MeV, r = 117±15 
MeV, R (predicted) = 1.49±0.07. The fit to the linear matrix-element expansion, a= -0 .41 ±0.06, predicts 
i?=1.63±0.02 (the amplitude / = 1 + a y where y = 2 7\ro/7Vomax-l). A fit may be obtained to both the 
spectrum and the branching ratio with an amplitude / = ( l -0 .41yy- 6 % indicating that, although the 
magnitude of / is essentially smooth, a rapid variation in phase seems to be required to fit the branching 
ratio. 


